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Abstract

Communication constraints on channels connecting different components of a control sys-
tem are traditionally ignored. As a result of advances in communication, computation and
network, many current control systems are distributed, asynchronous and networked. The
traditional assumption which ignores communication constraints doesn’t apply to those sys-
tems. This thesis considers the problem in general and focuses the impact of communication
constraints on state estimation.

Under a set of assumptions which includes ignoring time delay caused by limited commu-
nication, systems of limited communication are formulated as two classes of mathematical
models. The state estimation problems for these classes of models are presented. Quantized
measurement sequential Monte Carlo(QMSMC) method, Quantized measurement Kalman
filter and Quantized measurement conditional sampling method are proposed as candi-
dates for state estimator. Their properties, respective advantages and disadvantages are
discussed. In particular, QMSMC’s asymptotical optimality is proven under a few further
assumptions regarding system model and quantizers.

These methods are applied to models of realistic complexity and their effectiveness are
demonstrated through simulation-based comparison with existing other methods.

Optimization of quantization for Gauss-Markov process is also considered. Specifically,
optimal quantizer in least squared estimation error sense for second order Gauss-Markov
process is numerically studied with respect to Quantized measurement Kalman filter.
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Chapter 1

Introduction

1.1 Motivation

Information theoretical issues are traditionally decoupled from consideration of decision

and control problems. The decoupling is achieved by ignoring the capacity constraints on

communication channels connecting different components of a system. Standard assump-

tions in decision and control theory suppose all communication channels within a system

are of infinite channel capacities. This assumption implies that all data can be transmitted

over those channels with infinite precision and zero time delay. Decoupling information

theoretical issues from the decision and control problems in a system greatly simplifies the

analysis and generally works well for classical applications. Since in many classical systems,

exclusive communication channels with sufficient capacity are dedicated for the data trans-

mission among different components of a system. The constraints imposed on the channels

and the effects resulted from them are often negligible.

Advances in communication, computation and networks greatly expanded the range

and complexity of a control system. Many newly emerged control systems are distributed,

asynchronous and networked. These systems pose challenges to the traditional assumption

which ignores the communication constraints on channels among different components of

a system. Integrating communication constraints into estimation and control of a system

becomes an inevitable task on our way to achieve deeper understanding of distributed,

asynchronous and networked control systems.

We present a few example systems where communication constraints are too significant

to be ignored.

1
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1.1.1 Control of elements in Micro-Electro-Mechanical Systems (MEMS)

MEMS is the integration of mechanical elements, sensors, actuators, and electronics on a

common silicon substrate through microfabrication technology. MEMS promises to revo-

lutionize nearly every product category by bringing together silicon-based microelectronics

with micromachining technology. Current and future generations of technology will package

as many as 104 to 106 units (actuators or sensors) on a single MEMS chip. It is practically

impossible to build an exclusive communication channel for each unit which connects it

with its corresponding controller. A common communication channel will be shared by

many units and their controllers. The channel between one unit and its corresponding

controller will only have limited capacity. The communication constraints on this channel

will be more severe as the level of integration on one MEMS chip increases, assuming the

capacity of the common channel doesn’t increase as fast as the level of integration does.

1.1.2 System with wireless communication

As a result of rapid growth in wireless communication, we are facing an increasing number

of control systems where different components of the system are connected through wireless

digital communication channels. The necessity of choosing wireless communication arises

naturally in situations where some components of the system are required to be mobile. In

most cases, the mobile component is the plant in the control system equipped with certain

computational ability. We restrict our discussion to only those cases. The plant will be

referred to as remote plant in the following.

Based on the assumption regarding remote plants’ computational capacities, control

systems with wireless communication can be approximately organized into two categories.

The following discussion explains the information transmission required over the wireless

channel for both categories.

The first category assumes that the remote plant doesn’t possess any computational

ability. In other words, the remote plant only consists of a plant, sensors and actuators. A

control law has to be computed at a distant controller. Information about the state obser-

vations and control commands needs to be transmitted over the wireless channel between

the remote plant and the controller. Control of a simplified version of an unmanned vehicle

falls into this category. Remotely controlled car model as a toy is one example many of us

have experienced.

The second category assumes the remote plant has enough computational ability to
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compute control law. However, in many cases, the remote plant lacks all information re-

quired for the control law. This happens in coordination of several remote plants. Consider

formation control for unmanned aerial vehicle (UAV). To achieve coordination, in most

cases, individual vehicles should execute control law dependent on information about fel-

low vehicles. When the individual vehicle lacks the ability to gather all the information

required, the information has to be transmitted over the wireless channels among vehicles

and the ground controller.

Controlling a single vehicle in an environment for which the vehicle does not have

sufficient information also falls into this category. The lack of information may result

from a lack of sensing capability onboard the vehicle or lack of sufficient onboard storage

capability for environment information. In order to compute a control law governing the

movement of this vehicle, two options can be pursued. The first is to effectively represent

the environment information and transmit it to the vehicle. The second is to transmit

state information of the vehicle to the ground controller with access to the environment

information and then the ground controller transmits control commands back to the vehicle.

As discussed above, information flow needs to be carried by wireless communication

channels within a control system. A mobile remote plant often has limited payload hence

limited power in its transmitter. Sometimes, the information transmission is performed over

a long geographical range in a hostile environment. All these factors will result in limited,

sometimes severely limited, capacity of the wireless channels. How to most effectively use

the scarce communication resources to achieve our goal becomes an increasingly important

problem as the gap between the capacity available and capacity required diminishes.

1.1.3 Biological Systems

In neurobiological systems, the controllers( such as the brain) and plants (such as muscle)

are separated and connected via a neural system which in nature is a communication channel

of limited capacity. Animals have exhibited an amazing ability to control the plant with

limited communication capacity of their neural systems. Though distant from the examples

discussed above, study of those systems maybe provide inspiring ideas for most effective

usage of communication resources to achieve certain control goal.
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1.2 Previous work

Classical system and control theory has established a powerful framework to analyze sys-

tems without communication constraints (referred to as classical systems). Incorporating

communication constraints in analysis of a control system will cause difficulties in addition

to the existing challenges.

To systematically investigate the effect of the communication constraints on systems is

of theoretical significance and practical impact. Establishment of a theoretical framework

analogous to the one for classical system and control theory will be of great value and

requires sustained efforts. Many important questions should be answered in the framework,

such as effective state estimator in least squared error sense, controllability and stability of

the system (the definitions of controllability and stability should be carefully reconsidered),

optimal control with respect to a joint function of communication and traditional costs and

robust control for systems with limited communication.

Since communication constraints are intrinsically nonlinear and discontinuous, the pos-

sible framework would not be as elegant and beautiful as the one for classical systems.

However, with certain approximation, a meaningful framework is still possible.

Inspired by Wong and Brockett (1997) in their seminal work, the subject has been

attracting more and more attention in the literature and has been studied by several re-

searchers from very different perspectives. Vastly different assumptions on the plant model,

protocols used in the communication channel, exact forms of communication constraints

and measurement models result in significantly different mathematical models and hence

different approaches to the problem. Much of the work is still preliminary in the sense that

it largely focuses on a very restricted class of systems and is based on many additional

assumptions which is not necessarily reflecting the common practice in technology. To the

author’s best knowledge, none of these results has been tested against systems with realistic

complexity and given significant gains over the existing methods.

As an attempt to serve as a building block for the general framework, this thesis focuses

on seeking an effective state estimator in least the mean-squared-error sense. The results

presented are obtained under a variety of assumptions which we view as reasonable. Their

effectiveness and practicality are demonstrated for systems with realistic complexity.
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1.3 Main Issues and Major Contributions

Generally speaking, the impact of limited communication on state estimation is twofold.

First, it restrict the amount of information which can be transmitted from the plant to

the state estimator. When the system makes analog measurements of its state variable,

that requires the analog measurements to be quantized into a codebook of certain size in

order to be transmitted reliably over the communication channel of limited capacity. As an

irreversible process, quantization will cause inevitable information loss. Second, it causes

time delay in estimation because of the lag between the time instant when measurements

of the system are made and the one when the corresponding codewords are received at

state estimator. The more severe the communication constraints, the more impact the two

effects will have on the system.

Latency (time delay) has been a longtime topic in control and system theory. Several

references have studied latency in great details. This thesis ignores latency for the sake

of simplicity. Instead, it focuses on the impact of quantization on state estimation. More

specifically, we only consider filtering problem in state estimation for a general class of

systems with analog measurements. Filtering here means estimation at time index k of

state using measurements up until time index k.

Traditionally, quantization is treated as additive noise. An overview of this perspective

can be found in Gersho and Gray (1992). Specific assumptions as to the statistical nature of

the quantization noise are made when they are treated as additive noise. The most common

assumptions assume the quantization noise process are white, stationary and uncorrelated

with the process being quantized. The purpose of those assumptions is to make it possible

to handle the quantization analytically as a classical additive noise. Those assumptions

eliminate the need to deal with the nonlinearity of a quantizer at the expense of oversim-

plifying the effect of quantization. For many high resolution applications, the model is

valuable for obtaining satisfactory simple approximations to quantization. However, they

would be grossly inaccurate in many circumstances where the resolution of quantization is

low. Severe communication constraints would naturally result in low resolution quantiza-

tion. Seeking other alternatives to deal with quantization and compare them against these

common assumptions for the purpose of filtering becomes one of the central themes of this

thesis.

Except for Gauss Markov models, optimal filters in the least mean-square-error sense

for all other systems are nonlinear. Because of the quantization in the measurement model,
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the optimal filtering problem for systems with communication constraints is inevitably

nonlinear and defies a closed-form solution except in trivial cases. Since a closed-form

optimal filter for those systems is analytically intractable, we have to seek an effective

sub-optimal numerical approximation of the optimal filter for the classes of systems and

quantizers under consideration.

Suppose we have found an effective sub-optimal numerical approximation of the optimal

filter, then, the next step would be to try to optimize quantizer with respect to that specific

suboptimal filter. The resulting “optimal” quantizer may be different from the optimal

quantizer with respect to the optimal filter. However, those filters are the ones within our

reach of analysis and of practical importance.

Essentially, we deal with optimization with respect to both the quantizer and the filter.

We are reducing the set of filters in the consideration to the set of effective suboptimal filters

and then optimize the quantizer with respect to that set of filters. The word “effective”

and “optimize” are both interpreted with respect to mean-square-error in state estimation.

The thesis’ contributions follow this logic. First, after modelling a system with limited

communication, we propose a few suboptimal filters in mean-square-error sense for a few

classes of models. More specifically, we study Quantized Measurement Sequential Monte

Carlo (QMSMC) method, Quantized Measurement Kalman Filter (QMKF) or Extended

Kalman Filter (QMEKF) and Quantized Measurement Conditional Sampling(QMCP) al-

gorithm. We prove that under a few further assumptions regarding the underlying system

and the quantizer in the measurement model, the QMSMC is asymptotically optimal in

mean-square-error sense for a large group of systems and quantizers. In the proof, we

establish a more clear and rigorous framework than the one of classical sequential Monte

Carlo method available in Doucet et al. (2001).

We compare the relative advantages and disadvantages of these suboptimal filters based

on simulation of systems with realistic complexity. In particular, we apply QMSMC to the

navigation model of MIT instrumented X-60 SE Cell helicopter and QMCS method to the

model of Harvard Robotic Lab rotary light weighted double pendulum.

Second, we study optimization of quantizer with respect to those suboptimal filters.

As a preliminary, we first establish properties of the optimal quantizer for the standard

normal distribution. Then, we numerically study the optimal quantizer for second order

Gauss-Markov systems with different damping ratios with respect to QMKF and present

the conclusion regarding the effect of damping ratio on the optimal quantizer.
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1.4 Organization of rest of the thesis

Chapter 2 serves as the modelling part of the thesis. After making a set of assumptions, the

systems with limited communication under consideration are identified with a few classes

of models.

In chapter 3, we propose QMSMC and QMKF for one specific class of models and prove

QMSMC’s asymptotical optimality under further assumptions on the model and quantizer

in measurement.

In chapter 4, we apply QMSMC to the problem of filtering from quantized measurement

in the navigation model of MIT instrumented X-60 SE Cell helicopter and demonstrates

its practicality by comparing it against QMEKF.

In chapter 5, we present QMKF and QMCS for another class of models under slightly

different assumptions regarding the noise in measurement models. Empirical comparison

of those two methods are presented for a few Gauss-Markov Models.

In chapter 6, we apply QMCS to the state estimation problem of Harvard Robotic Lab

rotary light weighted double pendulum and show its improved performance compared with

existing methods.

In chapter 7, we first consider the properties of the optimal quantizer for the standard

normal distribution. Then, we numerically examine the impact of damping ratio in second

order Gauss-Markov systems on the optimal quantizer with respect to QMKF.

Chapter 8 concludes the thesis and discusses future directions of research in this area.



Chapter 2

Mathematical Model of Systems

with Limited Communication

2.1 Overview

Systems with limited communication is a broad concept. Every system in practice has

limited communication. As discussed in chapter 1, we focus on the set of systems in which

the communication constraints are so severe that ignoring communication constraints would

fail to capture the nature of those systems.

Systems within this set can be significantly different from one another in terms of mod-

els of underlying physical objects or processes, type of communication channels within the

system, protocols used in those channels, form of communication constraints and infor-

mation to be transmitted. This thesis intends to address only a group of models whose

configurations are similar to that of a system consisting of a simplified UAV and its ground

controller. In order to mathematically model systems of this type, it is necessary to make

reasonable assumptions which will simplify the analysis while preserving the essential im-

pact of communication constraints on the system.

2.2 System Specifications and Assumptions

Consider the block diagram of systems with limited communication in figure 2.1.

The function of each component in the diagram is specificed as follows. “Plant” includes

the physical object or process being controlled, sensors measuring its state and actuators.

“y” denotes analog state measurements of the physical object or process. Analog to Digital

8
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Source Decoder

Noise

Channel Encoder /
Modulator

Waveform
Channel

Detector /
Channel Decoder

Channel Decoder
Detector /

Waveform
Channel

AD Conversion /
Source Encoder

Controller

Plant

Source Encoder
Channel Encoder /

Modulator

DA Conversion 
Source Decoder /

Noise

Figure 2.1: Block Diagram of Systems with Communication Constraints

(AD) Conversion in “AD Conversion / Source Encoder” consists of sampling, quantization

and encoding consecutively as shown in figure 2.2. In the sampling operation, sample values

of measurement y at uniformly spaced discrete time instances are retained. The samples

values are mapped by quantizer q into a set of finite size and then coded into binary

codewords. “Source Encoder”, “Channel Encoder/ Modulation”, “Waveform Channel”,

“Noise”, “Detector /Channel decoder”, “Source Decoder” are of the same functions as in

figure 1.3 in Haykin (1988). “Controller” maps received codewords of measurement y to

digital control command u according to a certain control law. “DA Conversion” in “Source

Decoder / DA Conversion” maps the reconstructed source codewords of control command

u to an analog signal so that control can be applied to the physical object or process in the

plant.

Sampling
y

Quantization Encoding
For source
Encoding

AD Conversion

Figure 2.2: Analog-to-digital Conversion

Assumption 2.2.1. We only consider systems with limited communication which can be

modelled into figure 2.1 with the function of each element in the diagram specified as above.
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Definition 2.2.1. Define the plant-to-controller channel to be “uplink” and controller-to-

plant channel “downlink”.

Assumption 2.2.2 (Model of Plant). The analog control signal applied to the plant

remains constant within the time interval between two consecutive sampling time instances

(referring to as time indices) in AD Conversion.

The physical process or object in plant can be modelled as time invariant discrete time

system,

xk+1 = f(xk, uk, wk)

where xk ∈ Rdx is the state vector of the physical process or object at time index k,

uk ∈ Rdu is the constant control during time index k and k + 1 and wk ∈ Rdw is system

noise at time index k.

The sample value of the measurement process y at time index k, yk, can be modelled as

yk = h(xk, vk)

where h : Rdx × Rdv → Rdy is time invariant measurement function, xk ∈ Rdx is the

state vector at time index k, vk ∈ Rdv is measurement noise at time index k and yk ∈ Rdy

is the measurement at time index k.

Assumption 2.2.3 (Uplink). The sampling rate in the sampling operation within “AD

Conversion / Source Encoder” is fs Hertz. fs is a constant. The quantization, encoding and

source encoder within “AD Conversion / Source Encoder” are time invariant and generate

a binary source codeword with fixed-length lu for each sample value yk. Encoding in AD

Conversion is a one-to-one map.

The combination of the components of the uplink enclosed in the dashed rectangle is able

to provide error free transmission for source codewords at data rate ru bits per second.

The following relation holds true.

ru = lufs

Uplink is used in the following way: At time index k, source codeword representing yk

is generated instantaneously after the sample value yk is obtained. It is then transmitted

error-free through the components of uplink enclosed in the dashed rectangle and received at

the source decoder at time index k + 1. The source decoding is instantaneous.
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Remark 2.2.1. For a given ru, there exists a tradeoff between sampling rate fs and the

length of a source codeword, lu. The longer each source codeword is, the more information

about each sample value will be transmitted to and received by the “Controller”. However,

since the overall source codeword data rate in uplink is limited from above, longer source

codewords generally result in lower sampling rate. Lower sampling rate often has adverse

effects on the performance of a control system. This tradeoff by itself is a research topic

and should be carefully studied. We don’t attempt the address this issue in this thesis.

Assumption 2.2.4 (Controller). The first operation for incoming source codewords in

“Controller” is decoding corresponding to encoding in “AD Conversion”. This operation is

instantaneous. At each time index k, a causal control law maps the reconstructed quantized

measurements and other information it has received up to time index k to a digital control

command. The execution of the control law in the controller is instantaneous.

Assumption 2.2.5 (Downlink). The downlink source encoder is time invariant and gen-

erates source codeword with fixed length ld for each control command.

The combination of the components of the downlink enclosed in the dashed rectangle is

able to provide error free transmission for source codewords at data rate rd bits per second.

The following relation holds:

rd = ldfs

The downlink is used in the following way. When a digital control command is available

from controller at time index k, source codeword for the command is generated instanta-

neously. It is then transmitted error-free through the components of downlink enclosed in

the dashed rectangle and received at the source decoder at time index k + 1. The source

decoding and DA conversion are both instantaneous. DA conversion is time invariant. The

analog control signal is then applied to the physical object or process in the plant and holds

constant from time index k + 1 to k + 2.

Proposition 2.2.1 (Mathematical Model of the System). Based on Assumption 2.2.2

to 2.2.5, the system can be modelled as the following system of equations.

xk+1 = f(xk, uk, wk)

yk = h(xk, vk)

zk = q(yk) = q(h(xk, vk))

αk = Fk(E, zk−1, zk−2, · · · , z1)

uk = K(αk−1)

(2.1)
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where q : Rd → Z2lu = {1, 2, · · · , 2lu} is the quantizer in AD Conversion, zk is the

quantized measurement at time k, Fk : SE × Zk−1
2lu

→ Z2ld = {1, 2, · · · , 2ld} represents

the control law at time k, which maps codewords zk−2, zk−1, · · · , z1 and some additional

information E to set of digital control commands, αk is the digital control command at

time k. K : Z2ld → Rdu denotes the DA conversion. uk is the analog control at time k.

Proof. The first two equations come from Assumptions 2.2.2. As in Haykin (1988), source

encoder is one-to-one map. From Assumption 2.2.3, Encoding in AD Conversion is also one-

to-one map. Thus, the size of the codebook of q is the same as the cardinality of the range

space of source encoder in uplink, 2lu . Choose the range space to be Z2lu = {1, 2, · · · , 2lu}.
The quantization of the sample value at k, yk, can be written as

zk = q(yk) = q(h(xk, vk))

with q : Rdy → Z2lu .

From Assumption 2.2.3 to 2.2.4, we see that at time k, to compute the digital con-

trol command αk, controller has access to quantized measurement up to time k − 1.

zk−1, zk−2, · · · , z1. Consider some other outside information needed for control law, αk

can be written as follows:

αk = Fk(E, zk−1, zk−2, · · · , z1)

where E denotes the other information used in Fk. SE denotes the set of all possible E.

So, Fk : SE × Zk−1
2lu

→ Z2ld = {1, 2, · · · , 2ld}. Since the source encoder in the downlink is

one-to-one map and the binary source codeword length in downlink is ld, Ck’s range space,

which is the domain of source encoder in downlink, also has size 2ld . Choose the range

space to be Z2ld = {1, 2, · · · , 2ld}. From assumption 2.2.5, at time k, the DA Conversion in

“Source Decoder / DA Conversion” has input αk−1. So, we have

uk = K(αk−1)

with K : Z2ld →Rdu .

As stated in Chapter 1, we ignore the time delay caused by limited communication. We

consider the following filtering problem.
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Problem 2.2.1. Consider system

xk+1 = f(xk, uk, wk)

yk = h(xk, vk)

zk = q(yk) = q(h(xk, vk))

(2.2)

where xk, uk, wk, vk, f , h, q, zk are defined as before. How to obtain the optimal filter

in mean-squared-error sense, i.e.

E[xk|zk, zk−1, · · · , z0]

E[xk|zk, zk−1, zk−2] denotes the conditional mean of xk conditioned on a sequence of quan-

tized measurements {zk, zk−1, · · · , z0}

Further assumptions can be made about f(xk, uk, wk) and h(xk, vk). Different assump-

tions would result in different approaches to the problem. Different assumptions as to

h(xk, vk) become the central difference between problems studied in chapter 3 and chapter

5. In chapter 3, we focus on the cases where vk is present in h(xk, vk). More specifically, we

assume vk enters the measurement model as an additive noise, i.e. h(xk, vk) = Ckxk + vk

where Ck is a matrix of proper dimensions. In chapter 5, we discuss the cases where vk

is absent in h(xk, vk). h(xk, vk) becomes a deterministic function of xk. More specially,

h(xk, vk) = Cxk where C is some constant matrix of proper dimensions.



Chapter 3

State Estimation from Quantized

Measurement I : Noisy

Measurement

3.1 Problem Statement

Chapter 2 concluded with mathematical models for a class of systems with limited commu-

nication and formulation of the filtering problem for those systems. This chapter focuses

on a subset of that class of systems where the noise in measurement is additive before

quantization. More specifically, we consider the following filtering problem.

Problem 3.1.1. Consider system

xk+1 = f(xk, uk, wk)

yk = Ckxk + vk

zk = q(yk) = q(Ckxk + vk)

(3.1)

where xk, uk, wk, vk, f , h, q, zk are defined as in chapter 2. How to obtain the optimal

filter in mean-squared-error sense, i.e.

E[xk|zk, zk−1, · · · , z0]

E[xk|zk, zk−1, zk−2] denotes the conditional mean of xk conditioned on a sequence of quan-

tized measurements {zk, zk−1, · · · , z0}

14
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This filtering problem falls into the category of nonlinear filtering. This problem is

unique among other nonlinear filtering problems in the sense that it has specific structure

in its measurement model, which is the presence of quantization.

3.2 Kalman Filter and Particle Filter

Kalman filter is a computationally efficient recursive least-squares state estimator for a

linear state space model when the system and observation noises in the model are white

and uncorrelated with each other.

Consistent efforts in seeking efficient least-squares state estimator for general nonlinear

state space model has been made after Kalman filter theory was established. Conceptually,

at time index k, sequential state estimation for a discrete time state space model consists of

two steps, Projection and Bayesian Update. In the projection step, the distribution of state

vector at time k−1, xk−1, is propagated through the system evolution equation to obtain a

prior distribution of xk. Bayesian Update uses well-known Bayesian formula to update the

prior distribution of xk based on measurement yk at time k which is not independent with

xk to obtain a posterior distribution of xk. The mean of the a posterior distribution of xk

will be the least-squares estimator for xk given the distribution of xk−1 and measurement

yk. However, this simple framework itself does not provide a computationally efficient way

for realization. In fact, an efficient realization has eluded the nonlinear filtering theory

for a long time. Several numerical attempts, such as adaptive grid generation in state

space, suffer from various serious drawbacks. One of those troubles comes from when the

dimension of the system increases, the nodes in the grid used increases exponentially. It

causes not only exponential increase in computational load but also in significant error

accumulation which is very difficult to quantify.

Several ad hoc methods inspired by Kalman filter have been studied and used extensively

in the past. Extended Kalman filter attracted the most intention?. Assuming the following

nonlinear state space model:

xk+1 = fk(xk) + gk(xk)wk

yk = hk(xk) + vk

(3.2)

where xk is the state vector, yk is the measurement, fk is the system function, gk is the

noise coefficient function, wk is system noise, hk is the measurement function and vk is the

measurement noise.
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Extended Kalman filter linearizes the nonlinear state space model around state estimate

in previous step and apply Kalman filter to that linearized model in an ad hoc way. A

variety of other nonlinear filtering methods are derived based on extended Kalman filter,

such as second order extended Kalman filter, iterated extended Kalman filter and Gaussian

sum filter. They are easy to implement and have been demonstrated to be successful for

certain applications. Many qualitative analysis and judgments have been reached as to

the performance of these methods. Essentially, they remain ad hoc and don’t provide a

theoretically solid approach for general nonlinear filtering problem. They don’t consider all

the information of the system and noises and, thereby, often lead to poor results.

Last three decades witnessed extraordinary increases in computational power. Ap-

proximately summarized by Moore’s Law in Moore (1965), the phenomenal advances in

computational power makes computation-intensive Monte Carlo method increasingly more

appealing for applications. Study of the limit behaviors of Monte Carlo method as compu-

tation goes to infinity becomes a subject of not only theoretical interests but also practical

impact. As the application of Monte Carlo method to sequential state estimation problem,

sequential Monte Carlo(SMC) method (also known as Particle filter) was first introduced

by Gordon et al. (1993) as a sample based method for probability distribution propagation

and Bayesian update in nonlinear filtering problems. Being successfully applied to numer-

ous application areas as evidenced in Doucet et al. (2001), ? ?, it has promise to be the

next milestone in the history of sequential state estimation after Kalman filter.

As all other Monte Carlo methods, central idea in SMC is about generating and man-

aging a group of samples. Instead of propagating certain statistics of target distribution

as in EKF, it tries to manage a group of samples of state vector in such a way that they

closely and accurately follow the probability distribution propagation and Bayiesan update

in sequential state estimation. Many theoretical studies on properties of SMC have been

carried out. However, one of the major reasons that SMC has yet claimed the same fame

as that of Kalman filter lies behind the lack of deep understanding of behaviors of SMC.

More specifically, the conditions under which SMC will have more desired properties than

the ones which have been revealed now and how to quantitatively predict its performance

for a given system are still open problems.

Based on the overview of nonlinear filtering problem above, we present two basic ap-

proaches to the filtering problem 3.1.1. The first one is to treat the quantization as an

additive noise. After defining an one-to-one map which maps range space of quantizer q

to a set of real vectors, we define the quantization noise process and make certain assump-
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tions as to the statistical properties of this artificially made up additive noise. Kalman

filter and extended Kalman filter can be easily modified to incorporate this new item in the

measurement model.

The second one is to apply SMC. Since measurement model of classical SMC as in

Crisan (2001) is incompatible with the measurement model in Problem 3.1.1, we propose

QMSMC as the modified SMC for this specific problem. It will become obvious that

applying QMSMC to filtering problem 3.1.1 is not only possible but natural. We will prove

the asymptotical optimality of QMSMC which is one of the most desired properties of this

algorithm for this problem. We will compare the effectivenss of these two approaches in

next chapter by extensive simulation.

3.3 Quantized Measurement Kalman Filter (Extend Kalman

Filter)

Recall the system 3.1

xk+1 = fk(xk) + gk(xk)wk

yk = q(hk(xk) + vk)

3.3.1 Additive Quantization Noise Model

yk = q(hk(xk) + vk)

In order to be able to treat quantization as additive noise, we first define inverse map-

ping, quantization noise function and quantization noise sequence.

Definition 3.3.1 (Inverse mapping and quantization function). Consider quantizer

y = q(x) where q : Rd → ZM = {0, 1, 2, . . . ,M− 1}. Define an inverse mapping for q to be

a bijection between ZM and R.

i : ZM → R

with R = {r0, r1, r2, · · · , rM−1}, ri ∈ Rd for i = 0, 1, 2, · · · ,M− 1.

Quantization function h is defined as

h
∆= i ◦ q
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Definition 3.3.2 (quantization noise function). For quantization function h : Rd →
Rd, quantization noise function n(x) is defined to be

n(x) = h(x)− x

Definition 3.3.1 can be illustrated as in figure 3.1.

h

n(x) = h(x) − x

h(x)x

q i

h

q(x)x h(x)

Figure 3.1: Additive noise model of a quantizer

Definition 3.3.3 (quantization noise sequence). Given quantization noise function

n(x) for a quantizer q. For a random sequence {xi}, xi ∈ R, i = 1, 2, · · · , n, the sequence

{n(xi)} is called {xi}’s quantization noise sequence.

Assumption 3.3.1. In this thesis, if variable in quantizer x has a known distribution,

inverse mapping i is chosen to be mapping index to the conditional mean of x conditioned

on that x lies in the quantization region with that index.

Assumption 3.3.2. In system 3.1, we assume that with quantization noise sequence n(hc(xk)+

vk) is white and uncorrelated with underlying processs {hc(xk)} and {vk} and system noise

process {wk}.
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Remark 3.3.1. Assumption 3.3.1 is almost never true. To which extent assumption 3.3.1

is true will partially affect to which extent Quantized measurement Kalman filter will be

Least-squares estimator or Quantized measurement Extended Kalman filter will be effective

for nonlinear filtering.

System 3.1 can be rewritten as

xk+1 = fk(xk) + gk(xk)wk

yk = hk(xk) + vk + n(hk(xk) + vk)
(3.3)

Under assumption 3.3.1, we regard vk +n(hk(xk)+vk) as additional measurement noise

which is white and uncorrelated with hk(xk) and vk. Viewed in this way, system 3.3 is

essentially the same as system 3.2. No significant difficulties exist in applying Kalman filter

for linear state space model and extended Kalman filter for nonlinear state space model.

3.3.2 Quantized Measurement Kalman Filter

Quantized measurement Kalman Filter is concerned with the following linear state space

model:

xk+1 = Akxk + Bkwk + Gkuk

yk = q(Ckxk + vk)

zk = Ckxk + vk + n(Ckxk + vk)

(3.4)

where Ak, Bk and Ck are matrices with proper dimensions. System noise wk and

observation noise vk are both white gaussian process with known covariance and mean for

each time index k.

From Assumption 3.3.1, to apply Kalman filter, we need to know the variance of

n(Ckxk + vk) at each time step. Variance of n(Ckxk + vk) depends on quantizer q, inverse

mapping i and the distribution of Ckxk + vk at time index k. Suppose the distribution of

ok = Ckxk + vk is continuous and has probability density function f .

Suppose quantizer q is given, then, to minimize variance of n(Ckxk + vk)

Assume the quantizer to be time variant. At each time index, the conditional variance

and mean can be represented as.

QMKF is stated as below: Prediction, Update.
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Algorithm 3.3.1. 1. Prediction :

x̂k/k−1 = Ak−1x̂k−1/k−1 + Gk−1uk−1

Σk/k−1 = Ak−1Σk−1/k−1A
T
k−1 + Bk−1Qk−1B

T
k−1

2. Update :

Kk = Σk/k−1C
T
k (CkΣk/k−1C

T
k + Rk + Rq(yk))−1

Σk/k = Σk/k−1 −KkCkΣk/k−1

x̂k/k = x̂k/k−1 + Kk(zk − Ckx̂k/k−1)

where Rq(yk) is the conditional variance of n(Ckxk +vk) conditioned on q(Ckxk +vk) =

yk.

This algorithm is different from Kalman filter only in the step involving observation

noise. The variance of quantization noise is chosen to be the conditional variance condi-

tioned on the quantization index yk. This generally will reduce the variance of the quanti-

zation and result in reduced Σk/k. However, whether the reduce Σk/k will result in reduced

estimation error is unclear since the effect of assumption 3.3.1 on validity of assumption

3.3.2 is not studied.

3.3.3 Quantized Measurement Extended Kalman Filter

Quantized measurement Kalman Filter is concerned with the following linear state space

model:

xk+1 = fk(xk) + gk(xk)wk + rk(uk)

yk = q(hk(xk) + vk)

zk = Ckxk + vk + n(Ckxk + vk)

(3.5)

where fk, gk, hk and uk are vectors with proper dimensions. System noise wk and

observation noise vk are both white gaussian process with known covariance and mean for

each time index k.

From Assumption 3.3.1, to apply Kalman filter, we need to know the variance of

n(Ckxk + vk) at each time step. Variance of n(Ckxk + vk) depends on quantizer q, inverse

mapping i and the distribution of Ckxk + vk at time index k. Suppose the distribution of

ok = Ckxk + vk is continuous and has probability density function f .



§3.4 sequential monte carlo method 21

Suppose quantizer q is given, then, to minimize variance of n(Ckxk + vk)

Assume the quantizer to be time variant. At each time index, the conditional variance

and mean can be represented as.

QMKF is stated as below: Prediction, Update.

Algorithm 3.3.2. 1. Prediction :

x̂k/k−1 = Ak−1x̂k−1/k−1 + Gk−1uk−1

Σk/k−1 = Ak−1Σk−1/k−1A
T
k−1 + Bk−1Qk−1B

T
k−1

2. Update :

Kk = Σk/k−1C
T
k (CkΣk/k−1C

T
k + Rk + Rq(yk))−1

Σk/k = Σk/k−1 −KkCkΣk/k−1

x̂k/k = x̂k/k−1 + Kk(zk − Ckx̂k/k−1)

where Rq(yk) is the conditional variance of n(Ckxk +vk) conditioned on q(Ckxk +vk) =

yk.

3.4 Sequential Monte Carlo Method

For this class of models, except for trivial ones, optimal filter in LMSE sense doesn’t admit

a closed-form expression. We have to seek effective approximation.

Attracting significant attention in the literature in recent years Gordon et al. (1993),

Liu and Chen (1998), Crisan (2001), Crisan and Doucet (2002), classical Sequential Monte

Carlo(SMC) methods have shown their versatility in solving a wide class of nonlinear filter-

ing problem through theoretical justification and numerous successful applicationsDoucet

et al. (2001). classical Sequential Monte Carlo(SMC) consider the system as follows:

xk+1 = f(k, xk, uk, wk)

yk = h(k, xk) + vk

(3.6)

Loosely interpreting, SMC methods recursively maintain a group of samples which

approximately can be viewed as a group of identical, independent samples from the pos-

terior distribution of state given all the measurements up to date. It aims to numerically
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approximate the optimal filter which often is analytically intractable with manageable com-

putational load. For certain models, it has been shown that classical SMC methods are

asymptotically optimal in the number of particles usedCrisan (2001).

System model in (3.6) is more general than system model in Problem 2.2.1. This

difference is insignificant from the derivation of the proof of convergence of classical SMC.

Observation model in (3.6) is different from that in problem 2.2.1. The quantization part

can be viewed as an additive noise term which will transform Problem 2.2.1 into system

3.6. However, from the theoretical foundation of SMC, this treatment is unnecessary and

unnatural. A revised SMC, named QMSMC will be presented in the following.

3.4.1 Problem Formulation

Notation

N denotes the set of natural numbers. Z+ denotes 0 ∪ N . ZM denotes {1, 2, · · ·M}. R
denotes the set of real numbers. R+ denotes the set {x|x ∈ R, x ≥ 0}. Rd denotes d-

dimensional Euclidean Space. B(Rd) denotes Borel σ-algebra on Rd. µ : B(Rd) 7→ R+

denotes Borel measure on Rd(we only consider Borel measure in this paper). MF (Rd)

denotes the set of all finite Borel measures on Rd. P(Rd) denotes the set of all probability

measures on Rd. Cb(Rd) denotes the set of bounded continuous functions on Rd. µf

denotes
∫
Rd f(x)µ(dx) for µ ∈ MF (Rd) and f ∈ Cb(Rd). δx denotes probability measure

degenerate at point x.

Formulation

We consider discrete-time state-space model with quantized measurement which can be

modelled as below.

xk = f(xk−1, uk−1, wk−1)

yk = q(Ckxk + vk)
(3.7)

In (1), k ∈ Z+ for xk. k ∈ N for yk. f denotes the time invariant system function.

{wk}∞k=0 are system noises and {vk}∞k=1 measurement noises. {uk}∞k=1 is the control se-

quence. {Ck}∞k=1 are do × dx measurement matrices where dx denotes the dimension of xk

and do denotes the dimension of vk. q denotes the quantizer in measurement. q : Rdo 7→ ZM,

in which M denotes the size of the codebook of quantizer q. From the definition of resolution

of a quantizer, M = do · 2r where r is the resolution of quantizer q.

We assume the following in the rest of the paper.
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Assumption 3.4.1.

1. f : Rdx ×Rdu ×Rdw → Rdx is measurable. du denotes the dimension of uk and dw

the dimension of wk.

2. Quantizer q satisfies the following constraints.

(a) Cells Qi = {x|x ∈ Rdo , q(x) = i ∈ ZM} for i = 1, · · · ,M are disjoint subsets of

Rdo.
⋃M

i=1 Qi = Rdo.

(b) Qi = {x|x ∈ Rdo , Fi1x < bi1, Fi2x ≤ bi2} where matrices Fi1, Fi2 and vectors bi1,

bi2 are of proper and finite dimensions. Each of Fi1 and Fi2’s rows has at least

one nonzero element.

(c) mdo(Qi) > 0 where mdo denotes the do dimensional lebesgue measure.

3. System noises {wk}∞k=0 and measurement noises {vk}∞k=1 are white stochastic pro-

cesses, which are independent of each other and are of known distributions.

4. Joint probability density function of vk, p(vk), is positive and continuous on Rdo for

all k ≥ 1.

5. Independent samples from the distributions of x0 and {wk}∞k=0 can be obtained.

In Assumption 1, the constraint regarding the quantizer is satisfied by a large class

of quantizers on Rdo , such as polytopal vector quantizersGersho and Gray (1992). From

the constraint, it is clear that Qi’s boundary, ∂Qi = Q̄i −Qo
i , consists of a finite union of

subsets of do − 1 dimensional hyperplanes. Q̄i and Qo
i denote closure and interior of Qi

respectively.

Problem 3.4.1 (Filtering using quantized measurement).

For system specified in (1), given the distribution of x0, a sequence {uk}K−1
k=0 , a sequence

of measurements (y1,y2, . . . ,yK) ∈ (ZM)K and ∀h ∈ Cb(Rdx), optimal filtering is to obtain

E[h(xK)|{yi}K
i=1 = (y1,y2, . . . ,yK)]

i.e. the conditional expectation of h(xK) with respect to the event {yi}K
i=1 = (y1,y2, . . . ,yK)

which is the optimal estimation of h(xK) in LMSE sense.
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3.4.2 QMSMC Method

We first define linear combination of measures.

Definition 3.4.1 (Linear Combination of Measures). For µ1, µ2 ∈ MF (Rd), α, β ∈
R+, ∀E ∈ B(Rd)

(αµ1 + βµ2)(E) = αµ1(E) + βµ2(E)

From the definition of finite measure, it is obvious that (αµ1 + βµ2) ∈ MF (Rd). Fur-

thermore, if µ1, µ2 ∈ P(Rd) and α + β = 1, (αµ1 + βµ2) ∈ P(Rd).

We present the QMSMC method in a way more mathematical than necessary for imple-

mentation. The purpose of this is to make the proof of its asymptotical optimality easier

to state.

The QMSMC method for Problem 1 proceeds as follows:

1. Initiation :

Draw a set of n independent samples from the distribution of x0, denoted by {xi
0}n

i=1.

Form discrete distribution πn
0 from those samples.

πn
0 =

1
n

n∑

i=1

δxi
0

Set k = 1.

2. Iteration :

At time k, the algorithm uses the quantized measurement at k, yk to update {xi
k−1}n

i=1

into {xi
k}n

i=1.

(a) Prediction :

Obtain n independent samples {wi
k−1}n

i=1 from the distribution of wk−1. For

1 ≤ i ≤ n, get the i-th prior sample x̄i
k by

x̄i
k = f(xi

k−1, uk−1,wi
k−1)

Form discrete distribution ρn
k from prior samples {x̄i

k}n
i=1.

ρn
k =

1
n

n∑

i=1

δx̄i
k

(b) Evaluation of likelihoods :

Evaluate the likelihoods of prior samples {x̄i
k}n

i=1 based on measurement yk in
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the following way. In the formulas below, lyk
k (x̄i

k) denotes the likelihood of the

prior sample x̄i
k based on {yk = yk}.

Define G(yk) to be Qyk
. Define G(yk)− Ckx̄i

k to be

G(yk)− Ckx̄i
k

∆= {x|x ∈ Rdo , x + Ckx̄i
k ∈ G(yk)}

Then, lyk
k (x̄i

k) is evaluated by integrating p(vk) on the region G(yk)− Ckx̄i
k

lyk
k (x̄i

k) =
∫

G(yk)−Ckx̄
(i)
k

p(vk)dvk (3.8)

After evaluating likelihoods of all prior samples {x̄i
k}n

i=1 based on measurement

{yk = yk}, normalize the likelihoods as

ui
k =

lyk
k (x̄i

k)∑n
i=1 lyk

k (x̄i
k)

(c) Estimation :

The estimated ĥ(xk) is obtained by

ĥ(xk) =
n∑

i=1

ui
kh(x̄i

k)

(d) Resampling :

Form discrete distribution π̄n
k from prior samples {x̄i

k}n
i=1 weighted by their

respective normalized likelihoods.

π̄n
k =

n∑

i=1

ui
kδx̄i

k

Draw n independent samples {xi
k}n

i=1 from the distribution π̄n
k as follows.

i. Form accumulative normalized likelihoods vector U = {U j
k}n

j=0. U0
k = 0 and

for 1 ≤ j ≤ n, U j
k =

∑j
i=1 ui

k.

ii. Draw n independent samples from random variable a uniformly distributed

over [0, 1). Denote them by {ai}n
i=1. For each i, find the index bi such that

U bi−1
k ≤ ai < U bi

k . Set xi
k = x̄bi

k
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(e) Form discrete distribution πn
k from xi

k.

πn
k =

1
n

n∑

i=1

δxi
k

(f) Set k = k + 1. If k ≤ K, go to (a).

3. Estimation :

E[h(xK)|{yi}K
i=1 = (y1,y2, . . . ,yK)] = ĥ(xK)

3.4.3 Random Discrete Probability Measure

We introduce two definitions in this subsection. The meaning of asymptotical optimality

relies on Definition 3.

Definition 3.4.2 (Random discrete probability measure). Let (Ω,F ,P) be the prob-

ability space. {ui}n
i=1 are random variables satisfying the following constraints: 0 ≤ ui ≤ 1

for i = 1, · · · , n and
∑n

i=1 ui = 1. {zi}n
i=1 are Rd-valued random variables. A random

discrete probability measure on Rd, ν, is a function from Ω to P(Rd) such that

ν =
n∑

i=1

uiδzi

For a random discrete probability measure ν =
∑n

i=1 uiδzi and ∀g ∈ Cb(Rd), easy to

see that νg =
∑n

i=1 uig(zi) is a random variable.

Definition 3.4.3 (Convergence of random discrete probability measures). Let

(Ω,F ,P) be the probability space and let {νn : Ω → P(Rd)}∞n=1 be a sequence of random

discrete probability measures on Rd and ν a probability measure on Rd. {νn}∞n=1 converges

to ν in Lp sense, if for ∀g ∈ Cb(Rd)

lim
n→∞ ||νng − νg||Lp = 0

We abbreviate limn→∞ ||νng−νg||Lp = 0 as νng
Lp→ νg. ||·||Lp denotes Lp norm of a random

variable.
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3.4.4 Proof of Asymptotical Optimality of QMSMC Method

Let (Ω,F ,P) be the probability space on which stochastic processes {xk}∞k=0 and {yk}∞k=1

are defined. Define y1:k to be {yi}k
i=1. Denote by y1:k a given sample path (y1, . . . ,yk) of

y1:k.

Define conditional probability measure πy1:k
k for k ≥ 1 to be πy1:k

k (A) = P(xk ∈ A|y1:k =

y1:k) for ∀A ∈ B(Rdx). π0 is defined to be the known distribution of x0. Define the predicted

conditional probability measure p
y1:k−1

k for k ≥ 2 to be p
y1:k−1

k (A) = P(xk ∈ A|y1:k−1 =

y1:k−1) for ∀A ∈ B(Rdx). Define p1 to be p1(A) = P(x1 ∈ A) for ∀A ∈ B(Rdx).

We notice that for a given control sequence {uk}∞k=0, the stochastic process {xk}∞k=0

defined in system (1) is a Markov process. Additionally, we assume that for the control

sequence {uk}∞k=0, the transition kernel of process {xk}∞k=0 has Feller property.

Definition of Feller property can be recalled.

The transition kernel of a Markov process {xk}∞k=0 is the sequence of functions {Kk(x,A) :

Rdx ×B(Rdx) 7→ R+}∞k=0 such that for all A ∈ B(Rdx) and x ∈ Rdx , Kk(x, A) = P(Xk+1 ∈
A|Xk = x).

We begin with three lemmas which are essential for our proof of asymptotical optimality

of QMSMC method.

Lemma 3.4.1. lyk
k (x) : Rdx → R+ defined in algorithm 1 is continuous, positive and

bounded for ∀yk and ∀k ∈ N .

Proof. For ∀yk and ∀k ∈ N , easy to see |lyk
k (x)| ≤ 1 for all x. So, lyk

k (x) is bounded.

To prove it is continuous, take xi → x ∈ Rdx . Obviously, Ckxi → Ckx.

|lyk
k (xi)− lyk

k (x)| = |
∫

G(yk)−Ckxi

p(vk)dvk −
∫

G(yk)−Ckx
p(vk)dvk|

= |
∫

G(yk)−Ckxi\G(yk)−Ckx
p(vk)dvk

−
∫

G(yk)−Ckx\G(yk)−Ckxi

p(vk)dvk|

≤ |
∫

G(yk)−Ckxi\G(yk)−Ckx
p(vk)dvk|+

|
∫

G(yk)−Ckx\G(yk)−Ckxi

p(vk)dvk|

=
∫

{G(yk)−Ckxi\G(yk)−Ckx}∪{G(yk)−Ckx\G(yk)−Ckxi}
p(vk)dvk
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=
∫

G(yk)−Ckxi∆G(yk)−Ckx
p(vk)dvk

= µk(G(yk)− Ckxi∆G(yk)− Ckx)

∆ denotes the symmetric difference between two sets. µk denotes the distribution of vk. In

reasoning above, we used as a probability density function, p(vk) ≥ 0 for ∀vk. From the ass

1, we see that the boundary of G(yk), ∂G(yk), consists of a finite union of subsets of do−1

dimensional hyperplanes inRdo . Let Hi = {x|x ∈ Rdo , ∃a ∈ [0, 1], x+[aCkxi+(1−a)Ckx] ∈
∂G(yk)}. We show that G(yk)− Ckxi∆G(yk)− Ckx ⊂ Hi.

To see this, we notice ∂G(yk) separates Rdo into two disjoint open subsets. Denote

them by S1 and S2. Rdo \ ∂G(yk) = S1 ∪ S2. For a1 ∈ S1 and a2 ∈ S2, a path pc = {x|x =

ba1 + (1 − b)a2, 0 ≤ b ≤ 1} joins a1 and a2. Easy to see pc is path connected and then

connected. Suppose pc doesn’t intersect with ∂G(yk). Then, pc = (pc∩S1)∪(pc∩S2). Since

S1 and S2 are disjoint open sets, (pc ∩ S1) and (pc ∩ S2) are disjoint and open in relative

topology. However, pc is connected, it can not be expressed as the union of two nonempty

disjoint open sets. So, one of them must be empty set which is contradictory to the fact

that a1 ∈ (pc ∩ S1) and a2 ∈ (pc ∩ S2). So, pc intersects with ∂G(yk), i.e. pc ∩ ∂G(yk) is

nonempty.

For ∀o ∈ G(yk)−Ckxi∆G(yk)−Ckx, suppose o ∈ G(yk)−Ckxi but o 6∈ G(yk)−Ckx.

Then, o + (Ckxi − Ckx) ∈ G(yk)− Ckx. If either o or o + (Ckxi − Ckx) ∈ ∂G(yk)− Ckx,

o + α(Ckxi − Ckx) ∈ ∂G(yk) − Ckx for α = 0 or α = 1. If neither of them ∈ ∂G(yk) −
Ckx, from reasoning in the paragraph above, the path pc = {x|x = bo + (1 − b)(o +

(Ckxi − Ckx)) = o + (1 − b)(Ckxi − Ckx), 0 ≤ b ≤ 1} will intersect with the boundary

G(yk) − Ckx. So, o + α(Ckxi − Ckx) ∈ ∂G(yk) − Ckx for some α ∈ [0, 1]. That means

o + [αCkxi + (1 − α)Ckx] ∈ ∂G(yk). Following the same reasoning, for o 6∈ G(yk) − Ckxi

but o ∈ G(yk)−Ckx, we also can get o+[αCkxi +(1−α)Ckx] ∈ ∂G(yk) for some α ∈ [0, 1].

So, G(yk)− Ckxi∆G(yk)− Ckx ⊂ Hi.

Let En =
⋃∞

i=n Hi. Clearly, Ei ⊃ Ei+1 for i ≥ 1. ∂G(yk)− Ckx ⊂ Hi ⊂ Ei for ∀i. For

any point o 6∈ ∂G(yk)− Ckx. Since Ckxi → Ckx, we always can find M ∈ N such that for

i ≥ M , o /∈ Ei. So,
⋂∞

i=1 Ei = ∂G(yk)− Ckx.

Since µk(E1) ≤ 1 < ∞, from theorem 1.8 in Folland (1999), limi→∞ µk(Ei) = µk(∂G(yk)−
Ckx). do dimensional Lebesgue measure is translation invariant, so mdo(∂G(yk)− Ckx) =

mdo(∂G(yk)). Since ∂G(yk) consists of a finite union of subsets of do − 1 dimensional hy-

perplanes, mdo(∂G(yk)) = 0. Easy to see that µk is absolute continuous with respect to

mdo , so, limi→∞ µk(Ei) = µk(∂G(yk)− Ckx) = 0. 0 ≤ µk(G(yk)− Ckxi∆G(yk)− Ckx) ≤
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µk(Hi) ≤ µk(Ei). So, µk(G(yk) − Ckxi∆G(yk) − Ckx) → 0 as xi → x. This proves the

continuity of lyk
k (x).

Since mdo(G(yk)−Ckx) = mdo(G(yk)) > 0, we can choose a compact set A ⊂ G(yk)−
Ckx with mdo(A) > 0. Since p(vk) is positive and continuous on Rdo , p(vk) has a positive

minimum on A. Denote it by δ. Then,
∫
G(yk)−Ckx p(vk)dvk ≥

∫
A p(vk)dvk ≥ δmdo(A) > 0.

This holds true for ∀k, yk and x.

The second lemma is regarding the positivity of a few quantities which will appear as

denominators in the proof of Theorem 1.

Lemma 3.4.2. For any given y1:∞, p
y1:k−1

k lyk
k > 0 for k ≥ 2 and p1l

y1
1 > 0.

Proof. Since p1 is a probability measure, there exists a Borel set E ⊂ Rdx such that

p1(E) > 0. Define En = {x|x ∈ E, ly1
1 (x) > 1

n}. Since ly1
1 (x) > 0 for ∀x, E =

⋃
En. From

theorem 1.8 in Folland (1999), p1(E) = limn→∞ p1(En). So, there exist M ∈ N such that

p1(EM ) > 0. p1l
y1
1 ≥ ∫

EN
ly1
1 (x)p1(dx) > 0.

Similarly we can prove that p
y1:k−1

k lyk
k > 0 for k ≥ 2.

The third lemma presents the recurrence formula of conditional probability measures.

Lemma 3.4.3. Denote by {Kk}∞k=0 the transition kernel of Markov process {xk}∞k=0 in

system (1) for a given control sequence {uk}∞k=0. The following recurrence relations hold

true:





p1 = π0K0

dπ
y1:1
1

dp1
= l

y1
1∫

l
y1
1 (x)p1(dx)

For k ≥ 2: 



p
y1:k−1

k = π
y1:k−1

k−1 Kk−1

dπ
y1:k
k

dp
y1:k−1
k

= l
yk
k∫

l
yk
k (x)p

y1:k−1
k (dx)

Proof. For k ≥ 2,

1. The first equation.

For ∀A ∈ B(Rdx),

p
y1:k−1

k (A) = P(xk ∈ A|y1:k−1 = y1:k−1)

π
y1:k−1

k−1 Kk−1(A) =
∫

Rdx

Kk−1(x,A)πy1:k−1

k−1 (dx)
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=
∫

Rdx

P(xk ∈ A|xk−1 = x)πy1:k−1

k−1 (dx)

=
∫

Rdx

P(xk ∈ A|xk−1 = x)

P(xk−1 ∈ dx|y1:k−1 = y1:k−1)

= P(xk ∈ A|xk−1 ∈ Rdx , y1:k−1 = y1:k−1)

= P(xk ∈ A|y1:k−1 = y1:k−1)

= p
y1:k−1

k (A)

So, p
y1:k−1

k = π
y1:k−1

k−1 Kk−1.

2. The second equation.

From lemma 2, lyk
k p

y1:k−1

k > 0 for k ≥ 2. So, the second equation is defined.

dπy1:k
k

dp
y1:k−1

k

=
lyk
k∫

lyk
k (x)py1:k−1

k (dx)
⇔

for ∀A ∈ B(Rdx),

πy1:k
k (A) =

∫
A lyk

k (x)py1:k−1

k (dx)∫
lyk
k (x)py1:k−1

k (dx)
(3.9)

D
∆=

∫
lyk
k (x)py1:k−1

k (dx), then,

(3) ⇔ ∀y1:k, ∀A ∈ B(Rdx),

πy1:k
k (A)P(y1:k = y1:k) =

∫
A lyk

k (x)py1:k−1

k (dx)
D

P(y1:k = y1:k) (3.10)

Left hand side of (4) = P({xk ∈ A}|y1:k = y1:k)P(y1:k = y1:k)

= P({y1:k = y1:k} ∩ {xk ∈ A})

= P({yk = yk} ∩ {y1:k−1 = y1:k−1} ∩ {xk ∈ A})

= P({yk = yk} ∩ {xk ∈ A}|{y1:k−1 = y1:k−1})P(y1:k−1 = y1:k−1)

=
∫

A
P(yk = yk|xk = x, y1:k−1 = y1:k−1)p

y1:k−1

k (dx)P(y1:k−1 = y1:k−1)

=
∫

A
P(yk = yk|xk = x)py1:k−1

k (dx)P(y1:k−1 = y1:k−1)

=
∫

A
lyk
k (x)py1:k−1

k (dx)P(y1:k−1 = y1:k−1)
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=
∫

A
lyk
k (x)py1:k−1

k (dx)P(y1:k = y1:k)
P(y1:k−1 = y1:k−1)

P(y1:k = y1:k)

=
∫

A
lyk
k (x)py1:k−1

k (dx)P(y1:k = y1:k)
1

P(yk = yk|y1:k−1 = y1:k−1)

=
∫

A
lyk
k (x)py1:k−1

k (dx)P(y1:k = y1:k)

1∫
P(yk = yk|xk = x, y1:k−1 = y1:k−1)p

y1:k−1

k (dx)

=
∫

A
lyk
k (x)py1:k−1

k (dx)P(y1:k = y1:k)

1∫
lyk
k (x)py1:k−1

k (dx)

=

∫
A lyk

k (x)py1:k−1

k (dx)∫
lyk
k (x)py1:k−1

k (dx)
P(y1:k = y1:k)

which is the right hand side of (6). This proves the second equation.

For k = 1, the formula can be proved in the same way as the proof for k ≥ 2 except minor

notation difference.

3.4.5 General Convergence Theorem

We first prove a general convergence theorem which is a revised and generalized version of

theorem 2.3.1 in Crisan (2001).

Theorem 3.4.1 (General Convergence Theorem). Consider system (1). For a given

sample path y1:∞ of y1:∞, probability measures π0, p1, πy1:k
k (k ≥ 1) and p

y1:k−1

k (k ≥ 2) are

defined as before. Let (Ω1,F1,P1) be the probability space. Let {τn
0 : Ω1 → P(Rdx)}∞n=1 be

a sequence of random discrete probability measures on Rdx. For every k ≥ 1, let {τn
k }∞n=1,

{qn
k}∞n=1 and {τ̄n

k }∞n=1 be sequences of random discrete probability measures mapping from

Ω1 to P(Rdx). For ∀k, n ≥ 1, τ̄n
k depends on qn

k in the following way. If qn
k =

∑m
i=1 uiδzi,

τ̄n
k =

1∑m
i=1 uil

yk
k (zi)

m∑

i=1

uil
yk
k (zi)δzi

where lyk
k is defined as in (2).

The following claims hold true:

1. a1. {τn
0 }∞n=1 converges to π0 in Lp sense.
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2. a2. {qn
1 }∞n=1 converges to p1 in Lp sense.

3. a3. {τ̄n
k }∞n=1 converges to πy1:k

k in Lp sense for k ≥ 1.

4. a4. {qn
k}∞n=1 converges to p

y1:k−1

k in Lp sense for k ≥ 2.

if the following three conditions are satisfied.

1. b1. {τn
0 }∞n=1 converges to π0 in Lp sense.

2. b2. For ∀g ∈ Cb(Rdx), limn→∞ ||qn
k g − τn

k−1Kk−1g||Lp = 0 for k ≥ 1.

3. b3. For ∀g ∈ Cb(Rdx), limn→∞ ||τn
k Kkg − τ̄n

k Kkg||Lp = 0 for k ≥ 1.

Proof. Define Lp(Ω1,F1,P1) to be the space of all random variables defined on (Ω1,F1,P1)

with finite Lp norm. To simplify notations, we write pk for p
y1:k−1

k , πk for πy1:k
k and lk for

lyk
k in this proof.

We use induction to prove the claims from a1 to a4.

b1 and a1 are same statements.

From lemma 3, p1 = π0K0. For ∀g ∈ Cb(Rdx),

||qn
1 g − p1g||Lp ≤ ||qn

1 g − τn
0 K0g||Lp + ||τn

0 K0g − π0K0g||Lp

From b2 with k = 1, the first item on the right hand side of the inequality goes to zero

as n → ∞. From b1 and Feller property of {Kk}∞k=0, the second item on the right hand

side of the inequality goes to zero as n →∞. So,

qn
1 g

Lp→ p1g

which is a2. From lemma 2, p1l1 > 0. Following the same argument in lemma 2, we have

qn
1 l1 > 0.

||τ̄n
1 g − π1g||Lp = ||q

n
1 gl1
qn
1 l1

− p1gl1
p1l1

||Lp

≤ ||q
n
1 gl1
qn
1 l1

− qn
1 gl1
p1l1

||Lp + ||q
n
1 gl1
p1l1

− p1gl1
p1l1

||Lp

= || qn
1 gl1

(qn
1 l1)(p1l1)

p1l1 − qn
1 l1||Lp+

||q
n
1 gl1
p1l1

− p1gl1
p1l1

||Lp
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≤ ||g||u
|p1l1| ||p1l1 − qn

1 l1||Lp+

1
|p1l1| ||p1gl1 − qn

1 gl1||Lp

where ||g||u = supx{|g(x)|} < ∞. By lemma 1, l1 and l1g are both continuous and bounded.

From a2, τ̄n
1 g

Lp→ π1g. a3 holds true for k = 1.

Suppose the claims a3 and a4 hold true for M−1 with M ≥ 2. Then, for ∀g ∈ Cb(Rdx),

qn
M−1g

Lp→ pM−1g

τ̄n
M−1KM−1g

Lp→ πM−1KM−1g (3.11)

In (5), we used ass 2. For ∀g ∈ Cb(Rdx),

||qn
Mg − pMg||Lp ≤ ||qn

Mg − τn
M−1KM−1g||Lp+

||τn
M−1KM−1g − τ̄n

M−1KM−1g||Lp + ||τ̄n
M−1KM−1g − pMg||Lp

= ||qn
Mg − τn

M−1KM−1g||Lp + ||τn
M−1KM−1g − τ̄n

M−1KM−1g||Lp

+||τ̄n
M−1KM−1g − πM−1KM−1g||Lp

By b2 with k = M , the first item on the right hand side of equation goes to zero as

n → ∞. By b3 with k = M − 1, the second item on the right hand side goes to zero as

n →∞. By a3 with k = M − 1 and Feller Property of KM−1, the third item on the right

hand side goes to zero as n →∞. So, for ∀g ∈ Cb(Rdx),

qn
Mg

Lp→ pMg (3.12)

a4 holds for k = M .

From lemma 2, pM lM > 0. Following the same argument in lemma 2, we have qn
M lM > 0.

||τ̄n
Mg − πMg||Lp = ||q

n
MglM
qn
M lM

− pMglM
pM lM

||Lp

≤ ||q
n
MglM
qn
M lM

− qn
MglM
pM lM

||Lp + ||q
n
MglM
pM lM

− pMglM
pM lM

||Lp

= || qn
MglM

(qn
M lM )(pM lM )

pM lM − qn
M lM ||Lp+

||q
n
MglM
pM lM

− pMglM
pM lM

||Lp
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≤ ||g||u
|pM lM | ||pM lM − qn

M lM ||Lp+

1
|pM lM | ||q

n
MglM − pMglM ||Lp

where ||g||u = supx{|g(x)|} < ∞.

That is,

||τ̄n
Mg − πMg||Lp ≤ ||g||u

|pM lM | ||pM lM − qn
M lM ||Lp

+
1

|pM lM | ||q
n
MglM − pMglM ||Lp (3.13)

By lemma 1, lM and glM are both continuous. From (6), we see ||pM lM −qn
M lM ||Lp → 0

and ||pMglM − qn
MglM ||Lp → 0 as n →∞. So,

||τ̄n
Mg − πMg||Lp → 0

as n →∞. a3 holds true for k = M .

3.4.6 Convergence Theorem for QMSMC Method

To apply the general convergence theorem to QMSMC method, we first need to show that

ρn
k , π̄n

k and πn
k generated in QMSMC method are random discrete probability measures.

This is confirmed in the following lemma.

Lemma 3.4.4. Consider Problem 1 and QMSMC method. For a given sample path y1:K of

y1:K . ρn
k , π̄n

k and πn
k generated in QMSMC method are random discrete probability measures

for 1 ≤ k ≤ K.

Proof. Let (Ω1,F1,P1) be the probability space on which random variables x0, {wk}K−1
k=0 ,

{vk}K
k=1 and uniform random variable a used in resampling steps are defined.

We use induction.

For k = 1, since x̄i
1 = f(xi

0, u0,wi
0) and f measurable, x̄i

1 is a random variable for every

1 ≤ i ≤ n. So, ρn
1 = 1

n

∑n
i=1 δx̄i

1
is a random discrete probability measure.

From lemma 1, for ∀y1, ly1
1 (x) is continuous and then measurable. g : x → 1

x is

measurable for x > 0. ui
1 = l

y1
1 (x̄i

1)∑n
i=1 l

y1
1 (x̄i

1)
is a random variable for all 1 ≤ i ≤ n because

the denominator is always strictly positive by lemma 1. Easy to see
∑n

i=1 ui
1 = 1. π̄n

1 is a

random discrete probability measure.
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Define set A to be {(u1, u2, · · · , un) ∈ Rn|0 ≤ ui ≤ 1,
∑n

i=1 ui = 1}. Construct fa : A×
{Rdx}n×[0, 1) →Rd as the following. For fa(u1, u2, · · · , un, x1, x2, · · · , xn, α), we set u0 = 0

and find l such that
∑l−1

i=0 ui ≤ α <
∑l

i=0 ui. fa(u1, u2, · · · , un, x1, x2, · · · , xn, α) = xl. Easy

to see that fa is a function. For ∀E ∈ B(Rdx), f−1
a (E) =

⋃n
i=1{xi ∈ E ∩ ∑i−1

j=0 uj ≤
α <

∑i
j=0 uj}. For every i, xi

1 can be viewed as fa(u1
1, u

2
1, · · · , un

1 , x̄1
1, x̄

2
1, · · · , x̄n

1 , a). Since

u1
1, u

2
1, · · · , un

1 , x̄1
1, x̄

2
1, · · · , x̄n

1 , a are all random variables, f−1
a (E) =

⋃n
i=1{xi ∈ E∩∑i−1

j=0 uj ≤
α <

∑i
j=0 uj} is measurable for ∀E ∈ B(Rdx), which means that xi

1, 1 ≤ i ≤ n are random

variables. Since
∑n

i=1 ui
1 = 1, πn

1 is a random discrete probability measure.

Suppose xi
M−1, 1 ≤ i ≤ n are random variables for M ≥ 2, we can just follow the

steps for k = 1 to prove the ρn
M , π̄n

M , πn
M are random discrete probability measures and

xi
M , 1 ≤ i ≤ n are random variables.

Then, we can prove the convergence of π̄n
k in QMSMC method to πy1:k

k in L1 sense as

n →∞.

Theorem 3.4.2 (Convergence Theorem for QMSMC Method). Consider system

(1). Given a sample path y1:∞ of y1:∞. Probability measures π0, p1 and πy1:k
k (1 ≤ k ≤ K)

and p
y1:k−1

k (2 ≤ k ≤ K) are defined as before.

Consider QMSMC method for n = 1, 2, · · · ,∞. The following claims regarding random

discrete probability measure sequences {π̄n
k}∞n=1 and {ρn

k}∞n=1 generated in QMSMC method

hold true.

1. {ρn
1}∞n=1 converges to p1 in L1 sense.

2. {π̄n
k}∞n=1 converges to πy1:k

k in L1 sense for 1 ≤ k ≤ K.

3. {ρn
k}∞n=1 converges to p

y1:k−1

k in L1 sense for 2 ≤ k ≤ K.

Proof. Let (Ω1,F1,P1) be the probability space on which random variables x0, {wk}K−1
k=0 ,

{vk}K
k=1 and uniform random variable a used in resampling steps are defined. This proba-

bility space is also the space on which {πn
0 }∞n=1, {ρn

k}∞n=1, {π̄n
k}∞n=1 and {πn

k}∞n=1 are defined

for 1 ≤ k ≤ K. From QMSMC method, we see that π̄n
k depends on ρn

k in the same way as

τ̄n
k depends on qn

k . So, we only need to verify that:

1. b1. {πn
0 }∞n=1 converges to π0 in L1 sense.

2. b2. For ∀g ∈ Cb(Rdx), limn→∞ ||ρn
kg − πn

k−1Kk−1g||L1 = 0 for k ≥ 1.

3. b3. For ∀g ∈ Cb(Rdx), limn→∞ ||πn
k Kkg − π̄n

k Kkg||L1 = 0 for k ≥ 1.
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The verification is as follows:

1. For ∀g ∈ Cb(Rdx), πn
0 g = 1

n

∑n
i=1 g(xi

0). Since {xi
0}n

i=1 are independent samples of

random variable x0, {g(xi
0)}n

i=1 are independent samples of random variable g(x0).

Mean of g(x0) is π0g ≤ ||g||u < ∞. By Strong Law of Large Numbers, πn
0 g

a.s.→ π0g as

n →∞. So, πn
0 g

L1→ π0g. b1 holds true.

2. For k ≥ 1 and ∀g ∈ Cb(Rdx),

ρn
kg =

1
n

n∑

i=1

g(x̄i
k)

πn
k−1Kk−1g =

1
n

n∑

i=1

E[g(xk)|xk−1 = xi
k−1]

||ρn
kg − πn

k−1Kk−1g||L2 =
1
n
||

n∑

i=1

{g(x̄i
k)− E[g(xk)|xk−1 = xi

k−1]}||L2

=
1
n
||

n∑

i=1

{g(f(xi
k−1, uk−1,wi

k−1))− E[g(f(xi
k−1, uk−1, wk−1))]}||L2

From the independence of {wi
k−1}n

i=1, we can see that

||
n∑

i=1

{g(f(xi
k−1, uk−1,wi

k−1))−E[g(f(xi
k−1, uk−1, wk−1))]}||L2

= (
n∑

i=1

||g(f(xi
k−1, uk−1,wi

k−1))− E[g(f(xi
k−1, uk−1, wk−1))]||2L2)

1
2

≤ √
n||g2||

1
2
u

So,

||ρn
kg − πn

k−1Kk−1g||L2 ≤ 1√
n
||g2||

1
2
u

||ρn
kg − πn

k−1Kk−1g||L2 → 0 as n → ∞. So, limn→∞ ||ρn
kg − πn

k−1Kk−1g||L1 = 0. b2

holds true.

3. For ∀k ≥ 1 and ∀g ∈ Cb(Rdx),

πn
k g =

1
n

n∑

i=1

g(xi
k)
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Since xi
k are independent samples from distribution π̄n

k

E[g(xi
k)] =

1
n

n∑

i=1

ui
kg(x̄i

k)

= π̄n
k g ≤ ||g||u < ∞

By Strong Law of Large Numbers and Feller property of {Kk}∞k=0,

πn
k Kkg

a.s.→ π̄n
k Kkg

as n →∞ in πn
k . So limn→∞ ||πn

k Kkg − π̄n
k Kkg||L1 = 0. b3 holds true.

Theorem 3.4.3. In QMSMC method, as the size of samples n → ∞, random variable

ĥ(xK) converges to E[h(xK)|y1:K = y1:K ] in probability.

Proof. The corollary is interpreting that π̄n
K in QMSMC method converges to πy1:K

K as

n →∞ in L1 sense.

As a stochastic algorithm, QMSMC method generates a sequence of random variables

indexed by size of samples used. The sequence of random variables converges to the value

sought in the optimal filtering problem in probability. This is the asymptotical optimality

of QMSMC method.

Theorem 3.4.4. In QMSMC method, if f ’s range spaces are uniformly bounded for a given

control sequence {uk}, then, ĥ(xK) converges to E[xK |y1:K = y1:K ] in probability.

Proof. Choose h(xk) to be a smooth function with compact support such that h(xk) = xk

ifxk ∈ D and h(xk) = 0 if xk ∈ S(U, d). where D is a compact set including f ’s range

spaces with respect to control sequence {uk}. S(u, d) = {x|x ∈ Rd, dist(U, x) > d}. Then,

the conclusion is obvious.

Remark 3.4.1. For this problem we are considering, sequential Monte Carlo is trading

computation for accuracy in estimation. QMSMC’s asymptotical optimality implies that

the computation power required to gain significant margin over other simple but effective

approximation would be extraordinary, in some cases.

3.4.7 Variants in QMSMC

Resampling step is arguably the most important step in SMC. Different variants exist in

this step.

Algorithm 3.4.1.
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3.4.8 On its way to fame: Open problems and future work for SMC

Several crucial properties are still missing

1. Uniform Convergence

2. Convergence rate



Chapter 4

Simulation for Noisy Measurement

In chapter 3, we proposed QMKF, QMEKF and QMSMC for filtering from quantized

measurement. Asymptotical optimality of QMSMC in a defined sense is proven under

certain assumptions. However, it is very difficult, if possible, to analytical compare the

performances of these methods for a given system. This chapter will demonstrate the

relative effectiveness of QMKF, QMEKF and QMSMC by simulation. We apply QMKF and

QMSMC for linear time invariant systems with quantized measurement and QMEKF and

QMSMC for nonlinear systems with quantized measurements. The relative performances

of applicable methods will certainly depend on the choice of systems to which they are

applied to. We will choose a few sample linear time invariant systems with order 2, 3 and

4. We don’t intend to do exhaustive simulation for linear time invariant systems of all

orders since even if it is possible in a meaningful way, that huge effort is not necessarily

worthwhile. Since in most practical cases, quantizer is under control of the designer of the

system, we choose quantizer for those sample systems based on our experience rather than

an arbitrary one.

Vastly different nonlinearities exist within the category of nonlinear system. Those

nonlinear systems which are models of real world systems are of greatest interests to our

study. In applying QMEKF and QMSMC to nonlinear systems, we focus the problem of

filtering from quantized measurement for the navigation model of MIT instrumented X-

60 SE Cell helicopter. Simulation confirmed the asymptotical optimality of QMSMC and

showed that under certain conditions, with still reasonable computation costs, QMSMC

will significantly outperform QMEKF.

39
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4.1 QMKF and QMSMC for Linear Systems

Consider the following canonical form of continuous-time linear time invariant system with

single input and single output.

ẋ = Ax + Bẇ

y = Cx + Dv̇
(4.1)

where

A =




In−1

−an −an−1 · · · − a1




B =




0
...

0

1




C =
[

c1 · · · cn

]

In−1 is the n−1 dimensional identity matrix. D is a constant. w and v are wiener processes.

Discretizing this system by time interval dt and considering quantization in measure-

ment, we can obtain the following discrete-time system.

xk+1 = eAdtxk + Bwk

yk = q(Cxk + Dvk)
(4.2)

where dt is time step. wk, vk are white stationary zero mean gaussian processes inde-

pendent with each other. At each time index k, wk and vk are of variance dt.

We choose dt = 0.01 in our simulation. Different time steps will result in different

simulation results. For simplicity, we fix dt in our simulation and will not consider the

effect of time step on simulation results.

Choosing a canonical form simplifies the comparison between different systems. We

don’t know whether a specific choice of canonical form will affect our study. In this thesis,

we only consider the canonical form as above.
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4.1.1 Second Order Systems

We choose one particular second order linear time invariant system model with specified

parameters and will change noise variance in measurement and sample size in QMSMC.

System Specification

A =

[
0 1

−1 −1

]

B =

[
0√
2

]

C =
[

1 0
]

Transfer function of this system without considering observation noise is

H(s) =
√

2
s2 + s + 1

Eigenvalues of A are s1,2 = −1
2 ± i

√
3

2 . Damping ratio of this system is 0.5. We let D vary

from 4 to 16 with multiplication of
√

2 at each step. Steady state distribution of Cxk is

the standard normal distribution. Easy to see that steady state distribution for Cxk +Dvk

will be zero mean normal distribution with variance 1 + D2 ∗ 0.01.

Parameters

We fixed quantizer to be of the following boundary points.

Bq =
{
−1.5, −1, −0.5, 0, 0.5, 1, 1.5

}

Choice of this particular quantizer is based on its simple structure and closeness to the

optimal quantizer for static standard normal distribution. The sample size of QMSMC will

be 100, 400, 1600. Each realization of the system is 1000 time unit long and we simulate 10

realizations for each combination of noise variance and QMSMC’s sample size. The average

cost function for the 10 realizations is plotted.
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Simulation results

The following figure shows the performances of QMKF and QMSMC with different sample

sizes for different levels of observation noise. The cost function is defined in the following

way:

P =
√

E(eT
k ek)

where E denotes expectation, ek = x̂k − xk. To calculate E(eT
k ek), we assume that ek is a

stationary vector stochastic process and ergodic. E(eT
k ek) is calculated by time average.
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Figure 4.1: Simulation Results for System I

In this figure, we also plot the cost function by Kalman filter when it is applied to the

system model which is same as in system specification except no quantization in measure-

ment model.

The table below lists all the data used to draw the pictures above as well as the estimated

standard deviation of each of the item.

Analysis

Simulation for this system demonstrates the asymptotical optimality of QMSMC and gives

us an approximate idea about the size of samples needed in QMSMC algorithm for it to
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Table 4.1: Table of standard deviation of simulated results
Noise Variance KF QMKF σQMKF QMSMC 100 σ100

0.160000 0.6232 0.658803 0.002854 0.745832 0.001855
0.320000 0.6682 0.703094 0.004548 0.796086 0.002483
0.640000 0.7153 0.741482 0.003516 0.854065 0.004414
1.280000 0.7647 0.803052 0.003426 0.940981 0.004680
2.560000 0.8172 0.845374 0.004381 1.005394 0.007102

Noise Variance QMSMC 400 σ400 QMSMC 1600 σ1600

0.160000 0.667665 0.001907 0.651310 0.002180
0.320000 0.715787 0.002002 0.683837 0.001692
0.640000 0.757987 0.002005 0.738392 0.002385
1.280000 0.820808 0.002958 0.789307 0.003159
2.560000 0.891733 0.003355 0.836184 0.002643

match the performance of QMKF for this specific system. From simulation, the sample size

would be around 800.

Figure 4.1 also provides us information about the limit performance of QMSMC algo-

rithm as computation goes to infinity which, by theory, is the error associated with optimal

filtering in least mean-square-error sense. This limit arguably should be greater than the

cost function caused by Kalman filter for the same system expect quantization in measure-

ment model. The gap between them is small, which means that the deterioration in the

quality of state estimation caused by quantization is small. It is interesting to see that

allowing a relatively larger error in state estimation, we can reduce the requirement of

measurement from infinite precision to 3 bits representation. For quantized measurement,

with about three orders of magnitude more computation, QMSMC can outperform QMKF

for this system. Whether this cost is worthy the reduction in state estimation error is to

be determined by practitioners.

4.1.2 Third Order Systems

System Specification

A =




0 1 0

0 0 1

−1 −2 −2
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B =




0

0√
3




C =
[

1 0 0
]

Transfer function of this system without considering observation noise is

H(s) =
√

3
s3 + 2s2 + 2s + 1

Eigenvalues of A are s1,2 = −1
2 ± i

√
3

2 and s3 = −1. We let D vary from 4 to 16 with

multiplication of
√

2 at each step. Steady state distribution of Cxk is the standard normal

distribution. Easy to see that steady state distribution for Cxk + Dvk will be zero mean

normal distribution with variance 1 + D2 ∗ 0.01.

Parameters

We fixed quantizer to be of the following boundary points.

Bq =
{
−1.5, −1, −0.5, 0, 0.5, 1, 1.5

}

Choice of this particular quantizer is based on its simple structure and closeness to the

optimal quantizer for static standard normal distribution. The sample size of QMSMC will

be 100, 200, 400, 800, 1600.

Simulation results

4.1.3 Fourth Order Systems

System Specification

A =




0 1 0 0

0 0 1 0

0 0 0 1

−1 −3 −4 −3




B =




0

0

0

2
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C =
[

1 0 0 0
]

Transfer function of this system without considering observation noise is

H(s) =
2

s4 + 3s3 + 4s2 + 3s + 1

. Eigenvalues of A are s1,2 = −1
2 ± i

√
3

2 and s3,4 = −1. We let D vary from 4 to 16 with

multiplication of
√

2 at each step. Steady state distribution of Cxk is the standard normal

distribution. Easy to see that steady state distribution for Cxk + Dvk will be zero mean

normal distribution with variance 1 + D2 ∗ 0.01.

Parameters

We fixed quantizer to be of the following boundary points.

Bq =
{
−1.5, −1, −0.5, 0, 0.5, 1, 1.5

}

Choice of this particular quantizer is based on its simple structure and closeness to the

optimal quantizer for static standard normal distribution. The sample size of QMSMC will

be 100, 200, 400, 800, 1600.

Simulation results

4.2 QMEKF and QMSMC for MIT instrumented X-60 SE

Cell helicopter

We consider the problem of filtering with quantized measurement for the navigation model

of MIT instrumented X-60 SE Cell helicopterGavrilets (2003).

4.2.1 System Specification

For given discretization interval δt, the discrete-time state-space navigation model is as

follows:

xk+1 = fh(xk, uk, wk) (4.3)

yk = qh(Dxk + vk) (4.4)

where the state vector xk = [pk; vk; qk; ab
k;w

b
k]. pk, vk, ab

k, wb
k are 3×1 vectors. qk is 4×1

vector. Control vector uk = [ak;ωk] where ak and ωk are 3×1 vectors. wk = [w1,k;w2,k;w3,k]
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is system noise vector. w1,k, w2,k and w3,k are 3 × 1 vectors. D =
[

I6 O
]

where I6 is

6-dimension identity matrix. O is 6× 9 zero matrix.

The system function fh is as the following:

pk+1 = pk + vkδt

vk+1 = vk + (Ck(ak − ab
k) +




0

0

1


 g)δt + w1,k

qk+1 = Φ(ωk − ωb
k, δt)qk + kδt(1− ‖qk‖2)

ab
k+1 = ab

k + w2,k

ωb
k+1 = ωb

k + w3,k

In these equations, g = 9.81. qk =
[

qk,1 qk,2 qk,3 qk,4

]T
. T denotes transpose. Ck

is obtained from qk as follows.

Ck =




1− 2(q2
k,3 + q2

k,4) 2(qk,2qk,3 − qk,1qk,4) 2(qk,2qk,4 + qk,1qk,3)

2(qk,2qk,3 + qk,1qk,4) 1− 2(q2
k,2 + q2

k,4) 2(qk,3qk,4 − qk,1qk,2)

2(qk,2qk,4 − qk,1qk,3) 2(qk,3qk,4 + qk,1qk,2) 1− 2(q2
k,3 + q2

k,3)




Φ(ωk − ωb
k, δt) is obtained as follows:

φ = (ωk − ωb
k)δt = [ φx φy φz ]T

Φ4 =




0 φx φy φz

−φx 0 −φz φy

−φy φz 0 −φx

−φz −φy φx 0




s =
1
2
‖φ‖2

Φ(ωk − ωb
k, δt) = I4 cos s +

1
2
Φ4

sin s

s

where I4 is the 4-dimension identity matrix and ||·||2 is the L2 norm. Quantizer qh quantizes

each component of Dxk+vk as a scalar. The scalar quantizer for each component is uniform

with rate b. Their granular regions are chosen to fit the specific trajectory we simulate.
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Table 4.2: Standard deviation(Std) of every component of noises
Noise wk,1 wk,2 wk,3 wk,4 wk,5 wk,6

Std 7× 10−3 7× 10−3 7× 10−3 2× d× 10−5 2× d× 10−5 5× d× 10−6

Noise wk,7 wk,8 wk,9 vk,1 vk,2 vk,3

Std 5× 10−5 5× 10−5 5× 10−5 2 2 0.304
Noise vk,4 vk,5 vk,6

Std 0.45 0.45 1

4.2.2 Parameters

We simulate the system for 200 seconds with discretization interval δt = 0.01. In the

simulation, we apply an artificially generated control sequences {uk}20,000
k=0 . The initial

distribution for x0 is Gaussian. Each component of vectors wk and vk is chosen to be zero-

mean stationary white Gaussian process which is independent of each other. The standard

deviations of every components at any time index k is listed in Table 1 in which d = π/180.

The components of wk and vk are numbered as follows.

wk = [ wk,1 wk,2 wk,3 wk,4 wk,5 wk,6 wk,7 wk,8 wk,9 ]T

vk = [ vk,1 vk,2 vk,3 vk,4 vk,5 vk,6 ]T

We treat quantization as additive noise with zero mean and variance 1
12L2

c where Lc is

the length of a cell in corresponding scalar quantizer.

Since qk, ab
k, ωb

k have very different units with pk and vk, we only compute the square

root of mean square error of [pk; vk]. Because QMSMC method’s estimation result at any

time index k is a random variable for a given sample size n, we run QMSMC method 10

times for a given n and compute the mean of the 10 resulting values as the cost function.

This process is repeated for different quantizer rate b to show the effect of b. The result is

shown in Figure 1.

The cost function of error in state estimation is the square root of sum of estimation

errors variances of the first 6 components of the state vector, which are positions and

velocities. The error of attitude is excluded because of no proper way to combine the error

in position and velocity and error in attitudes.

The rate of scalar quantizer of each component are chosen to be the same for all 6 obser-

vation components and range from 5 to 10. The corresponding communication requirement

between the helicopter and the controller is from 3k bits per second(bps) to 6k bps.
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The choice of the number of samples used in SMC algorithm depends on the computa-

tional capacity of the controller and the required accuracy. As a random algorithm, SMC’s

estimation result is random variable. We simulate the SMC for each given quantizer and

number of samples for 10 times and compute the mean and standard deviation.

4.2.3 Simulation results

Figure 4.2: Performance of QMSMC method with n = 1000, 2000 and EKF
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Figure 1 shows as n increases from 1000 to 2000, the cost function decreases for each

quantizer rate. This is expected from Corollary 1. This figure also shows that for quantizer

rate b = 6, 7, QMSMC method outperforms EKF by large margin.

The trajectory in north and east direction is shown in figure 1 and the trajectory in the

down direction is shown in figure 2:

Extended Kalman Filter and the Sequential Monte Carlo method are both applied to

estimate the state from the quantized noisy observation. In sequential monte carlo method,

since the system and observation noises are gaussian distributed, gaussian random variable

generator in matlab is used to generate independent system and observation noises samples.

4.2.4 Analysis

Easy to see that (8) and (9) satisfy Assumption 1. Furthermore, we can show that for

the given control sequence, transition kernel of process {xk}20,000
k=0 has Feller property. We
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Figure 4.3: Simulated Trajectory

apply QMSMC to the problem of filtering in this example. In applying QMSMC method,

we choose h(x) in Problem 1 to be continuous with compact support and is identity function

within a large enough region which makes the difference between E[h(xK)|y1:K = y1:K ] and

E[xK |y1:K = y1:K ] negligible for ∀K = 1, 2, · · · , 20000. Then, from corollary 1, as the size

of samples n →∞, random variable ĥ(xK) converges to E[xK |y1:K = y1:K ] in probability.

As a comparison, we also apply Extended Kalman Filter(EKF). Details of EKF can be

found in Gavrilets (2003).

4.2.5 Under the first assumption

Figure 2 presents the simulation results of EKF and SMC with 1000 and 2000 particles for

different quantization rates under the first assumption.

Notice that at high quantization rate, the noise introduced by quantization is relatively

small, the EKF and SMC yields similar results for state estimation. However, as the rate

decreases, which means quantization becomes coarser, SMC can increasingly outperform

EKF. This also means to achieve the same estimation error, SMC requires less communi-

cation than EKF.

4.2.6 Under the second assumption

Figure 3 presents the simulation results of EKF for different quantization rates under the

second assumption and those of SMC with 1000 and 2000 particles under the first assump-
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tion.
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Figure 4.4: Comparison of EKF under second assumption and SMC with 1000 and 2000
particles under first assumption

This plot clearly shows that to apply SMC under first assumption greatly outperform

EKF under second assumption which suppose the helicopter estimate its state on board

and transmits the estimation results.

4.2.7 Conclusion

We proposed a new sequential monte carlo method to estimate state in navigation model of

MIT instrumented X-Cell 60 SE helicopter under quantized observation. The performances

of the proposed sequential monte carlo method and extended kalman filter in terms of de-

fined cost function are considered and compared for two different assumptions. Simulation

showed that the proposed sequential monte carlo method gives outperform the extended

kalman filter under both assumptions. This provides a way to obtain more accurate state

estimation under severe communication constraints at the cost of high computational load.



Chapter 5

State Estimation from Quantized

Measurement II : Noiseless

Measurement

5.1 Motivation and Formulation

In Chapter 2, under a set of assumptions, we formulated system with limited communication

into a specific class of models as below.

xk = f(xk−1, uk−1, wk−1)

yk = q(Ckxk + vk)
(5.1)

In this class of models there exists nonzero additive noise vk in measurement before

quantization.

In this chapter, we will study the following class of models which are different from

models (5.1) in the sense that there is no additive noise in measurement before quantization.

xk = f(xk−1, uk−1, wk−1)

yk = q(Ckxk)
(5.2)

Absence of additive noise in measurement is an ideal model which, in a strict sense,

does not apply to any practical systems with analog measurement. Theoretically, it is

still meaningful to study this case since it presents the opportunity to study the limit

51
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version of filtering from quantized noisy measurements when the additive noise goes to

zero. As the additive noise in measurement goes to zero, QMSMC becomes increasingly

difficult to implement. The difficulty comes from singularity in the likelihood evaluation

step. QMSMC uses the distribution of measurement noise to evaluate the likelihood of

each prior sample based on received quantized measurement of current step k, yk. When

the variance of the additive noise in measurement becomes small compared with that of

Ckxk, for a given sample size, it becomes more frequent that all the prior samples generated

at step k will have almost zero likelihood. Theoretically, the algorithm can still continue

even the likelihoods are almost zero. However, in implementation, once a likelihood is

sufficiently small, it has to be treated as zero because of limited codeword length in digital

computation. Singularity refers to the case that in implementation of QMSMC, all prior

samples have zero likelihoods based on currently received quantized measurement.

Singularity will cause QMSMC algorithm to stop and certain procedures have to be

adopted to keep QMSMC continuing. Besides halting QMSMC, singularity itself indicates

significant error in state estimation. We are unable to study singularity and its effect on

performance of QMSMC theoretically. It is a consensus within SMC literature that systems

with weak measurement noise poses challenges to SMC. In our case, it poses challenges to

QMSMC.

The limit of decreasing measurement noise is its absence. Conceptually, absence of

measurement noise makes the filtering problem easier than the one with noisy measurement

since the Bayesian update part in the Fokker-Planck and Bayesian framework only needs

to set the propagated probability density function to be zero outside the corresponding

quantization region((or the measure of the complement set of corresponding quantization

region to be zero) and then re-normalizing the function. In theory, QMSMC can still

be applied to those models. The likelihood evaluation step would produce either 1 or 0.

However, frequent singularity makes the algorithm much less practical than when being

applied to noisy measurement.

Consider the following discrete-time state space model:

xk = Ak−1xk−1 + Bk−1wk−1)

yk = q(Ckxk)
(5.3)

We begin our study of filtering for this model with linear time invariant scalar system.

Though lack of realistic complexity, linear time invariant scalar systems provides a successful

application of Fokker-Plank and Bayesian update scheme which conceptually solves this
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problem.

Then, we focus on two ad hoc methods. The first one is modified Quantized Measure-

ment Kalman Filter which is essentially the QMKF used for noisy measurement except in

treatment of measurement noise.

The second one is Quantized Measurement Conditional Sampling(QMCS) algorithm

which is a sample based method similar with QMSMC. We add projection step and replace

the likelihood evaluation and resampling steps of QMSMC by conditional sampling based

on quantized measurement. The conditional sampling step maintains a certain sample

group size and those samples are used to do state estimation. It is easy to understand that

the new sample would be close to the real a posterior distribution in some sense. However,

we are unable to prove it theoretically and exact number of trials required in conditional

sampling step is unknown.

5.2 Scalar System

We focus on the following Itô equation.

ẋ = ax + bẇ (5.4)

The evolution of probability density function of x at time t, ρ(t, x), is governed by

Fokker-Planck equation as the following:

ρt =
b2

2
ρxx − axρx − aρ

where

ρt
∆=

∂ρ

∂t
, ρxx

∆=
∂2ρ

∂x2
, ρx

∆=
∂ρ

∂x

with boundary condition

ρ(x, 0) = ρ0

Adding quantized measurement to (5.5), we have the following system:

ẋ = ax + bẇ

y = q(cx)
(5.5)

where q : R→ ZM is a scalar quantizer.

Discretizing the system with sufficiently small time interval dt, we can see that Fokker-

Planck partial differential equation can be numerically approximated by
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5.2.1 Propagation and Update for discrete time

5.2.2 Simulation Results

5.3 QMKF(QMEKF) for Quantized Noiseless Measurement

Consider the following state space model:

xk+1 = Akxk + Bkwk + Gkuk

yk = q(Ckxk)
(5.6)

where Ak, Bk and Ck are matrices with proper dimensions. System noise wk is white

gaussian process with known covariance and mean for each time index k.

xk+1 = Akxk + Bkwk + Gkuk

yk = Ckxk

zk = Ckxk + n(Ckxk)

(5.7)

From Assumption 3.3.1, to apply Kalman filter, we need to know the variance of n(Ckxk)

at each time step. Variance of n(Ckxk) depends on quantizer q, inverse mapping i and the

distribution of Ckxk at time index k. Suppose the distribution of ok = Ckxk is continuous

and has probability density function f .

Suppose quantizer q is given, then, to minimize variance of n(Ckxk)

Assume the quantizer to be time variant. At each time index, the conditional variance

and mean can be represented as.

QMKF for the model is stated as below. It includes two steps in each iteration Predic-

tion, Update.

Algorithm 5.3.1. 1. Prediction :

x̂k/k−1 = Ak−1x̂k−1/k−1 + Gk−1uk−1

Σk/k−1 = Ak−1Σk−1/k−1A
T
k−1 + Bk−1Qk−1B

T
k−1

2. Update :

Kk = Σk/k−1C
T
k (CkΣk/k−1C

T
k + Rq(yk))−1

Σk/k = Σk/k−1 −KkCkΣk/k−1
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x̂k/k = x̂k/k−1 + Kk(zk − Ckx̂k/k−1)

where Rq(yk) is the conditional variance of n(Ckxk +vk) conditioned on q(Ckxk +vk) =

yk.

This algorithm is different from QMKF for quantized noisy measurement only in the

step involving measurement noise. The variance of quantization noise is absent in the

update part.

5.4 Quantized Measurement Conditional Sampling for State

Estimation

Consider the following linear state space model:

xk+1 = Akxk + Bkwk + Gkuk

yk = q(Ckxk)
(5.8)

The filtering problem for this system is as follows:

5.4.1 Algorithm

The Quantized Measurement Conditional Sampling algorithm provides a state filter for

system. In order to state the algorithm, we first introduce definition of boundary between

two quantization regions.

1. Initiation :

Draw a set of n independent samples from the distribution of x0, denoted by {xi
0}n

i=1.

2. Iteration :

For step k,

(a) Projection:

Obtain yk. If yk 6= yk−1, project xi
k−1 onto the boundary of Cell Qyk

. Denote

it by ∂(Qyk
). By definition of boundary, ∂(Qyk

) is closed. Projection means to

replace xi
k−1 by the closest element in ∂(Qyk

).

xi
k−1 = arg min

p∈∂(Qyk
)
||xi

k−1 − y||

|| · || denotes Euclidean distance.
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(b) Conditional Sampling:

i. Set number counter s = 1.

ii. Uniformly choose j ∈ {1, 2, · · · , n}. Then, choose xj
k−1 from set {xi

k−1}n
i=1.

iii. Sample wk−1 from distribution of wk. Obtain trial prior sample xs
k by

xs
k = Ak−1xk−1 + Bk−1wk−1

iv. If q(Ckxs
k) = yk, accept xs

k. Set s = s + 1. Otherwise reject xs
k, go to (iii).

v. If s < n, go to (ii).

(c) Estimation:

The state estimation at step k is obtained as the following:

x̂k =
1
n

n∑

i=1

xs
k

(d) k = k + 1, go to (a).

5.4.2 Simulation

5.4.3 Discussion



Chapter 6

Optimization in Quantization

Among previous discussions of filtering problem from quantized measurement, we implicitly

assumed the quantizer under consideration is a given one within a specific class of quantizers.

Various methods are proposed to provide asymptotically optimal or suboptimal solutions

to the problem.

Assuming each entry in the codebook of a quantizer is uniformly distributed, the size

of codebook in a quantizer will determines the communication required to transmit a code-

word. Effort in investigating the impact of limited communication on state estimation will

inevitably bring up the question that what is the lower bound of communication required

to achieve certain task in the system?

Since different communication protocols and tradeoffs between precisions and time delay

will be involved in this system, we just focus on one building block in this chapter. Our

central theme is how to quantitatively measurement the efficiency of a quantizer with a

given codebook size for our purpose. What is the optimal quantizer and

6.1 Definition of Optimality

Essentially, this is an optimization problem with respect to a special class of functions, i.e.

quantization functions.
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6.2 Optimal Quantizer for Standard Normal Distribution

6.3 Optimal Quantizer for Gauss-Markov Systems

Previous section studied the optimal quantizer for standard normal distribution. A natural

and more interesting question next is what is the optimal quantizer for a Gauss Markov

process?

In order to proceed, we first need to define the optimality of the quantizer.

We only study second order Gauss-Markov process which can be modelled as a system

without observation noises. The reason for this is...

Consider second order LTI system with quantized measurement as below,

dx = Axdt + Bdw

y = q(Cx)

where x =

[
x1

x2

]
. A, B, C have proper dimensions. w denotes Wiener process. q denotes

the quantizer in measurement model. q : R → ZM , in which M denotes the codebook size

of q. We only consider noiseless observation before quantization and scalar quantization.

Thus, C is 1 2 matrix. We only consider systems where A = 0 1 1 b B = 0 1 C = 1

0 As usual, dene damping ratio of the system to be = b 2 . Within the class of systems

we are considering, damping ratio characterizes to which extent the system is oscillatory

and characterizes the autocorrelation function of the observation process y(t). Discretize

system (1) with time step dt, we obtain discrete LTI system as below 1 xk = Adxk1 +

Bwk1 yk = q(Cxk) (2) where Ad = exp(Adt) This system can be rewritten as xk = Adxk1

+ Bwk1 yk = Cxk + Q(CXk) (3) where Q(CXk) = q(Cxk)Cxk is the quantization noise

sequence. Recall that Quantized Measurement Kalman Filter(QMKF) assumes Q(CXk)

to be a white process. Problem 1 Find the optimal quantizer q in Least Mean Squared

Error(LMSE) sense for system (3) using QMKF.

Choosing QMKF as the suboptimal filter.

8level quantizer.

The strategy for numerical examination.

As studied in Report 42, Q(CXk) is close to white process in the sense that its auto-

correlation function’s second largest value is smaller than 10% of the largest value for the

systems we studied. It is also close to be uncorrelated with Cxk since correlation function
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between Q(CXk) and CXk is weak in a defined sense. If Q(CXk) is white process uncorre-

lated with CXk, then, the quantizer which minimizes the variance of Q(CXk) will result in

LMES for system (3) using QMKF. That quantizer is the optimal quantizer for the static

equilibrium distribution of yk. However, the assumption that Q(CXk) is a white process

uncorrelated with CXk is not perfect. So, the optimal quantizer we are seeking should be

different from the optimal quantizer for static equilibrium distribution of yk. Since Q(CXk)

is close to white process in the sense defined before, we expect that the optimal quantizer in

LMES sense should also be close to the optimal quantizer for static equilibrium distribution

of yk in some distance dense. So, to numerically search for the optimal quantizer, we start

with the associated optimal quantizer for static equilibrium distribution of yk. Here, we

only consider M = 8. From numerical computational by Lloyd algorithm, we know that

the optimal quantizer for static equilibrium distribution of yk is symmetric(I haven’t found

an argument for this theoretically). Denote the set of boundary points by [c, b, a, 0, a, b, c]

Assumption 6.3.1. Assume the optimal quantizer sought in problem 1 is symmetric with

respect to origin, i.e. its boundary points have the structure [c, ba, 0, a, b, c] and Mean

Squared Estimation Error function, E(a, b, c), is a smooth function of a, b, c.

By the continuity assumption,

E(a, b, c) =
∂E

∂a
|a0(a− a0) +

∂E

∂b
|b0(b− b0) +

∂E

∂c
|c0(c− c0) + h.o.t

Then, to obtain the optimal quantizer numerically, we numerically determine E(a, b, c)

for given a, b, c.

We simulate Quantized Measurement Kalman Filter for the system and estimate the

mean-squared-error in state estimation for one simulation. Since the mean-squared-error

for one simulation is itself a random variable, we repeat the simulation N times, obtaining

an estimate of its standard deviation, σ. Assuming each simulation is independent with

each other, the mean of these N mean-squared-errors has standard deviation σ√
N

. When

N is large enough, the standard deviation can be reduced significantly so that we can get

an more accurate estimate of mean-squared-error for this particular system and quantizer.

Modifying the parameter a in the quantizer with b, c held constant, we can obtain

noisy observation of mean-squared-error function for different as. When the change in

a is small(by experience), we can assume the mean-squared-error function is linear in a

neighborhood of some constant a0. Using linear regression, we can obtain an estimate of

the partial derivative of the mean-squared-error function with respect to a at a0.
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To verify the linear regression is appropriate, we can calculate the standard deviation

of error by using linear regression. If the error is close to the standard deviation of those

observations, then, we have confidence in its validity. However, how to quantitatively

measure the confidence is not clear to me right now.

We can apply the same method to b around b0 and c around c0.

6.4 Results
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