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 Issues and Approach
1. Developments in fields outside electrical engineering and 
computer science have raised questions about the possibility of 
carrying out computation in ways other than  those based on  digital 
logic. Quantum computing and neuro-computing are  examples.

2.  When formulated mathematically, these new fields relate to 
dynamical systems and  raise questions in signal processing 
whose resolution seems to require  new methods. 

3. Up until now, the statement that  computers are dynamical 
systems of the  input/output type has not gotten  computer 
scientists   especially excited because it has not yet been shown to 
have practical consequence or theoretical power. 

4. It is my goal here to try to show that this point of view has 
both explanatory value and is mathematical interest.  



 Outline of the Day

9:30-10-45   Part 1. Examples and Mathematical Background
10:45 - 11:15   Coffee break
11:15 - 12:30   Part 2. Principal components, Neural Nets, and 

Automata
12:30 - 14:30   Lunch
14:30 - 15:45   Part 3. Precise and Approximate Representation 

of Numbers
15:45 - 16:15   Coffee break
16:15 - 17:30   Part 4.  Quantum Computation



 Architectural Suggestions from Neuroscience 
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Features of the Counter Flow Cartoon

The organization goes from topographic, “high resolution”  data, 
to abstract, and presumably “tree structured” representations in which 
any continuity would be relative to some “degree of association” 
topology.  The  role of long term memory becomes more important 
as the representation becomes more abstract

On the action side, time plays a pivotal role, because of need for 
animals to react in a timely way.  Reflexes are very fast 
but inflexible.  Other actions such as playing football or Bach requires 
interaction with memory coordination of muscle groups, etc. 



 Some of the Important Sub Systems

1. Filters as streaming processors
2. Topographic (k-dimensional) processing vs. associative processing
3. Analog-to-Digital Conversion, Quantization
4. Label, Categorize, Classify, Cluster, Tokenize
. 
Make a distinction between the problems in which the categories
are fixed in advance (non adaptive) and the case where the 
categories are to be determined on the basis of the data (adaptive).

Also distinguish between “flat” and “hierarchical” categorization. 
In the latter case a tree structure is implicit and in the adaptive case 
this tree structure must be generated from the data.



 The Purpose of Labeling is to Simplify 

Key aspects: 
Communication, Computation, Reasoning and Storage/Retrieval  

The simplification invariably means that digitization is a many-to-one 
mapping. Typically the ambiguity introduced by this mapping is more 
pronounced at some points of the domain than at others. The ordinary 
uniformly spaced quantizer q(x) is very precise at the jump points and 
maximally imprecise elsewhere. We want to put the imprecision where 
it won’t hurt us.

Other widely used maps from a continuum to a discrete set include the 
mapping from the space of smooth closed curves in a topological space 
to  an element of the fundamental group of that space.  This simplification 
is basic to the use of algebraic topology.  It is a many-to-one mapping 
but it  distributes the ambiguity in a rather different way. 



Example 1: Analog Sorter in Differential Equation Form

ẋ1 = 2y2
1

ẏ1 = −(x1 − x2)y1

ẋ2 = 2y2
2 − 2y2

1
ẏ2 = −(x2 − x3)y2

..............................
ẋn = −2y2

n−1

A nearest neighbor coupling network

for analog sorting



The Analog Sorter
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 Difficulties with the Cartesian-Lagrangian Point of View 

The representation of a number by choosing a scale and associating a 
numerical value with the instantaneous value of a physical quantity 
such as voltage, current, mole fraction, etc. seems to lack the required 
robustness in many situations,  Examples of  alternative representations 
used in engineering,  nature, and  mathematics include: 

1. The use of elapsed time to represent the number. (How much time 
does it take for a capacitor to charge up to one volt in a given situation.)

2. How many fixed shape pulses occur in a given period of time. 
(pulse frequency modulation)

3. Identify a point in a manifold with the maximal ideal it generates in 
the ring of continuous functions mapping the manifold into some field 
of numbers. (The algebraic geometry point of view.)



Example 2: Topological Representations of Finite Sets 

(a) (b)

Digital electronics represents binary numbers using voltages that are 
Well separated from each other, whose nominal values are, say, 
 0 and 3.2 but whose actual values may differ from these if the 
difference is not too much.  Voltages that are in between these values 
are not allowed, which is to say they correspond to broken systems.

Of course transients are allowed but these must be rapid and 
represent decisive transitions between levels. . 



Classifying Quantizers

In topology there is a distinction between

π0–the number of connected components
of a topological space and π1, the set of

equivalence classes of closed curves.
Ordinary quantizers can be thought of as
π0 quantizers. Pulse counters can be

thought of as π1 quantizers

(a) (b)



The Pulse Annulus and its Winding Number

du/dt

U

The annular characterization allows arbitrary spacing between pulses,
a characterization of a set of functions that is very different from, say,
the characterization of  band-limited functions.



Computing with Pulse Representations

A matched filter for pulses might take the
form

ẋ = − sin(2πx) + u

If the area under the pulse is near 1 and
if the refractory period is long enough,
this system will count pulses with no error.
In symbols
limt→∞ x(t) = ν[u] where ν denotes the

winding number in the annulus sense.



ẋ(t) = − sin x(t) + u(t)

u is “pulse-like” with area ≈ 2π

Suppose that x(0) ≈ 0

Is x(t) ≈ 2nπ most of the time?

Yes, if the pulses are sharp enough
x will advance in units of 2π

Applicable to
ẋ(t) = x(t) − x3(t) + u(t)



x(t) − x(0) − ∫ t
0 u(σ)dσ =

− ∫ t
0 sin x(σ)dσ

y(t) = x(t) − ∫ t
0 u(σ)dσ

y(t) − y(0) =

− ∫ t
0 sin(y(σ) +

∫ σ
0 u(η)dη)dσ

sin(y(σ) +
∫ σ
0 u(η)dη) =

sin y(σ) cos
∫ σ
0 u(η)dη)+

cos y(σ) sin
∫ σ
0 u(η)dη)



But if u is “pulse-like”

cos(
∫ σ
0 u(η)dη) ≈ 1

sin(
∫ σ
0 u(η)dη) ≈ 0

in the sense that the integral of the
deviation is small



Example 3: The Place of  Cell Representation 

An important idea from neuroscience:
Representation of numbers via overlapping place cells.  Tuning curves
determine the rate as a function of the distance to the central point of the 
particular tuning curve, gi( ). 
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The vector x is a vector of pulse streams of variable frequency.  The 
frequency of the ith stream is determined by the value of gi(x).

Compare with the maximal ideal point of view: The derivative defines 
An ideal in the ring of real valued continuous  functions on the space.



Conditional Density as the Be-All and End-All

In reasoning about an uncertain world, data is collected and the 
probability of various underlying  causes is then evaluated and 
compared with the relevant priors. This process is played out in time. 
When expressed in mathematical form this takes form 

dp/dt = (A-(1/2)D2)p +y(t)Dp or Ap-(1/2)(D-Iy) 2p

With y being the observations and p/(p1+p2+…pn) being the
conditional probability. 

The point to be made here is that there is an evolution equation 
for the conditional probability (or probability density) 
and that the maximum likelihood estimate is the argmax of p.. 



Conditional Density Flow Takes away More or Less

d
dt
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Conditional Density Equation:  x Real Valued

Let ρ(t, x) denote the conditional density
of x, given the past observations.

with no observations we have

∂ρ
∂t = Lρ

Observations is to change this to

∂ρ
∂t = Lρ − 1

2

∑
φ2

sk
(x)ρ +

∑ dysk

dt φsk
(x)ρ



The Conditional Density Provides a Robust Representation

t

ρ

x

Taken literally, the evolution of the conditional density is an 
expensive representation of a real number via argmax but it is robust 
and, in a decision theoretic setting, normally a minimal representation. 
If we use a suitable approximation it can be thought of as  yielding a 
“digital” representation via histograms, splines or Bezier curves.



Place Cells Representation vs. Conditional Density

t

ρ

x

The evolution of the conditional density is not too different from
the evolution of the place cell representation if we think of the 
latter as being some kind of spline representation of the conditional
density. 



Fact: The conditional density for the usual gauss markov process
observed with additive white noise evolves as a Gaussian.

The argmax of a Gaussian can be computed via the mean. Thus  it
is possible to convert ordinary differential algorithms into  density
evolution equations which will do the same calculations.

It seems likely that the brute force way of doing this is not the most
efficient and from our knowledge of completely integrable systems
it seems likely that one can find soliton equations that will perform
these calculations robustly.

I know of very few results of this kind.

Computation with an Argmax (Place Cell) Representation



A Distributed (Argmax)  Model for Analog Computation

∂ρ1(t,x)
∂t = Lρ1(t, x) + F1(ρ1, ...ρn)ρ1(t, x)

∂ρ2(t,x)
∂t = Lρ2(t, x) + F2(ρ1, ...ρn)ρ2(t, x)

............

∂ρn(t,x)
∂t = Lρn(t, x) + Fn(ρ1, ...ρn)ρn(t, x)
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The Argmax Representation



Example 4: Adjoint Orbits and Mixed Computation

The Toda lattice is a restriction of the general isospectral gradient 
flow

dH/dt = [H,[H,N]]

(whose natural domain of definition is any adjoint orbit) to 
the space of tridiagonal symmetric matrices.  This flow finds 
eigenvalues and eigenvectors, (and therefore principal 
components), sorts, and, via tensoring,  can be used as a 
building block for more specialized computations. Variations
include

dH/dt = [H,[H,diag(H)]]

which flows to a diagonal determined by the initial conditions.



Summary of Part 1

1. The distinction between analog signal processing is not as clear-
cut as the words might suggest. 

2. There are various ways to achieve robustness and the choice of a 
representation  must be adapted to the computational “hardware” 
available. 

3. Cartesian/Lagrangian, homotopy, and place cell (argmax) 
representations are all used as representation schemes.   

4. Examples show that  one can compute with any of these  
representational schemes, but that the first seems to lack the
robustness necessary to form a satisfactory  basis for a all 
encompassing  theory and needs to be supplemented.  
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