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Abstract

We address the characterization of the Radon transform of piecewise constant functions
on a pixel lattice. A closed-form expression is derived for the Radon transform of any
pixelated function and the pixelated line analyzed in detail. The latter is shown to have
three properties that lead to a Radon transform substantially different from that of the
idealized line: bounded support, non-zero width, and pixelization. Bounded support results
in two sets (the admissible and the intersecting set) that fully characterize the support of
the range function, while non-zero width shapes its amplitude to be continuously decaying,
from the maximum value, at a rate 1/sin(Af) (where A@ is the distance to the angle
associated with the maximum).

These observations enable the derivation of the narrow strip approximation (NSA) to
the Radon transform of the pixelated line. This is an upper-bound on the true Radon
transform which is shown to be tight, in the sense that inequalities become equalities,
when the ratio between pixel and image size goes to zero. The NSA is a simple model
of the range function that, unlike the frequently used Dirac delta, accounts for the three
properties mentioned above. In result, it allows both theoretical and algorithmic advances
to the problem of line detection. On the theoretical side, it is shown that the traditional
strategy of line detection by thresholding is fundamentally flawed, as it is intrinsically unable
to reach accurate parameter estimates for spatially localized lines. On the algorithmic side,
an analysis-by-synthesis line detection algorithm is proposed and shown to be substantially
more accurate than thresholding methods.

Finally, we characterize various statistical properties of the range function: its probabil-
ity density function, mean, variance, and sample mean. Once again this leads to advances
in both theory and algorithms: 1) a proof of existence of a fundamental law that character-
izes the amplitudes of the Radon transform, and 2) an optimal, in the minimum probability

of error sense, algorithm for estimating the number of lines in an image.
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Chapter 1

Introduction

The ability to build machines with perceptual abilities that mimic those of humans has been
a long-standing goal in science and in engineering. One critical problem for the attainment
of this goal is the development of a theory for computer vision that will enable machines
to understand visual stimulae, e.g. a video sequence produced by a digital camera, a still
image taken from an airplane, or a collection of images covering different perspectives of
a scene in the natural world. The potential applications are numerous, and the impact
would be significant. In fact, vision systems are a crucial requirement for many problems
in robotics (BLAKE AND YUILLE (1992)), advanced surveillance systems (KUMAR ET AL.
(1995)), the management of large image archives (SMEULDERS ET AL. (2000)), computer
graphics (HEEGER AND BERGEN (1995)), etc. In recent decades, significant progress has
been achieved in some sub-areas of the vision problem. The most notable is probably a
solid understanding of the geometric aspects of image capture (FAUGERAS (1993); HARTLEY
AND ZISSERMAN (2000)), i.e. the projection of a scene in the 3D world to the 2D image
plane. Besides geometry, areas such as object recognition (ULLMAN (2000); HALLINAM
ET AL. (1999)), or the recovery of 3D structure from various cues (TOMASI AND KANADE
(1992); SOATTO AND BROCKETT (1998)) have also seen significant advances. However,
it is uncontroversial to say that a unified and coherent theory for vision is, to date, not
available.

One source of difficulty is the fact that vision is not always addressed in a mathematically
principled way. In fact, it is uncommon to find, in the vision literature, provable guarantees
that vision algorithms actually accomplish what they were designed to do. When provided,
such guarantees only apply to components of the problem and are commonly interspersed

with heuristics at implementation time. Due to this, most algorithms tend to be applicable



§1.0 INTRODUCTION 2

in a few, narrow, domains and are usually not very robust. On the other hand, most
mathematical efforts that address vision problems have been carried out under hypotheses
that are too distant from reality to result in algorithms of practical value. This is, in
part, a consequence of the difficulty of the vision problem and, in part, a consequence
of the lack of mathematical appeal of some of the issues that have to be addressed to
make vision practical. The problem addressed in this thesis, the detection of geometric
structures in images, is a good example of the set of problem which fall in the gap between
1) what is reasonably understood through practice and experimentation but lacks a solid
theoretical foundation, and 2) the remarkably elegant mathematical concepts that provide
deep understanding but disregard components of great practical significance.

In the vision literature, the standard algorithm for detecting geometric structures is
the so-called Hough transform (HOUGH (1962); ILLINGWORTH AND KITTLER (1988)): a
heuristic which consists of 1) fitting all the possible parameterizations of the structure
of interest to the image, 2) counting the number of pixels where the fit is accurate, and
3) declaring the parameterization with more votes the winner. Despite a lack of strong
mathematical foundation, the Hough transform is one of the most successful algorithms
for problems such as line detection and widely used in practical applications. There are,
however, many aspects in which its successful application is more of an art form than
science. For example, it is usually quite difficult to prevent false positives when the target
structures have significantly different sizes. To overcome this problem, the Hough transform
is usually combined with other heuristic steps, normally involving various image processing
operators, to the point where any serious characterization of which is doing what becomes
intractable.

Mathematically, the Hough transform is an approximation of the Radon transform,
first introduced by Johann Radon in (RADON (1917)). Unlike the Hough transform, the
Radon transform is a formally studied mathematical construct whose properties are well
understood (HELGASON (1999)). It has assumed an important role in mathematics in recent
years because of various imaging modalities that, in effect, measure a Radon transform
(DEANS (1983)). In computer vision, the situation is something of the reverse. The sensor
gives a function on the plane, or a subset of the plane, and the Radon transform is used as
a detector of lines or line segments. Its suitability for this task is uniquely determined by
the fact that an idealized line is mapped into an impulse plus some “background” function.
The crucial practical limitation here is, however, the word ‘idealized’. In the real world,

images are acquired by digital sensors and the continuous light surface that impinges of
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these sensors is sampled according to a pre-defined pixel lattice. It follows that the idealized
concept of a line as an infinite 1D subspace of the 2D plane is replaced by the concept of a
line as a finite collection of pixels that have non-vanishing support.

To a first-order approximation, it should be reasonable to expect that, when the pixel
size is much smaller than the line length, the idealized line would provide a good model
for the true pixel collection. Under this model, simply thresholding the amplitude of the
range function of the Radon transform would be sufficient to detect lines. However, when
this argument is tested on real imagery, it does not take long to realize that the Radon
transform of the idealized model is a very poor approximation to the Radon transform of
the pixelated line. This somewhat surprising observation casts doubt on the applicability
of most known theoretical results on the Radon transform to computer vision problems.
This is the problem addressed by this thesis, whose central goal is to provide a rigorous
understanding of how pixelization affects the Radon transform. Of course, once such a
characterization is available, it becomes significantly easier to criticize the existing strategies
for line detection and develop better algorithms. While the main goal of the thesis is not
the problem of line detection per se, various new insights are derived on the performance
of current solutions and some new solutions are proposed.

The thesis includes various novel contributions. In chapter 2, we start by discussing the
Radon transform and review some previously known aspects, such as its basic properties,
and the range functions for various canonical structures including the line and the pixel.
We also introduce two structures that are usually not found in the literature - the strip,
which is a line with positive width, and the pixelated function - and derive their Radon
transforms. In chapter 3, we introduce the pixel lattice, formalize the concept of a pix-
elated line, and derive an exact expression for its Radon transform. This happens to be
quite different from the impulse plus “background” function associated with the idealized
line model. Instead, the Radon transform of the pixelated line is a convolution of many ele-
mentary functions, and continuously decays (as a function of line angle) from its maximum
value. It is then shown that, under some simplifying assumptions, the Hough transform of
the line is an approximation to this expression. Unfortunately, this approximation is not
particularly insightful and does not lend itself to simpler analytical manipulation than the
true expression. It is therefore not clear that there is any advantage in studying the Hough
transform and we do not do so in the remainder of the thesis.

Instead, chapter 4 addresses one issue that has significant impact on the shape of the

Radon transform: the finite nature of pixel lattices. While on R? two non-parallel lines
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will always intersect, the same does not hold on a bounded subset of R2. Hence, the
“background” function of unbounded support associated with the idealized line becomes
a function supported on the set of all lines that it intersects. We denote this set as the
intersecting set of the line, and study its properties. It happens that this set can also
be characterized analytically and, unlike the amplitude of the Radon transform, is not
significantly affected by pixelization. In fact, we show that the intersecting set of the line,
the strip, and the pixelated line are all very similar. This is a result of practical significance
since the precise characterization of the intersecting set of the pixelated line appears to be
quite difficult. It also completes the rigorous characterization of a series of models that can
be used to approximate the (computationally intractable) Radon transform of the pixelated
line.

In chapter 5, we start to consider the practical implications of the theoretical charac-
terization of the previous chapters. We create a taxonomy of models that approximate
the pixelated line and which successively account for more of the features that characterize
it (bounded support, non-zero width, and pixelization). It is shown that these successive
approximations provide an analytical justification for several variations on the widely used
strategy of line detection by thresholding of the Radon amplitude. More importantly, this
exercise provides 1) a precise understanding of when the assumption that pixels have point-
support is acceptable and 2) proofs that this assumption can lead to significant errors (false
positives) under the standard thresholding strategy. The main result is a theorem akin to
the uncertainty principle of Fourier analysis (where simultaneous localization in time and
space are impossible) for the size of the region of support of the Radon transform: the
uncertainty of line orientation estimates recovered by thresholding is lower bounded by a
quantity inversely proportional to the window size. Since small windows are necessary to
localize the recovered lines, this means that the thresholding strategy imposes an intrinsic
trade-off between false positives and spatial localization.

This limitation motivates a search for a different line detection strategy. Building on
the results of the previous chapters, we show that the Radon transform of the pixelated line
is tightly bounded by a function that 1) is constant in a small neighborhood of the peak
value, 2) has a simple dependence on the line angle in the remainder of the intersecting
set, and 3) is zero elsewhere. This leads to another interesting contribution of the thesis:
a new parametric model for the Radon transform of a pixelated line that is quite easy to
manipulate, both analytically and computationally. We use this model as the basis for a

new analysis-by-synthesis procedure for line detection: given the number of pixelated lines
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in the image, the parameters of the longest line are determined by finding the largest value
of the Radon amplitude (analysis step), the parametric estimate of the associated Radon
transform is synthesized (synthesis step), subtracted from the original Radon transform,
and the process iterated. The resulting algorithm is extremely fast, involves no magic
numbers (other than the number of lines in the image), and performs remarkably well when
compared to the standard thresholding strategies. This is due to its ability to completely
discount the Radon transform of all previously detected lines at each new detection step.

In chapter 6, we turn our attention to the statistical characterization of the Radon
transform. We assume a simple measure, or prior, on the space of image lines which, in
turn, induces a measure on the amplitude of the range function of the Radon transform.
Closed-form expressions are derived for the probability density function of the latter, as well
as various statistics including the mean, variance, and the conditional likelihood function
for its sample mean, given the number of pixelated lines. This leads to another interesting
contribution of the thesis, a proof of existence for a statistical law that governs the amplitude
of the Radon transform. The existence of such a law, for various transformations commonly
used in vision, has been the subject of extensive debate in the recent literature (BELL
AND SEJNOWSKI (1995); OLSHAUSEN AND FIELD (1996); HUANG AND MUMFORD (1999);
PORTILLA AND SIMONCELLI (2000); GRENANDER AND SRIVASTAVA (2001)). We present a
derivation from first principles that, to the best of our knowledge, was previously unavailable
for the Radon transform.

This statistical law also happens to have interesting practical ramifications. In partic-
ular, we show that 1) it depends only on a set parameters that can be pre-computed, and
2) leads to a simple linear dependence of the first- and second-order statistics of the range
function on these parameters. In the context of applications, this ability to pre-compute
all parameters implies very efficient statistical inference procedures. We demonstrate this
property by deriving an optimal algorithm, in the minimum probability of error sense, for
the estimation of the number of lines in a pixelated edge map that has very low compu-
tational complexity. This algorithm enables the application of analysis-by-synthesis line
detection analysis to local image neighborhoods. The result of integrating the two algo-
rithms is a procedure capable of accurately detecting lines without compromise of spatial
localization. We provide various examples of spatially localized line detection on challenging

natural scenes.



Chapter 2

The Radon transform

In this chapter, we discuss the Radon transform and derive some of its properties. Even
though the Radon transform has previously been applied to various image processing tasks,
it is still not well understood how it is affected by pixelization. The problem is that images
are not continuous functions, but piecewise constant functions, since image intensity is
constant within each image pixel. By assuming that pixels have infinitesimal area, it is
possible to think of images as continuous functions but it is expected that this will introduce
errors. However, there has not been, to date, an effort to characterize rigorously what these
errors may be.

In this chapter, we begin to address this problem by studying the effects of pixelization
on the Radon transform. After deriving some of the basic properties of the latter, we derive
the Radon transform of a sequence of models of increasing complexity, each introducing an
extra feature, leading to the pixelated function. We start by the line which, having infinite
length and zero width, is the simplest abstraction for the pixelated line. We then introduce
the line segment, the restriction of the line to a bounded subset of the plane and, therefore,
a more realistic model for images. Next, we consider lines with non-vanishing width, that
we refer to as strips. The extension to the pixel, which is basically a strip of finite length,
is then shown to be quite simple. The pixelated function is next defined as a weighted sum
of pixels, and shown to be equivalent to the convolution of the pixel indicator function with
a train of delta functions. Making use of the basic properties of the Radon transform, it is
then straightforward to show that the Radon transform of the pixelated function is a sum
of many modulations of the Radon transform of the pixel.

The study of this sequence of models is interesting in two ways. First, because it leads

to a closed-form expression to the Radon transform of the pixelated function. Second, and
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more important for the remainder of this thesis, because it provides insight on how each of
the different features of the pixelated line (non-zero width, bounded support, pixelization)

affects its Radon transform. This sets up a foundation for the following chapters.

2.1 The Radon transform

We start by establishing our notation. If A is a finite set, we denote its cardinality by |A|.
If A and B are two finite sets with cardinality |A| and |B|, respectively, there are |B|4|
distinct maps from A into B. As is standard in mathematics, we denote the set of all such
maps by BA. We will use this exponential notation even when we deal with infinite sets.

A line I in R? can be parameterized by
b=¢€(0) -z =xzcosf+ ysinb, (2.1)

where ¢ = (z,y) € R?, b is the distance to the origin along the line perpendicular to I,
and £€(0) = (cos 6,sin ) is a unit vector indicating the direction of this line, as is illustrated
in Figure 2.1. For brevity, we will refer to £(0) as €, the argument 6 being ommited
unless otherwise explicitely specified. Furthermore, due to this one to one relationship
between £ and 6, we will use the two indiscriminately, e.g. we will refer to a line as both
l=(b€&) eRxSandl=(b0) €R x|[0,n].

y

Figure 2.1: Parameterization of a line I = (b, §).
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Definition 2.1. Following Radon (RADON (1917)), the 2D continuous Radon transform is

a kernel transformation defined by
R:RR 5 RRXS

RII0.6) = [, F@)50~ ¢ - a)de,

where f is a function defined in some domain of R?.

(2.2)

It can be shown (DEANS (1983); JAIN (1989)) that the properties listed in Table 2.1

follow from this definition.

linearity R[le + 629](b’ g) = CIR[f](ba 5) + C2R[g](b’ 6)7

where ¢, co are constants.

linear transformation | Rf(y)](b,€) = L% RIf(2)] (ke rarer )

—1ATEl IATE]|
where y = A7z
shifting R[f(z —a)](h,&) = R[f(@)](b—&-a,€)
convolution RIS * g](b,€) = R[f1(b, &) * R[g](b, &),
where * denotes the convolution operator.
derivatives RILf](b,€) =L (51%,52%) R[f](b,€),

where £ = (&1,&),L = (8%’ %)

Table 2.1: Some properties of the Radon transform.

Corollary 2.1. The following properties hold for symmetric functions
R[f ()](=b,7 —0)

RIS (2)](b,m - 0)
flz,y) = f(=x,—y) & R[f(@)](b,0) = R[f(x)](=b,0).

-~ =
~~ ~~
® 0w
s =
I I

-~ =
—~ o~
TR
RS

NI
R
- =
& &
= =
= =
I I

Proof : The properties are special cases of the linear transformation property.
Corollary 2.2. Consider the affine transformation A = Tq o M, where
M : R? - R?

is an invertible matriz, and
Tq:R? - R?
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Ty(x) =z —d
a translation by d. Then, if y = A(x) = Mz —d,

b-(M)'e-d (Mg ) (26)
I el e Tel) T

e -1
RIWI0.€) = {3y Rl @) (

In particular, when M = Ry and Ry is a rotation by 0, then

RIF¥)](6,€) = RIf(=)](b - &-d,RL,€). (2.7)

Proof: Let z =M. By the linear transformation property of the Radon transform
| det M1 b ¢
RIf (2)](b,8) = ———— RIf(@)] | =757 ) »
1<l ISI 11€l
where ¢ = (M~1)T¢. Since y =z —d, (2.6) follows from the shifting property. When
M = Ry, Re_1 =R_y, RT, ¢ is a unit vector, and (2.7) follows. n

As will become evident in the following sections, it is often the case that the Radon
transform of a geometric shape with arbitrary pose is significantly more complicated to
compute than that of the same shape in a canonical pose (e.g. centered on the origin).
When the two poses can be related by an affine transformation, Corollary 2.2 might be
used to simplify the computations.

So far we have studied generic properties of the Radon transform. In the remainder of
this chapter, we derive closed-form expressions for the Radon transform of functions that

play an important role in line detection.

2.2 The Radon transform of the delta function

Lemma 2.1. The Radon transform of the Dirac delta function centered at @ = xg is

Rlé(z — x0)](b, §) = 6(b — @0 - &, §)- (2.8)

Proof: The lemma, follows from the definition of the Radon transform and the properties

of the Dirac delta function, since

R[5(x — @0)](b, €) = /5(:1: o) 8(b— & - @) da = 5(b— mo - £, &).
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2.3 The Radon transform of the line indicator function

Definition 2.2. The support set of a line I = (b, €) is the set
Sl)={x cR*|b=¢-x}. (2.9)
If X ¢ R? and |S(I) N X| > 1, the line [ is said to be supported by X.

The Radon transform R[f](l) can be seen as the projection of f onto S(1). The following

function plays a central role in line detection.
Definition 2.3. The line indicator function of line 1 is the binary map
L:R% - {0,1}

1 ifz e S(),

(2.10)
0 otherwise.

Ll)(z) = 15y (2) = {
To derive the Radon transform of L[l](x), we rely on the following intermediate results.

Lemma 2.2. If ¢ = (z,y)7, £(0) = (cos0,sin0)T, and M = [m; m3], where m; and my

are two-dimensional column vectors, then
£-Mz= (¢ -mp, ¢ -my)l -z (2.11)
When M = Ry, , this equation reduces to
&-Ryg,x =€(0—06p) - x. (2.12)
Proof: The first result follows from

£-Mz = ¢ (miz+moy)

= §-mz+§ moy

= (¢(-mpy,é-my)" -z
If M = Rg,, then
E-m; = cosfcosfy+ sinfsinfy
= cos(0 — bp)
£E-my = —cosfsinfy+ sinb cos by
= sin(6 — 6p)

leading to the second result. [
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Lemma 2.3. Ifl = (b;,0;) and ' = (0,0), then

R{L[] () }(,0) = R{LW) ()} (b — b cos(6 — 6,),6 — 6,). (2.13)

Proof: Consider the linear transformation A = T, ¢(,) © Ry, define z = A(z) and
note that

Lll(z) = L[l(A(z))

= Lip-£0)-A)=0} (@)

= Lio—£00) Ro,x+0:£(0)1=0} ()
= Lio—£(0)-bi£(0)=(60) R} (@)

= lyo=¢(0)x) (@)
= L[U|(=),

where we have used (2.12). It follows from Corollary 2.2 that
R{LM=)}Hb &) = R{L[(2)}0,€)

= R{LA(@)}(b+&- big(6), RTy,8)
= R{L[](x)}(b+ bicos(0 — 6;),£(0 + 6,)).

leading to (2.13). [

Theorem 2.1. The Radon transform of the line indicator function of line l = (b, 6;) is

RLLIY (b, €) = 3(b— b, 0 — 6)). (2.14)

Proof: We start by considering the line Iy = (0,0), or z = 0. From the definition of the

Radon transform,
R0} (6,€) = [ 1m0y @)3(6 - & 2
We next consider two cases. First, when 6 = 0,

oo ifb=0,

RUWIN0.E) = [ [ 1m @i~ z)daay = [ 1{w=°}<”)dy={ 0 ifb#£0.
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Second, when 8 # 0,

R{L[lo]}(b,&) = //l{m_o}(x)é(b — z cos — ysinb)dzdy

= 1 /1{(33_0)}(.%) [/ (S(b — zcosf — u)du dzr

sin 6

1
= nd / Li@=0 (@)dz
0.

Hence,
R{L[Lo]}(b,€) = (b, €),
and the theorem follows from Lemma 2.3 since
RAL[(2)}(b,0) = R{L[Lo](x)}(b—bicos(0 —6,),0 — )
= §(b—bycos(6d —6;),0 —6,)
= 6(b—10b,0—6,).

2.4 The Radon transform of the line segment indicator func-
tion
Definition 2.4. A line segment g = (b, €, X) is the restriction of a line (b, &) to a closed

and bounded region X'. It will be denoted simply by segment.

Definition 2.5. The support set of a segment g = (b, &, X) is the set
S(g)={xcR’|b=¢ -z,xc X}. (2.15)
Definition 2.6. The line indicator function of segment g is the binary map
G:R? - {0,1}

1 ifx e S(g),

(2.16)
0 otherwise.

Glgl(z) = 15(g)(x) = {

Theorem 2.2. The Radon transform of the line segment indicator function of segment
g= (bl,glaX) is
R{G[g]}(b, &) = Lip=p;,0=0,} (b, &) £(g), (2.17)
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where

£(g) = /X R (2.18)

is the length of segment g.

Proof: From the definition of the Radon transform,
REGaN0E = [Lpmagwen (@b —¢-2)de
= /X Lip—z.£)(x)0(b— € - z)de

_ {mmsm)) if (b, &) = (b, &)

0 otherwise.

and the theorem follows. -

2.5 The Radon transform of the strip indicator function
Definition 2.7. A strip s = (b,&,w) is a line with a positive finite width w.
Definition 2.8. The support set of a strip s = (b, €, w) is the set
9 w
5(s)={weR||b—g-w|<5}. (2.19)

Definition 2.9. The strip indicator function of strip s is the binary map

B:R?* - {0,1}
1 ifxeS(s),
Blel@) = Lse) (@) = { 0 othefwis(e.) (2.20)
Lemma 2.4. If s = (bs,05,w) and s' = (0,0,w), then
R{B[s](z)}(b,0) = R{B[s"](x)}(b — bs cos(d — 8;),6 — 0). (2.21)

Proof: The proof is similar to that of Lemma 2.4. If A = T p,¢0,) © Ry, and z = Az,
a derivation identical to that of the lemma can be used to show that B[s](z) = B[s'](z).
Combining with Corollary 2.2 leads to (2.21). n
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Theorem 2.3. The Radon transform of the strip indicator function of strip s = (bs, 05, ws)
18
00 if |b—by| < 82,0 =0,
R{B[s]}(b,€) =< 0 ﬁw—m|>339:@ (2.22)

ENCEA AN

Proof: We start by considering the strip s = (0,0,w). From the definition of the

Radon transform,
R{BIsol}(t,8) = [ 1(,105)@)0 - ¢-2)do
= /2 /OO d(b— zcos — ysinh) dzxdy.

We next consider two cases. First, when 6 = 0,
) 00
R{Blsal}(be) = [ [ 8~ a)dady
e
o0
_ /_oo ey (b) dy
_ oo if b < ¥,
0 otherwise.
Second, when 6 # 0, consider the change of variables u = y|sinf| and v = z|cos§|. If

<7,
5| cos 0] 1
R{Blso]}(b,€) = /Lw%w[mREEQEﬁ“‘“‘”m”“

% cos 6]
B |cos€s1n0|/w|cos,9

|sm0|
o> T,
5| cos 6] 1
Rl 08 = [0 [ g S0 du
w
- |sing|"
Hence,

0o if[h<%,6=0
R{B[so]}(b,€) ={ 0 if b > 2,0 =0
W if g £ 0,

| sin 8|
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and the theorem follows from Lemma 2.4. -

2.6 The Radon transform of the pixel indicator function

Definition 2.10. A pizel p = (pg,py,w,h) is a rectangular region with middle point
(Pzspy), width w, and height h.

Definition 2.11. The support set of a pizel p = (ps, py, w, k) is the set

w h
5®) = (@) € B [lo—p < Sy -nl < 7). (2:23)
Definition 2.12. The pizel indicator function of pixel p is the binary map
P:R? > {0,1}
1 ifx e S(p),
Plpl(z) = 1s5p)(z) = , (2.24)
0 otherwise.
Lemma 2.5. If p = (pg, py, w, k) and py = (0,0,w, h), then
R{Pp](z)} (b, &) = R{P[po](x)}(b — & - (px,py), &) (2.25)

Proof: Consider the linear transformation z = T(,,_ ,, y(z), where T(,, ,, y(z) is as defined

Pz ap’y
in Lemma 2.3. Then, by the shifting property of the Radon transform,

R{P[po](2)}(b;§) = R{Ppol()}(b — & - (pz:py) &)-

Since, for any z € S(p),
w h
| = pa| < 5 and [y —py[ < 5
and z = & — (ps, py), it follows that

| S

2l < 5 and |z] <

Hence, z € S(p) if and only if z € S(p,) and, therefore, P[p)(z) = Plp](x). ]

Remark 2.1. An alternative proof can be derived from the following interpretation of the

indicator function P[p]

Plpl(z) = Plpol(x — (ps,py)) = Plpol(®) * d(z — (2, py))- (2.26)

The lemma follows from the convolution property and Lemma 2.1. The interpretation

of (2.26) will be useful for the derivation of some future results.
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Lemma 2.6. The Radon transform of the pizel indicator function of pizel py = (0,0, w, h)
18

ﬁ if 0 < |b] < 3(w|cos @] — hsind),
R{PIpol}(b,€) = Z(MCFEOHJ;ZEI;H) . if 3|w|cos@| — hsind| < |b] < $(w|cos 6] + hsind),
e if 0 < |b| < Z(hsinf — w|cos 6)).
(2.27)

Proof: Since P[po)(z,y) = Plpol(z,—y) = Plpol(—z,y) = Plpol(—=,—y), from the
symmetry properties (2.3)-(2.5), it follows that

R{PIpo]}(b,0) = R{P[po]}(=b, 7 — 0) = R{Ppo]}(b; ™ — 0) = R{Plpol}(~b,0). (2.28)

We start by considering b > 0 and 6 € [0, §]. From the definition of the Radon transform,

R{P}GE — [ s (OO 2)ie

/ / . — zcosf — ysinh) dzxdy.
-2 /3

We next consider three cases. First, when 6 = 0,

R{PIpoJ}(5,€) = / ) / ' 3(b ) dody

= [ e

B h if | < 5,
0 otherwise.

[SIE

Second, when 6 = 7,

RPP0E = [0 [ o6y
-

B w if || < %,
0 otherwise.

IS M\S

1{|b|<h}( )

M\S
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Finally, when 8 € ( ) making 4 = ysin@ and v = z cosf

5 cos § 2sm0
R{P[pol}(b;§) = / /_ ——— (b — u — v)dudv

cosf J— T ging COS 0 sin @

% cosd
- 003031n0/ {Ibfv\ggsina}(’”)dﬂ

5 cosf

mm( cos 9,b+% sin §)
- dv,
cos 9 sin 6 max(—% cos §,b— % sin )

which, after some algebra, can be written as

coiée if 0 <b< 3(wcosf — hsind),
1 .

R{P[po]}(5,8) = g(wczzgggsgle)_b if 2jwcos@ — hsinf| < b < L(wcosf + hsind),
s if 0 <b< i(hsing —wcosh).

Notice that the two first cases can be obtained by making 8 = 0 and # = Z in this equation,

implying that this equation is valid for all (b,#) € R* x [0,Z]. The lemma follows from

the combination with the equalities of (2.28). n

Figure 2.2 presents surface and contour plots of the Radon transform of pixel p, =
(0,0,1,1). While, to a first-order approximation, the transform can be approximated by a
binary function, this can introduce non-negligible error for the values of (b,6) associated

with the pixel diagonals (where the amplitude of the Radon transform reaches the value

V2).

Theorem 2.4. The Radon transform of the pizel indicator function of pizel p = (ps, py, w, )
18
if0<d<s3lEl-v

|£‘ ew
R{Plpol}0,€) = { bt i Lligl - v] < d < 3je|-m, (2.29)
s if0<d< —3lEl-v

where ¢, = (px,py)T, e; = (1,0)T, ey = 0,)7, u = (w,h)?, and v = (w, —h)7T, €] =
(| cos(0)],sin(0))” and d = |b— & - c,|.

Proof: Denoting e, = (1,0)7, e, = (0,1)T, u = (w,h)T, and v = (w, —h)T, (2.27) can

also be written as

\£|e if 0 < [b] < 5l¢]-v

R{PIDI}(6,€) = { mues it 3[[&]-v] <[b < 2[¢] -

— if 0 < [b] < —5lé[-v
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Figure 2.2: Surface (top) and contour (bottom) plots of the Radon transform of the pixel indicator
function of pixel p, = (0,0, w,h) with w = h = 1.
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The theorem follows from Lemma 2.5. =

Figure 2.3 presents surface and contour plots of the Radon transform of the indicator
function of pixel p = (1,—1,1,1). The figure is quite intuitive in light of Remark 2.1,
Lemma 2.1, and the convolution property of Table 2.1. Since the transform of the convolu-
tion is the convolution of transforms and the transform of the delta function is a sinusoid, it
follows, from Remark 2.1, that the Radon transform of P[p] is the modulation of a sinusoid

by the Radon transform of P[py].

Figure 2.3: Surface (top) and contour (bottom) plots of the Radon transform of the indicator function of
pixel p= (Pm:py:wah) Wlth (pm,py) = (1’ _1) a‘nd w = h =1
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2.7 The Radon transform of a pixelated function

Definition 2.13. A lattice is a discrete subgroup of R? of the form
L={xcR*|z=ma+nb,m,nc 7}

The pair of generating vectors (a, b) is called the lattice basis.

It follows from that definition that, associated to each pixel with width w and height

h, there is a lattice
Lop={zcR|z=mwe, +nhey,m,n € Z},

where, as before, e; = (1,0) and e, = (0,1). Pizel lattices are the support of pixelated

functions.

Definition 2.14. If f is a mapping
f:Lwn—R,
the pizelated function associated with f is the mapping
frREo R

@)= > aPp)(x) (2.30)

i|pi€£w,h

where a; = f(p;) and P[p;|(x) is the pixel indicator function of pixel p; (2.24).

There are many examples of pixelated functions. In the context of this thesis, the most
interesting one is the set of digital images, which are pixelated functions with range space
Z*. The following theorem provides an expression for the Radon transform of a pixelated

function.

Theorem 2.5. The Radon transform of the pizelated function (2.30) is

RIfp@)B,6) = > aR{Plp)(@)}(b — (pias piy) - &, €) (2.31)

Z‘pl eCw,h

with R{P[py](x)}(b,&) as given by (2.27).



§2.8 SMOOTHING 21

Proof : From (2.26) and, as before, denoting py = (0,0, w, k) and p; = (Diz, Piy, w, h)

R{fp@)}b,6) = RS D aPp)(@) * 5@ — (piz,Piy)) ¢ (b,€)

Z‘pz Eﬁw,h

= Z a,R{'P[pO] (iB) * 5(w - (pizapiy))}(baﬁ)

2|p@ eL:u),h

= R{PpJ(®)} (b6 * >  aR{5(x — (pic,Piy))} (b,€)

i|pi €Luw,n

= R{Ppo](@)}(5,€) * Y aib(b— (piz,piy) - &, 8),

Z|P1 Ef’w,h

where we have used the linearity and convolution properties of the Radon transform and

Lemma 2.1. The theorem follows from the convolution property of the delta function. =

2.8 Smoothing

The effect, in Radon space, of smoothing a function f(x) follows trivially from the convo-

lution property.
Notation 2.1. If h is a low-pass filter, f x h is called the smoothing of f by h.

Lemma 2.7. The Radon transform of the smoothing of f by h is

RIS + h](b, &) = R[f](b, &) * R[h] (b, §)- (2.32)

Proof : The lemma is a trivial consequence of the convolution property of the Radon

transform. -

Corollary 2.3. The Radon transform of the smoothing of the line indicator function of the
linel = (by,6;) by h is

R{LIL = h}(b,0) = R[K)(b — by, 0 — 6)). (2.33)

Proof: The corollary follows from (2.14), (2.32), and the convolution properties of the

Dirac delta function. ]

One commonly used smoothing filter is the Gaussian. The next lemma characterizes its

Radon transform.
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Lemma 2.8. The Radon transform of a two-dimensional Gaussian with mean p =

and covariance X = diag(oy,oy)

1 _(w—ug;)z_(y—NQy)z
p :L', y — e 20 2a'y
( ) 2mo L0y
18 ,
1 _ (b—pp)
Rlp(z,y)l(b,8) = - —e *
27s
where
s2 = o2cos’ 0+ O'Z sin? §
Py = pgcost + py,sind.
2 2
Proof: Let p1(z,y) = 5-€~ , then
2
Rlp1(z,y)] // Loy 0(b — &1z — &2y) dudy.

Consider the orthogonal linear transformation

=L

with Ry as in (2.7). Using this change of variables,

Ripi(z,1)](b,€) = / / % (b — u) dudv

—b2

= T d'u
vV 27r \/
]. *b2
= e’ .
V2m
Now, notice that
1 _
p(Z7 @ — p)

@)= Tororo
z0y

and, by Corollary 2.2,

Rlp(z,y)](b, &) =

1 |dets| (b—Zg-p 25)
Varowoy T8 @ e 1=

and the lemma follows.

22
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Chapter 3

The Radon transform of a

pixelated edge map

In this chapter, we focus our attention on the set of pixelated lines. We start by characteriz-
ing this set through the derivation of a pair of conditions which are necessary and sufficient
for a line to be one of its members. We then define the pixelated line associated with a line
l as the set of pixels that are intersected by I. Next, we derive exact expressions for some
of the quantities of interest to the characterization of the pixelated line, e.g. its supporting
set and the Radon transform of its indicator function. It is shown that these functions are
a sum of many other elementary functions. This has the unfortunate consequence that the
resulting expressions tend to be computationally intractable, and motivates a search for
bounds that can provide an equally useful characterization at much lower computational
complexity. We show that tight upper- and lower-bounds of low computational complexity
can indeed be derived for both quantities.

The remainder of the chapter addresses the characterization of pixelated edge maps.
We start by introducing the edge indicator function which classifies lines into one of two
classes: edges and non-edges. The pixelated edge map is the set of all pixelated lines
that are associated with edges. We derive the Radon transforms for both the individual
indicator functions and the edge map. Finally, we introduce an approximation to the Radon
transform of the pixel, the separable approximation, that reduces the Radon transform of
the edge map to the corresponding Hough transform. This shows that the Hough transform
is really an approximation to the Radon transform. It becomes clear that the former does
not eliminate the most important causes of the computational complexity of the latter, and

it is unclear that there might be any benefit in studying it.

23
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3.1 The set of lines supported by L,

The following definition follows from Definition 2.2.
Definition 3.1. A line [ is said to be supported by L,, j, if there are at least two points
x1, 9 € Ly such that z,zo € S(I).
The set of all lines supported by L, is denoted by SLy, 4.
The following theorem characterizes SL,, p.
Theorem 3.1. I € SL,, 3, if and only if the following conditions hold

i) 1 has slope m = qg,q € Q,
ii) there ezists (k,l) such that the point (lw,kh) € S(1).

Proof: Consider alinel € SL,, . By the definition of SL,, j, there is one point & € L, 5,
such that & € S(I). Since, by definition of L, , * = (mw,nh), m,n € Z, condition ii) is
satisfied by simply setting [ = m and k = n. Still by the definition of SL,, 4, there is a
second point &' € L, j, such that '’ € S(I). Denote the second point by =’ = (I'w, k'h).

The two points & and &’ define I by the following equation

_Eekh
Y= T w T
where, since y = kh when z = [w,
I_
b:kh—k klh

r—i
Denoting @ = k' — k and 8 =1' — I, we have
ah «a
y=—-—zx+ (k——l) h,
B w p
and the slope of 1 is
ah h
m=—-— = —_
B w 1 w
where, since a, 8 € Z, q € Q, therefore satisfying condition 1).
Conversely, when condition ii) holds, to show that I € SL,, 5, it suffices to find another
point @’ € L,, 5 such that ' € S(I). ;From i), given that ! has slope m = q%,q € Q, we

can write m = % %, a, B € Z. Furthermore, because ii) holds,

o
b= (h—gl)h
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leading to
ah o
=2 2z4 (k-2 z) h
YT Buw ( E
and
z=(l+Bwey=(k+a)h.
Since [(I + B) w, (k + a) h] € Ly, , it follows that | € SL,, . ]

3.2 Pixelated lines

Definition 3.2. The set of pixels intersected by a line supported by L, ; is denoted as a

pizelated line.

Definition 3.3. The pizel set of a line I supported by L, 5, is

PS(l) ={p| (pz,py) € L, S{I) NS(p) # 0} (3.1)

and the pixelated line 1, associated with [ is

L= U pe (3.2)

i|p; € PS(I)

The set of all pixelated lines on L, ; is denoted by PL,, p.
This definition is illustrated in Figure 3.1.

Corollary 3.1. The pizelated line l, associated with line l has support set

Sty= J S (3:3)
i|p; € PS()
and indicator function
X :R? - {0,1}
Xl(=) = 1sq,)(@®) = Y, Ppl@). (3.4)
i|p; € PS)
Proof: The corollary is a straightforward consequence of (3.2). n

The exact expression for the support set of the pixelated line is not easy to express
in a compact form, i.e. a form that, unlike (3.3), does not involve the enumeration of all

pixels. The following lemma shows that it is possible to derive two bounds that satisfy this

property.
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S()

/ !
Figure 3.1: The shaded set is the pixelated line I, associated with line .

Lemma 3.1. The support set of the pizelated line l), associated with line l = (b,0) satisfies

the following relations
S(sin(l)) C S(lp) C S(sout(l)) (3.5)

where si, and Soyt are strips with parameters sip(l) = (b,@, %) and seut(l) = (b,0,d(0)),

and

d(0) = { Vw? + h? cos (6 — arctan %) if < (3.6)

Vw? + h? cos (1 — 6 — arctan %) if 0>
Proof: Consider Figure 3.2 which depicts a pixel p € S(I,) and the line I = (b,0) (for
the cases in which § < 7 and 6 > 7). Clearly, any strip with parameters (b,6,d()) that

SN ERNE

covers the pixel p must include all lines between Iy and lo. Assuming that the distance

between the intersection of I and the main diagonal of the pixel is at a distance a from the

furthest corner, it follows that d(f) must be greater than a cos 3, where § is as indicated
in the figure, i.e.

acos (6 — arctan & if 0 <

OF { ( ) <

Qo COS (7r — 6 — arctan %) if 0>

R

Since, by definition, I is supported by L,, 5, there must be at least two pixels for which the

intersection point is the pixel center (and therefore mid-point of the main diagonal). This
1 .

O TETL leading to the lower bound of (3.5).

Similarly, the upper bound follows from the fact that o < vw? + h2. n

is the case in which « is minimum, with a =
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Figure 3.2: A pixel p contained in the pixelated line I, and the associated line I = (b,6). (a) 6 <

6> 3.
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These two bounds on the support set of pixelated line lead to two simple bounds on
the Radon transform of its indicator function. To show this, we first prove a generic result

relating the Radon transforms of a set and any of its subsets.

Lemma 3.2. Consider two sets A and B such that B C A and the corresponding indicator
functions 1; 43 (x) and 1y (z). Then, ¥(b,§),

R [1i5(2)] (b,€) < R [1a(2)] (b, €). (3.7)

Proof : The lemma, follows from the definition of the Radon transform since
Rl @)0.6) = [ 14@30-¢ 2
= /5(b—$-w)dm+/ 0(b—&-x)dx
B AnBe

/Bé(b—g-:c)dm
= R [Lp(2)] (b,€),

v

where we have used the fact that [, .. 6(b—&-x)dz > 0. n

The combination of the two previous lemmas leads to the following theorem.

Theorem 3.2. The Radon transform of the indicator function of the pizelated line 1,

associated with line l = (b;,0;) satisfies the following conditions.

i) Ifo =0, N
o p— a(0:)
R{X[15)(@)}(6,0) = { A 55)
oo if |b—1b| < =7
and
0 < RIALI@}0.0) <00 if W0 < <M ()
ii) If 0 £ 6,
d(6:) - (8,
2lsin(6 — gy = @00 < T T (3.10)

Proof: From (3.5) and (3.7) it follows that

R [Lis(sim@)} (@)] (6,€) < R{X[l,](2)}(b,0) < R [1{s(s,.. 1)} (@)] (b,€)
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or, using Definition 2.9,
R{B[sin(1)]()} (b, &) < R{X[l,](2)}(b,0) < R{Blsous(l)](z)}(b, §)-
Hence, from (2.22),

00 if [b— by| < 40 g — g,
R{X[L)(@)}6,0) < { 0 if|b— by > 4 g =g,
d(0

ey 1070

and
00 if |b— by < 9 0,
R{X[lp](m)}(b, 0) > 0 if |b— by > 0 0,
d(8,
m lf 0 7é 0[,
from which the theorem follows. n

This theorem shows that, for 6 # 6, it is possible to bound R{X[l,](x)}(b,0) from
above and below by two simple expressions that do not depend on b. Figure 3.3 presents
the two bounds (divided by d(6;)) as a function of  — ;. Notice that the constraints that
they impose on R{X[l,](x)}(b,0) are tight. The constant d(¢;) is a scaling factor that

re-scales the two bounds depending on the orientation of I.

Figure 3.3: Ratio between the bounds of (3.10) and d(6;) as a function of § — 4.

As the following corollary of Theorem 2.5 shows, it is also possible to derive the exact
expression of R{X[l,](x)}(b,0).
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Corollary 3.2. The Radon transform of the indicator function of the pizelated line I,

associated with line l is

R{AXLI@)}(5,8) = Y R{Ppol(@)}(b — (piz; Piy) - & &) (3.11)

i|p; e PS()
with R{P[py](x)}(b,&) as given by (2.27).

Proof : From (2.30) and (3.4), the indicator function of pixelated line I, is the pixelated

function associated with the mapping

fiLwp— {01}

Fpy) = { 1 ifp; € PS(1),

0 otherwise.

The corollary follows from (2.31). n

Since (3.11) requires the enumeration of all pixels in PS(1), it can only be computed
when the pixel lattice is bounded. Figure 3.4 presents surface and contour plots for the
case of the pixelated line with {(piz,piy)|Pic = Piy = p,p € {-3,...,3}} and w; = h; =
1,2 =1,...,7. As stated by the corollary, the Radon transform of the indicator function
of a pixelated line is a sum of functions such as that shown in Figure 2.3, i.e. sinusoids
modulated by the Radon transform of P[py].

We next introduce an approximation that provides some insight on the relationship
between the Radon transform and a related transform that is frequently used in computer

vision: the Hough transform (HOUGH (1962), ILLINGWORTH AND KITTLER (1988)).

3.3 The separable approximation

Definition 3.4. The separable approzimation to the Radon transform of the pixel indicator

function of pixel p, = (0,0, w, h) is

ﬁ{P[pO](m)}(b,g) = R{PIpol(=)}(0,§) x 1{‘b‘§min(%7%)}a (3.12)
where
R{Ppol(@)}H0, £) = { siquljha 1ftf1 € [.arctan (%),% + arctan ()] (3.13)
s Otherwise.
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I I I I
20 40 60 80 100 120 140 160

Figure 3.4: Surface (top) and contour (bottom) plots of the Radon transform of the indicator function of
pixelated line I, with {(piz, piy) |Pizc = iy =0, p € {-3,...,3}}and w; =h; =1,i=1,...,7.
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-3 L L L L L I I I
0 20 40 60 80 100 120 140 160
2]

Figure 3.5: Surface (top) and contour (bottom) plots of separable approximation to the Radon transform
of the pixel indicator function of pixel p, when w = h = 1.
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Figure 3.5 presents surface and contour plots of the approximation for p, = (0,0,1,1).
It can be seen, by comparing with Figure 2.2, that (3.12) disregards the dependence of
R{P[py]}(b,€) on b in the region where |w|cos@| — hsinf| < |b| < 3|w|cos B — hsind|.

Lemma 3.3. Under the separable approzimation, the Radon transform of the indicator

function of the pizelated line 1, associated with line 1 is
R{X[L)(2)} (b, €) = R{Plpo] (x)}(0, &) x H{X[L,)()}(b, €) (3.14)
where, denoting by I' the line parameterized by (b, £),
H{X[L,](z)} (b, &) = #{i|p; € PS(l) and p; € PS(l')} (3.15)
is the Hough transform of X[L,)(x).

Proof: Replacing R{P[lo)(x)}(b,£) with R{P[l](z)}(b,£) in (3.11) leads to
RIVLI@IG.8 = Y RIPRI@IO0.8) X Ly e cmings i)
i|p; € PS)

= R{Plpo]()}(0,£) Z 1{Ib—(mm,piy)-ﬁ\Smin(%,%)}'
i|p; €PS()

Noticing that |b — (pig, piy) - €| is the distance from the point (piz,piy) to the line I, it
follows from (2.23) that

1 ifS(p;) NSI') # 0

0 otherwise.

1{|b*(Pizapiy)'£‘Smin(%a%)} - {

Hence, the summation is equal to the number of pixels p, that belong to both the pixel

sets of 1, and 1. -

3.4 Pixelated edge maps

We next introduce the edge indicator function, which divides the set of lines supported by

Ly,n into two subsets: the set of edges and the set of non-edges.

Definition 3.5. An edge indicator function on a lattice L, is a mapping
E:S8Lyp — {0,1}.

A line l € SL,,, is said to be an edge if £(I) = 1 and a non-edge otherwise. The set of all
lines classified as edges is denoted by £~!(1). The pixelated line l, associated with an edge

l is denoted as a pizelated edge.
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A pixelated edge map is the binary sum of the indicator functions of all pixelated edges.

Definition 3.6. The pizelated edge map of an edge indicator function £ is the mapping

EME@) = |  E@)X[()p](x). (3.16)

il €8Ly p

The following theorem shows that the Radon transform of EM[E](x) is the sum of
the modulations of the Radon transform of P[p,] by all sinusoids associated with pixels

belonging to the pixelated edges defined by €.
Theorem 3.3. The Radon transform of the pizelated edge map of an edge indicator function
€ is
RAEM[E](2) }(b, €) = > R{PIpol(®)}(b — (Piz: Piy) - € €) (3.17)
i|p; € PS(E-1(1))
where PS(E71(1)) = {p; | 31k € £ (1) such that p; € PS(lx)}, and R{P[p,(x)}(b,€) is
defined by (2.27).

Proof : From (3.4) and (3.16) it follows that
EMENx) = | W) D Pleil@)
k|lk€SCw,h i\piE’PS(lk)
and therefore, for g € S(p;), EM[E](zo) = 1 if and only if p; € PS(l) and I € £71(1).
This is equivalent to EM[E](xo) = f(p;), where

i -1
f(pl):{ 1 ifp, € PS(E71(1))

0 otherwise.

Hence,
EME)@) = Y [f(p)Plpi(x)
Z.|pi6['w,h
is a pixelated function and the theorem follows from Theorem 2.5. m

Once again, the separable approximation can be used to relate the Radon and Hough
transforms of EM([E](x).

Corollary 3.3. Under the separable approzimation, the Radon transform of the pizelated

edge map of an edge indicator function £ is

RAEMIEN(x)}(b, ) = R{P[po](x)}(0,€) x H{EMIE]()}(b,€) (3.18)
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where, denoting by l' the line parameterized by (b, §),
H{EMIE](®)} (b, €) = #{i|p; € PS(E(1)) and p; € PS(I')}
is the Hough transform of EM[E](x).

Proof: The proof is identical to that of Lemma 3.3.

35

(3.19)



Chapter 4

Bounded lattices and the discrete

Radon transform

In this chapter, we consider restrictions of the pixel lattice L, to finite subsets, and
introduce the object of major interest for this thesis: the image. We start by considering
the effects of sampling the Radon transform (by computing its values over a finite subset
of the possible parameterizations), which leads to the definition of the discrete Radon
transform. We then study various sets that will be of great interest in subsequent chapters:
the admissible set of an image (the set of lines that are supported by the image), and the
intersecting sets of the restrictions to the image of a line (which we denote by line segment),
a strip (strip segment), and a pixelated line. These are the sets of all lines whose support
set has non-empty intersection with the support set of the line segment, strip segment, and
pixelated line, respectively. We derive a closed-form expression for the first and tight lower-

and upper-bounds for the other two.

4.1 The discrete Radon transform

So far we have assumed that 1) the lattice £, p is unbounded and 2) the variables (b, £)
can take any value in R X S. In the context of this thesis, we are interested in applications
of the Radon transform to image processing. This imposes two restrictions. First, because

images are finite collections of pixels, we need to consider finite subsets of the lattice L, p.

Definition 4.1. The subset of £,, ;, such that

M M N
ESHS

<m < d N
g =M=y At 2
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is denoted by Ey}fv and referred to as the lattice of size (N + 1)(M + 1). The associated
collection of pixels is referred to as the image of size (N + 1)(M + 1) and denoted by IK;LN

Iu]f}’LN = [_a"mazcaxmazc] X [_ymazaymaz]a (4.2)

- Q%J + %) S (gJ + %) . (4.3)

Remark 4.1. Definitions 3.5 and 3.6 imply that edges have infinite length and no gaps.

where

In the context of image analysis, this is sensible as long as the analysis is local, i.e. the
size of the image region under analysis is smaller than the minimum length of image edge
segments. To account for this situation we will consider, in subsequent chapters, sub-images
associated with subsets of EZ{;IN. We will, however, rely on the same notation to refer to

the image and its sub-image lattices.

Second, it is impossible to compute the Radon transform for all possible line param-
eterizations. The computation is consequently restricted to a lattice of (P + 1)(Q + 1)
points

P P
£, = {00 € Rx0|(0.0) =phies+aten—5 <p<y. -F<q< 2],
where e, = (1,0) and ey = (0,1). Following the standard practice in signal processing, we
rely on a uniform sampling of the b and 8 with

vVM? + N?

= (4.4)

s
Gs:a and by =

The restriction of the Radon transform to the set of mappings from pixelated functions

defined on [’111\)/1,}{\7 to functions with domain [,{:’(gs is the discrete Radon transform.

Definition 4.2. Given a pixel lattice ,Ci\}/[’hN and a parameter lattice Ei’%s, the 2D discrete

Radon transform (DRT) of a pixelated function defined on Eﬁj{ }fv is the mapping
P,Q
R :PFLy G — REvias

Ralfp@)]be: &) = Y f@IR{PPo](@)} (b — (pizs Piy) - €xs&k) (4.5)

ilpieLyy
M,N . . . M,N .
where PFL, 3" is the set of pixelated functions defined on £, 3", R{P[p,](z)} (b, §) is
given by (2.27), €, = (cosb,sinby), and (bg,0%) € Eli’,%s'
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It is clear from this definition that the DRT is simply the result of sampling the Radon

transform of a pixelated function at the values (b, &), i.e.

Ral fo(2)](bk; €x) = RIfo()](b; €)| 5=ty .£=¢,,)-

Hence, all the results that were previously obtained for the Radon transform are still valid

for the DRT. For these reasons, we will drop the d subscript and simply refer to the DRT
as R fp(@)] (bx, £)-

4.2 The intersecting set of a line segment

Among the results of the previous chapters, the most relevant for edge detection is the
Radon transform of the pixelated edge map. As shown in Theorem 3.3 and Corollary 3.3,
for a given line I = (b, &), R{EMI[E](x)}(l) is determined by the pixels p; that simulta-
neously belong to PS(€71(1)) and PS(ly). It follows that the only edges which are relevant
to R{EM[E](x)} (1) are those that intersect pixels in PS(£71(1)). To characterize the set

of such edges we start by introducing the set of admissible lines of Ifl\)/f ,’lN.
Definition 4.3. The admissible set of Ii\f ;LN is the set of all lines supported by I«i\f ;LN.
The following lemma characterizes the admissible set.

Lemma 4.1. The admissible set is the set

-A(xma:ca ymaw) = {(ba 6) | |b| < xmaw' COs 9' + yma$| sin0|}, (4-6)

where Tiay and Ymas are given by (4.3).

Proof: Let l = (b, 6;) be a line supported by If;[ ;LN and consider Figure 4.1 which depicts

various lines of angle 6; for the following two cases: i) 0 < §; < T and ii) § < 6; < w. From
the definition of support set, the extrema values of b; that lead to lines supported by Iu]t/{ ,’lN
are those of the lines that contain the corners of Ifl\f ,’lN. This means

i) the lines that pass through +(Zmaz, Ymaz),

ii) the lines that pass through +(Zez, —Ymaz)-
It follows from the line equation that

i) by < Tyaz €08 ) + Ymaz Sinb; and by > —Tpee €0S 0 — Ymag Sin 6 or equivalently

61| < Tmaz €08 0) + Ymag SinG;.
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- KmaxYmax) (—Xmaxd»/k’ ax)

Figure 4.1: Various lines of angle ; for i) 0 < §; < 7/2 and ii) 7/2 < §, < .

i) by < —Zpaz €OS O + Ymaz Sin b and by > —(—Zmag €08 0 + Ymag sin ;) or equivalently
|bl| < —Tmag €08 ) + Ymaz SN 0.

Hence,

b1 < Ymaz| Sin 6| + Tmag| cos G,

and the lemma follows. ]

Definition 4.4. Given a linel = (b, §) supported by a set X, the line segment 1 » associated

with ! is the restriction of I to X.

One important subset of the admissible set is the intersecting set of a given line segment,

which is defined as follows.

Definition 4.5. The intersecting set of line segment [ x is the set of all lines supported
by X that intersect { x

I8 (Lx) ={U'|S (Lx) NSW') # 0} .

In order to characterize this set, we start by introducing a taxonomy for all lines in the

admissible set.

Definition 4.6. Consider the lines in A(Zmaz, Ymaz)- The lines ¥ = Ymaz, ¥ = —Ymaz;
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T = Tmaz, and T = —Zpe, are denoted by
h, = (_ymama 7T/2)
hh = ( Ymazx, 7T/2)
v = (_37macc7 0)
Vp = ( Tmazxy 0)

A line segment associated with a line | = (b, 0;) € A(Tmaz, Ymaz) is & segment of type |, 1l

or Il if I is an element of the set R, Ry, or Ry, respectively, where

R = {L|SA)NS(hy) #0 and S{I) N S(hy) £ 0} (4.7)
Ru = {1|S®)NS(w)#0 and SI)NS(vs) £ 0} (4.8)
R = {l|l €R|UR||}. (4.9)

The three subsets R, Ry, and Ry partition A(Zmaz, Ymaz) into sets of lines which
intersect the horizontal boundaries of Iu]\}/[ ,’ZN (type 1), the vertical boundaries of Iu]\}/[ ,’ZN (type
1), and one horizontal and one vertical boundary of Ié\)/l ,’lN (type lll). They are characterized

by the following lemma.

Lemma 4.2. Let l = (b;,0;) be a line supported by Ig;lN. Then,

R = {(blaal) | |bl| < ‘xmaw‘ Cos Hl‘ ~ Ymaz Sin0l|>9l € [¢77T - ¢]} ) (4.10)

Ry = {(bl,Ol) | |by| < ‘:vmaw\ cos 0| — Ymaz sin05|,9l €[0,4] U [r — ¢, 7r]} , (4.11)

R = {(blael) | |-'Emaz| COS 9l| — Ymaz Sin9l| < ‘bl| < |37maw| COS 9l| + Ymaz Sinel‘}(4-12)
where

¢ = arcsin (ym#) and D = /72,5 + Yr0n. (4.13)

Proof: Consider I € R,. Since ! intersects both h; and hp, S(I) contains two points of

the form (z,y = *Ymaz), —Tmaz < T < Timag- 1t follows, from the line equation, that

_ bl F Ymaz sin 0,
r=———.
cos 6,

and .
b F Ymag Sin b

~Tmaz < cos 0
!

— ‘,L'TTLGI,
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from which
FYmaz SINO; — Tmaz| €08 0)] < by < £Ymaz Sin 0 + Tmag| cos 0y
or, equivalently,
Ymag SINO) — Traz| cos 0y < by < —Ymag SN0 + Tpyaz| cos ).
Hence,
|oy| < |£L‘ma$| cos 0| — Ymaz sinel‘

and

ZTmaz| €08 0| — Ymaz sin; > 0 < |tanf)| < cotd < 6, € [p,m — ]

Next, consider the case where I € R;. In this case, ! intersects v; and vy and the
intersection points are of the form (z = *Zpez,Y)s —Ymaz < ¥ < Ymae- Following the

procedure above leads to
_ by F Tmaz cos 0

sin 91
and

|bl| < |ymaz sinf; — mmam| COs ng
with
Ymazx sin 0 — mmaz' COSH[| >0 < |tan9l| > cot ¢ & b, € [Oa¢] U [7T — &, 7T]'

Finally, consider the case where l € Ryy. Since l ¢ Ry U Ry and Ry C A(Zmaz, Ymaz),
then

‘:Em,m| cos 0| — Ymax sin91| <|b| < ‘:cmam| cos 0| + Ymax sin91|.
]

The intersecting set of Iy is trivial when X = R2: the set of all lines that are not
parallel to /| y. However, when X is a subset of R?, there may be many lines supported by
X that are not parallel to ! and do not intersect !|x. The following lemma characterizes

the intersecting set when X is the image associated with EHA;{;IN.

Theorem 4.1. The intersecting set of the line segment l‘IM,N’ l=(b,0)), is the set
w,h

I8 (l IM’N) = {(0,0) | bins(0,b1,6;) < b < beup(0,b1,01) }, (4.14)
w,h

where
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sin(6 sin
—Zmaz L ‘bl‘ -
sin 9; sin 6,
sin( Hl L sin
z 4
mar sin Hl sin 6,
if LeR.
sin( 9l cos 0
Ymaz cos 9l cos 0,
sin Hl cos 0
Ymaz cos 91 cos 0,
if l € Ry.
sin Hl cos 0
Ymaz Ccos 9 cos 0,
sin(6; — 1l sin 6
z
max sin 9l Hsin 0,

if L€ R and sign[sin(6; — 6)] = sign[sin(26;)].

i)
bing(0,b1,0;) =
bsup(ga bl, gl) =
ii)
bing(0,b1,6;) =
bsup(ga bl, 0l) =
iii)
bing(0,b1,0;) =
bsup(aa bla 0[) =
iv)

bing(0,b1,0;) =

bsup(ga bla 91) =

if L€ Rin and sign[sin(0; — 0)] = —sign[sin(26;)].

Proof: Consider a line I' =

sin(6; — sm 0

~¥maz  sinf, ‘ sm 0,
sin( 95 cos 0

Ymaz cos 0 ‘ cos 0,

by | | cost sing, T
b cosf sinf Y

and, for 0; # 0,

sin @ sin 6,

"sin(6, —0)  sin(6, — 0)

cos f cos 0;

M n0,—0) " "sin@ —6)

42

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(b,0) that intersects I = (b;,6;) at the point (z,y) as
illustrated by Figure 4.2. From (2.1),
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ymax

~Xmax

~Ymax

Figure 4.2: Two intersecting lines with parameterizations (b,d) and (b;,6;) that intersect at a point (z,y).

Since the Ig‘,’ ,’LN is bounded, the intersection point must satisfy the constraints (see Fig-
ure 4.2)

—Zmaz < T < Trmag
—Ymaz <Y < Ymazs

where Zqp and Yme, are given by (4.3). After some algebraic manipulation, this leads to

sin(6; — 0) sin 6 sin(6; — 0) sin 6
- i SR < < iS4 = .
Tmae | T 0, + |bl|sin 0, — b < Tmas sin 6; + |bl|sin 0, (4.27)
sin(6; — 0) cos 0 sin(g; — 0) cos 6
—Ymazx b S b S max b 4.2
Y cos 6, + 1o cos 6, Y cos 0, 1o cos 6, (4.28)
Let
B sin(6; — 0) sin 6 B sin(f; — 0) sin 6
A= | Tane | PP me ST e | Mg,
sin(6; — 0 cos 6 sin(6; — 0 cos f
B = —¥Ymaz M |b | D = Ymaz y + |bl| .
cos 6, cos 6, cos 0, cos 6,

Then, A > B if and only if

) Ymaz Tmaz cos @ sinf; — sin @ cos 0,
0, — 6 - > b
| sin6 = 0)] (|cos€l| |Sin91|> 2 [b sin 6 cos 6;
ymax| sin 0l| - Imaac| COS 9l| | | 1
2| cos 0; sin 6| = Mlsin(26))
& Ymaz|Sin 0| — ez | cos O; > |by| sign[sin(26;)] sign[sin(6; — 6)],

=

sign[sin(6; — 0)]
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which is equivalent to

Ymaz| SN )| — Timaz| cos 6y . sin(6; — 0)
> > _— 4.2
by >0 and o ign Sn(20,) (4.29)
or
Ymaz| SN 0| — Timaz| cos 6y . sin(6; — 0)
b < d < _— 4.
<0 an 0 < sign S0 (20)) (4.30)
Similarly, C < D if and only if
Ymagz| SN 0| — Timaz| cos 6] ) sin(6; — 0)
by >0 d < - —_ 4.31
L=" an |6y = Toish sin(26;) ( )
or
Ymagz| SIN 0| — Tyaz| cos 6] ) sin(6; — 0)
b <0 d > — _— 4.32
L= oan o] = TN T (2g) (432)

Therefore, four different cases must be considered.
i) A > B and C < D, which implies that A < b < C and, using (4.27), leads to (4.15)
and (4.16). Combining (4.29), (4.30), (4.31), and (4.32),

by >0 and Ymaz| 51001] — Tmag| 05 0] >0 and ‘ymaw|Sin9l|—$ma;¢\cosel| 51

|u] by ’
(4.33)
or
b <0 and Ymaz| SI00;| — Tpaz| cos 0] <0 and Ymaz| SN )| — Tpmaz| cos 6] 51
|| by
(4.34)

Noticing that if b, > 0 and Ymee/siné \;fm'“s b > 0orifb, < 0and ym'“““’l";l‘fmﬂc“ bl <
0,

-Tmaac

Ymaz| SINO)| > Tmaz| cos O] < | tan ;] > = cot ¢, (4.35)

max

(4.17) follows from (4.33), (4.34), and (4.35).

ii) A < B and C > D, which implies that B < b < D. (4.18), (4.19), and (4.20) follow in
a way similar to case i).

iii) A < B and C < D, which implies that B < b < C and, using (4.27) and (4.28),
leads to (4.21) and (4.22). Also, from (4.29) to (4.32) and after reversal of the appropriate
inequalities (A < B instead of A > B),

by

B ‘ymam\ sin 0| — ZTmaz| cos 0y

ot

or, equivalently,

o |:Sin(91 — 9):| — 1 and ‘ymaw| Sin9l| - -'Emasc‘ COs 6l| <1

sin(26;) by
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On the other hand, b; must be supported by Iqﬁ/[;lN. Combining (4.2) with Lemma (4.1),
leads to (4.23).
iv) A > B and C > D, which implies that A < b < D. (4.24), (4.25), and (4.26) follow

in a way similar to case iii). [

4.3 The intersecting set of a pixelated line

We next consider the intersecting set of a pixelated line.

Definition 4.7. Consider the pixelated line l,, associated with the line I = (b;, 6;) supported
by Ei\)/[;lN. The intersecting set of 1, on Ig[ ,’1N is the set of all lines supported by Ig[ ;LN that

intersect the restriction of I, to Iff ,’LN

18 (l,, Iﬁa”) = {l’ 1S (lp‘IK;LN) NS # (2)} : (4.36)

Due to the effects of pixelization, the intersecting set of a pixelated line cannot, in
general, be described by a simple closed-form expression. It is, however, possible to derive

tight lower- and upper-bounds.

Theorem 4.2. Ifl, is the pizelated line associated with linel = (b, 0;), then the intersecting

set of l,, IS lp|IM’N>’ satisfies the following relationships
w,h

‘Iw,h |Iw,h ’ Iw,h
where ZS (l IM’N> is the intersecting set of 1 LM, G8 given by Theorem 4.1, and
w,h w,h

Awn [IS (l IM,N)] - {(b, 0) | bins(6,1) — Vw? +h? < b < byp(8,1) + Vu? + h2} :
w,h
(4.38)
where by r(-) and bgyp(-) are as defined in Theorem 4.1.

Proof: Consider any line I’ supported by IHA)/{;LN suchthatl' € ZS (l IM’N> . From (4.14),

w,h

SU')NS(l) # 0 and, since S(I) C S(1,), it follows that S(I') N S(l,) # 0. Hence, I' €
IS8 (IP‘IM’N> from which it follows that ZS (l IM’N> CcZIS <lp|IM’N>' Next, consider any
w,h w,h

w,h

line I' = (b, #) supported by Ifl\]/‘,’,’lN such that ' € ZS (lP‘IM,N) and note that, from (4.36),

w,h

there is at least one pixel p € I, such that S(I')NS(p) # 0. Since, from (3.2), S(1)NS(p) # 0,
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it is always possible to find a line I” = (b',6) parallel to I’ which intersects both S(I) and

S(p), i.e.
30— (4.0) € 75 (1 ) such that S@)NS() £,

w,h
Since S(p) is a rectangle with sides of length w and h, it follows that |b — b/| < Vw? + h?
and, from the fact that ¢’ is bounded by (4.14), it follows that b € A, [IS <l IM’N)]'
w,h

This proves that ZS (lp‘IM’N) C Ay [IS (l IM,N):|' u
w,h

w,h

The following example shows that the upper-bound of (4.37) can be made arbitrarily
tight by increasing the size of the lattice.

Example 4.1. Consider the lattice L%’M and the set of lines I, = (0,60), where 6, =
5 +arctan (1 + %) ,k € {1,... M}, shown in Figure 4.3(a). Since § < 0 < 7 for all &, the
associated pixelated lines all contain the shaded pixel. Noticing that the pixel’s upper-left
corner has coordinates (—%, %), it follows that the set of lines I}, parallel to Iy that contain

the corner point satisfy the equation

1 3
b, = —3 cos 0y + isinﬂk.

Denoting by bsyp(f;) the supremum of b among all lines parallel to I; that belong to the

intersecting set of the associated pixelated line (),

1.6 = sup {0 0,00) € Z5 (W e ) |

if follows that bs(6) = bj,. Next we note that, for a line I = (b,0), it follows from The-
orem 4.1 that by ¢(1,0) = bsyp(l,0) = b. Since all I have b = 0, when 6’ = 6, the lower
and upper bounds of (4.38) are equal to ++/2. Figure 4.3(b) presents the ratio of % as
a function of k. Notice how the supremum converges to the upper bound as k increases,
showing that the bound is tight. Notice also that, even for relatively small M, e.g. M = 20

or M = 40, the bound provides a good approximation to the supremum.

It is straightforward to show that the ratio between the upper- and lower-bounds
of (4.37) converges to one as the lattice size increases. For this, notice from Theorem 4.1
that, given I and 6, b;,f(1,0") and byp(l,60") only depend on M and N through 4,
and Ymqg- Since the latter increase linearly with the former, it follows that b, f(l,6') and
bsup(l,0") are monotonically increasing functions of M and N. Hence, for constant w and

h,
lim bins(1,0') — Vw? + h% lim boup(l,0') + Vw? +h%

= 1.
N,M—s00 bins (1, 0") N, M0 beup(l, 0)
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(Osup(8y), 8) I Iy I3 14
(-0515) |/ = / . . . . .
\ B
, ,/
,’/ 0 **/ . . . o . . 1
7
O i
1

0.75 I I I I I I I
0 10 20 30 40 50 60 70 80

Figure 4.3: The tightness of the upper-bound of (4.37). (a) A collection of lines I supported by L:fﬂ’M,
and (b) the ratio between the supremum of b for the intersecting set of each line and the upper-bound given
by (4.38) (as a function of k).
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The next example shows that the bounds are similar even for small values of N and M.

Example 4.2. Consider the lattice E%’M and the set of lines I = (0,0). Figure 4.4 presents

the ratio of the areas of the intersecting sets that bound ZS (lp|IM’M) in (4.37), i.e.
1,1
e |75 ()|
1,1
R(M) =

as a function of M for = kJ5,k € {1,...,4} (curves corresponding to 6 outside [0, ;] are

similar to the ones in this interval and are omitted). Notice that for M = 40 the difference

between the areas is already smaller than 10% and for M = 80 smaller than 5%.

Figure 4.4: Ratio between the areas of the sets that upper- and lower-bound ZS (lp|IM, M), according
1,1

to (4.37), as a function of the lattice size, for a collection of lines I = (0,6%),6x € {5, %,3%, 5}

The results above suggest that, for most values of M and N of practical interest, the
intersecting set of the pixelated line I, is well approximated by the intersecting set of
the associated line . This is confirmed by Figure 4.5, where we presents a collection of
images containing a pixelated edge, the corresponding Radon transform, and the bounds of
Theorem 4.1, for M = N = 40. The peak at the center of the Radon transform corresponds

to the parameterization of the edge with which the pixelated edge is associated.
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DN
-

Figure 4.5: A collection of square images containing a pixelated edge (left), and the corresponding iso-
contours of the amplitude of the Radon transform (right). The circles superimposed on the plots of the
Radon transform are the bounds of Theorem 4.1.
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4.4 The intersecting set of a strip segment

Given the difficulty of deriving a closed-form expression for the intersecting set of a pixelated
line it is useful to consider, in addition to this and the intersecting set of the line segment,

the intersecting set of the strip segment.

Definition 4.8. Given a strip s = (b, &, w) supported by a set X, the strip segment S|x Is

the restriction of s to X.

Definition 4.9. The intersecting set of strip segment sy is the set of all lines supported

by X that intersects s|x

IS(syx) = {U| S(s,2) N SW') £ 0} (4.39)

When X = R?, the intersecting set of 8|y is trivial: the set of all lines I' = (b',¢') that
are not parallel to I = (b,0) or are parallel but have |’ — b| < §. However, when X is a

subset of R?, there may be many lines that satisfy these conditions but still do not intersect

M\N 7M\N

s|x. We concentrate in the case where X is the image associated with £, 3", Z, ;" .

M,N
Iw,h

Figure 4.6: Intersection of a line supported in I%;LN and an unbounded strip s: I € FZS (3|IM’N> and

w,h

U € PIS (3 IMW).

w,h
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As illustrated in Figure 4.6, the intersection of a line I supported in Ig[ ;LN and an
unbounded strip s can be different from the intersection of the line with the restriction of
the strip to I . This motivates the sub-division of the intersecting set of a strip segment

into two subsets.

Definition 4.10. The intersecting set of the strip segment s M.N is the union of two sets,

w,h
S8 (s Iﬁf;ﬁ) = ]—"IS( ) U PIS ( 7 ) ,
where
FIS ( |IMN) {z €IS(s) | S NS(s) C I%,’LN} (4.40)
and
PIS (3|IM,N) {l € I8(s) | SU) NS(s) ¢ If;lN} . (4.41)
w,h 4

The set FZS ( ‘IM N) is referred to as the fully intersecting set of s on ™ h , and the set
PLS 8|IS/I}LN as the partially intersecting set s on Iqi\;{,’lN.

The following lemma, characterizes the partially intersecting set of a strip segment. It
shows that any line in this set must intersect one of the boundaries of ™ w,h N at a point that

belongs to the interior of s.

Lemma 4.3. Let B = {v;, vy, hy, by} be the set of boundary lines of Iu]\){,’lN. Then, 1 €
PLS (s IM’N> if and only if

w,h

31U € B such that I' #1 and S(l|s,,,) NSl'|s,,,) # 0, (4.42)
where S;nt is the interior of s.

Proof: Assume that (4.42) holds and denote the point of intersection of S(l|s,,,) and
S(U|s,,,) by x. Since, by definition, this is an interior point of 8, for small enough €, there
is a ball of radius € around x, B¢(z), such that B.(x) C s. Furthermore, since I’ bisects

this ball, half of it will be outside of I . Since [ also bisects B.(x) and I # U, it follows
that S(I) N (Iw,;t ) 40, and Il € PZS ( ‘IM N)

To prove the converse, assume that s € PZS (s IM’N>' Then, S(1)NS(s)N ( gth)c ”

w,h
0. Since l € IS (s IW), it follows from (4.39) that S(I) N S(s) NZ, ;" # 0. Hence, I

must cross one of the boundary lines of IMhN at an interior point of s and (4.42) follows. m
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The following lemma shows that two parallel lines in PZS (s M, N) which intersect

w,h
M,N . . . . ..
the same boundary of Z ;" in two interior points of s must have similar b parameters.

Lemma 4.4. Consider the strip s = (b, 0;,w) associated with line I = (b;,0;) and two

parallel linesl' = (V',0) and 1" = (b",0) such thatU',1" € PIS (S‘IM,N>- If the restrictions

w,h

of the two lines to the interior of s, l'|smt and l"|sim, intersect the same boundary line

b € B, where B is as defined in Lemma 4.3, then

b —b"| < 6(w, 6;,0) (4.43)
where
oot ifleRr
5(w,0,,0) = { w ‘snig; ifl € Ry (4.44)
w max[ ooty | |Sin ] il € R

Proof: We start by considering a strip s such that S(s) does not include any of the
corners of IUA]/[ ,’IN. Denote the intersection points of I'|s;,; and 1"|s;,; with b by =’ and 2",
respectively. From the line equations for I’ and 1”, it follows that &’ - (cos #,sinf) = b’ and

z" - (cosh,sinf) =b", i.e.
b —b"| = |(z' — x") - (cos 8,sinB)|. (4.45)

We next consider the four possible cases for b.
i) b = h; or b = hy: In these cases, &' = (/,y) and " = (", y), where —Z 4, <

o, " < Tmag, and Yy = —Ymae if b = v; and y = Ypmay if b = vy. Hence, from (4.45),
[b' —b"| = |’ — || cos O] = ||z’ —x"]|||cos ).

Since both =’ and " belong to the segment b N s, ||z’ — z"|| < ||xo — ©1||, where ¢ and
x; are the extrema of the segment. These are the points where b intersects the boundary
lines of the strip, i.e. the lines Iy = (bl — %,01) and l; = (bl + %,Gl). Applying the same

arguments to these two points results in

w = ||¢1 — x| | cos Gy,
from which it follows that
0
bl _ b” < cos . 44
| [<w cos 6, (4.46)
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ii) b = v; or b = vy,: Using the same arguments as those used in i) leads, in these cases,

to
sin @

b —b"| < w : (4.47)

sin 6,
We omit the details for brevity.

The lemma follows from the fact that i) always holds for lines in R, ii) always holds for
lines in Ry, and both can hold for lines in Ryy;. Finally, we consider the case in which S(s)
contains one or more corners of IUAJ/{ N By selecting the boundary b which is intersected by
I" and 1" and extending Ig{ ;LN along b so that b N s is contained in the extended window,
the results above are still valid (in the extended window). Since restricting the size of the
segment b s can only decrease the distances between the lines that intersect the segment,
this implies that the results also hold in qu\]/{ ,’LN (even though the bounds may be less tight).

The following lemma builds on the previous one to establish that, if s is the strip
associated with line I, any line I’ in PZS (s‘ LM, N) has a parallel line in ZS (1) such that
w,h

the difference between the b parameters of the two lines is bounded above by a quantity

that only depends on the width of s and the angles of I and I'.

Lemma 4.5. Consider the strip s associated with the line l = (b;,6;). For any line l! =
(b',0") such that ' € PIS (S‘IM,N>, there is a parallel line l" = (b",0') such that 1" €
w,h
I8 (l M,N) and l" € PZS (s M,N). Furthermore,
Iu),h Iw,h

b — 6(w,0,,0") <V <b" + 5w, 0,0, (4.48)
where 6(w, 0;,0") is as defined in (4.44).

Proof: We start by considering a strip s such that S(s) does not include any of the
corners of Ii‘f ,’zN. From Lemma 4.3 and the fact that ! € PZS <s LM, N), it follows that

w,h

U’ intersects one of the four boundary lines in IUA)/"’ ,’ZN at a point. Denote the boundary line
by b and the intersection point by @' € S(b|g;,,)- On the other hand, from the fact that
S(l) C 8(s), it follows that I intersects any of the boundary lines that are intersected by
s, and in particular b. Denote the point of intersection by ¢ € S (b| s.,,)- Since both « and
z' are elements of the restriction of b to s;,;, the simple translation of I’ along the segment
that originates at ' and terminates at @ generates a new line that 1) is parallel to I, and
IHJ\;{;LN) and both lism and

ﬁgim intersect b it follows from Lemma 4.4 that |b' — b"| < §(w, 6,,6").

2) intersects I at the @. This is the line I". Since I” € PZS (s‘
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When S(s) contains one or more corners of If‘\:{ ,’lN, by selecting the boundary b which
is intersected by ! and extending Ig{ ,’ZN along b so that bN s is contained in the extended
window, the results above are still valid (in the extended window). Since restricting the
size of the segment b N s can only decrease the distances between the lines that intersect
the segment, this implies that the results also hold in Ii\f ,’lN (even though the bounds may
be less tight). n

The following theorem combines this lemma with what was previously shown for the
intersecting set of a line segment, to characterize the intersecting set of the strip segment
associated with s = (b, 6;, w). It shows that the latter is the union of the intersecting set
of the line I = (b;,0;) with a set that extends its boundaries along the b dimension by a

quantity that only depends on the angle # and the parameters w and 6.

Theorem 4.3. Let s = (b, 0;,w) be the strip associated with the line l = (b;,0;). A line
U = (b,0) belongs to IS (s IM’N> if and only if

w,h

bing(0,b1,0;) — 6(w, 0;,6) < b < byup(,by,60;) + 6(w, 6;,0) (4.49)

where binf(-) and bgyp(+) are the lower- and upper-bounds of 1S (l‘
Theorem 4.1, and §(-) is as defined in (4.44).

,N>, as defined in
h

M
Iw,

Proof: From Definition 4.10, either I € FIS (s IM’N> orl € PIS <S|IM,N>. If
w,h

w,h

le FIS <s If,‘f}f)’ then S(I')NS(s) C Iuj\)/{,’lN, which implies that I’ intersects the boundary
lines of s, (bl + %,91), at two points xg,x; € IK,’IN. It follows that " intersects I at a

point that also belongs to IHA)/[ ,’LN and, consequently, ' € ZS (SE’N ) From Theorem 4.1,
’ w,h
binf(ga bl, 01) < b < bsup(ga bl, 91) and (4.49) holds.
On the other hand, if I € PZS (s IM’N> then, from Lemma 4.4,

w,h

b > bmf(aa blagl) - 6(11),91,9)

or

b < bsup(07 bla Ol) + 5(w7 ela 0)

and (4.49) follows. [

1,1 1,1
line associated with s and s = (b;,6;,1), for the values of (b;,6;) used in Figure 4.5. Also

Figure 4.7 presents the boundaries of ZS (l|I40,40) and ZS <3|I40,40>, where [ is the
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Figure 4.7: Collection of intersecting sets of the strips of unit width associated with the lines presented
in Figure 4.5. The intersecting set of each strip segment (associated line) is shown in solid (dashed) on the
left of each pair of plots. The plots on the right show the ratio of the width of the band that is not shared
by the two intersecting sets to that of the intersecting set of the strip segment, as a function of the angle 6.
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shown are the ratios between the width of the band that is not shared by the two inter-

secting sets, ZS (3‘140,40) NZS¢ (1‘140’4")’ and the width of the intersecting set of 3‘140,40,
1,1 1,1 1,1

ie 28(w,0,,0)

o bsup(07bl,0l)7binf(6,bl76l)+26(w70la0) ’

approximated by that of the associated line segment, except perhaps when 8 is close to 6;.

It is clear that the intersecting set of the strip is well

This is due to the fact that while for the line the intersecting set collapses to a point when

0 — 6, (two parallel lines do not intersect unless they are the same), the same does not

hold for the strip (all lines parallel to I at a distance less than % belong to ZS (S‘IM, N) )-
w,h

Remark 4.2. It should be emphasized that the intersecting set of a strip segment is not
always well approximated by that of a line segment. There are in fact lines for which
the width of the former can be significantly larger than that of the latter. Consider, for
example, a line ! with 6§, = § + € and b; such that the line intersects the boundary v at
the point & = (wmaw,ymaw + %) By varying b; and e, it is possible to make 1 intersect the
boundary hj at any point £ = (@, Ymaz), —Tmaz < @ < Tmaz, While keeping the segment

that originates at  and terminates at the corner (Z;,4z,Ymaz) in the interior of s. Hence,

any line with 8 = 0 and Ty — @ < b < Zper Will belong to PZS (s IM’N) but not

w,h

to ZS (l IM,N). Thus, by varying the line parameters, it is possible to make the width

w,h

of PZS (s IM’N> quite large and the width of ZS (l IM’N) quite small. In the extreme,

w,h w,h

the line I can touch only one point of Ig[ ,’ZN while the strip s entirely covers one of its

boundaries. Notice, however, that such situations are only possible when 6; is very close

to either 0 or § and b; is near the lower- or upper-bounds for the set of lines supported

by Ig{,’lN. This is impossible if I € Ry U Ryj, but can happen in Ryj;. The bounds of (4.49)

account for this phenomena since, in Ry, §(w, §;,0) goes to infinity as 6; approaches 0 or

7. In these cases, the bounds are obviously not tight.



Chapter 5

Deterministic models for the

Radon transform of pixelated lines

From the standpoint of engineering applications, the goodness of a model is intrinsically
connected to the particular application for which it is considered. Thus, while there is
usually no best model in the absolute sense, it is important to understand the advantages
or limitations of each model in the context of the desired application and how the model’s
predictions are affected by different settings for its parameters. The ultimate goal is usually
to find the best trade-off between the complexity of the model and its capability to make
predictions at a desired level of accuracy.

In the previous chapters, we have discussed various models that can be used to rep-
resent a pixelated line (namely the line, line segment, and strip) leading to a collection
of approximations to the Radon transform of the pixelated line that trade-off accuracy
for computational complexity. In this chapter, we start considering the application of such
models to the problem of line detection. We begin by introducing a taxonomy of the models
previously discussed and making explicit the assumptions under which they are based. It is
then shown that the standard strategy of line detection (thresholding of Radon amplitudes)
is well justified under the assumption of the idealized line, but fundamentally flawed for
models that more closely replicate the Radon transform of the pixelated line. In particular,
we show that the thresholding strategy is intrinsically unable to simultaneously achieve a
low false-positive rate and spatial localization of the detected lines.

This motivates a new line detection strategy, derived from the more realistic approxima-
tion of the pixelated line by a strip segment. The Radon transform of the latter is proposed

as a parametric model for that of the pixelated line, and shown to provide an accurate ap-

57
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proximation at very low computational cost. This is a result of practical significance since
it enables the adoption of an analysis-by-synthesis strategy for line detection. Such a strat-
egy would be computationally unfeasible using the exact Radon transform of the pixelated
line, and highly ineffective under the less realist models of the idealized line, segment, or
even unbounded strip. An analysis-by-synthesis algorithm is designed and shown to achieve

significantly better line detection accuracy than any of the thresholding methods.

5.1 A taxonomy for the Radon transform of a pixelated line

Table 5.1 presents a summary of the models considered in the previous chapters. These
models can be seen as a sequence of approximations to the pixelated line, where one trades
off the accuracy of the approximation for the number of parameters in the model (and
inherent complexity of the Radon transform). The table also points out how each model
deals with the three properties of the pixelated line that have the most relevance for line
detection applications: support (pixelated lines are defined on images, which are regions of
bounded support), width (pixelated lines have non-zero width), and pizelization (pixelated
lines are pixelated functions, i.e. functions supported on sets of pixels). As can be seen

from the table, only the pizelated line model of (2.31) accounts for the three attributes

correctly.
|  model | Radon transform | support | width | pixelization |
line (2.14) unbounded | null no
segment (2.17) bounded null no
strip (2.22) unbounded | positive no
strip segment - bounded | positive no
pizelated line (2.31) bounded | positive yes

Table 5.1: Models that can be used to represent a pixelated line. The Radon transform of the strip
segment is discussed in this chapter. See Lemma 5.3 and ensuing discussion.

In the context of image-based applications such as line detection, it is important to

understand how the assumptions behind each model may affect the model’s performance.

5.1.1 The line model

We start by the line which, assuming unbounded support, null width, and no pixelization,

appears to be a reasonable approximation when the image size is many orders of magnitude
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larger than the pixel size. The main appeal of the line model is the simplicity of its Radon
transform which consists of a delta function centered on the line parameters. This suggests

a very simple and popular line detection algorithm.

Algorithm 5.1. Given the Radon transform of the pizelated edge map of an edge indicator
function &,
rij = R{EMIE](®) }(bi, 05),
declare an edge with parameters (b;,6;) if
rij = T, (5.1)
where T is an appropriate threshold.

There are various ways to select the best value for the threshold 7', the simplest of
which is brute-force, i.e. try various values and select the one that leads to best results.
The problem, however, is that there are many situations where it is impossible to find a
threshold that leads to perfect detection. This is due to the fact that the Radon transform
of the line is not a reasonable approximation to that of the pixelated line, even when
the image size is large relatively to the pixel size. An example is given in Figure 5.1
which presents an image of size 512 x 512 pixels containing three lines l; = (—3, 3%),
ly = (3, 3%), and I3 = (300, %TW)’ the contours of its Radon transform, those of the Radon
transform predicted by the line model (three delta functions represented as circles) and
the lines recovered by the algorithm above with a threshold equal to 15, 20, or 60% of
the maximum amplitude of the Radon transform. Notice that the Radon transform of the
image is quite different from that predicted by the model. In particular it is difficult to
distinguish the individual contributions of 11 and lo. This, and the different lengths of
the segments g; = (li,Ifl\f ,’lN) .4 = 1,...,3, make it impossible to find one threshold that
will detect all lines without generating false positives. At 15%, all lines are recovered, but
multiple spurious lines with parameters similar to those I; and Iy are detected. At 20%,
even though many of the spurious lines continue to be detected, I3 is missed. At 60%, the
spurious lines are no longer detected but the same holds for 3. Notice that, for lower values
of the threshold, it is quite difficult to tell if the original lines were parallel or not, or even

if they crossed each other. Depending on the application, this can be quite problematic.

5.1.2 The segment model

The fact that the line model fails to account for the different lengths of the segments

generated by restricting each line to IHA)/{ ,’1N is a major limitation for line detection. This
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Figure 5.1: Left: (a) an edge map with three lines, (b) its Radon transform, and (c) Radon transform
predicted by the line model. Right: recovered lines with thresholds of (d) 15, (e) 20, and (f) 60% of the

maximum amplitude.
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limitation is abbreviated by the subsequent model in Table 5.1: the segment. As can be
seen by comparing (2.14) and (2.17), the only difference between the Radon transform of
a line and that of one of its segments is the replacement of the Dirac delta function by
the Kronecker delta function, scaled by the segment length. This suggests that a better
thresholding method would be one where the threshold is adapted to the length of each

segment. The following theorem derives a closed form expression for this length.

Theorem 5.1. Consider a line l = (b;,0;) and the segment g = (bl,Bl,Ig{,’lN). The length
of g is

2@;;(109;‘ ifl € Ry
£(g) = § 2kmes, ifl € Ry (5.2)

Ymazx  __ 2|bl‘ .
ISmGz\ + [cosf;]  Tsin(26;)] if L € R

where the regions Ry, R, and Ry are as defined in Lemma 4.2.

Proof: From the definition of length of g in (2.18),

)3(9) = /M;LNOS(Q) dx
N / {zMNns g} (@) dz
B /1{Ifth}(w)5(bl—€z-w)dm.

From (2.23) and (4.2),
Tyh =S(®)

where p is the pixel p = (0,0, 2Zmax, 2Umax) and, using (2.24), the integral above is simply
the Radon transform of P[p](z). The theorem follows from Lemma 2.6. n

Figure 5.2 presents a contour plot for the length of all segments supported by I15’112’512
(as a function of b; and 6;) as computed by (5.2). Notice the similarities between the surface
represented in this plot and that of the Radon transform of the pixel centered at the origin,
shown in Figure 2.2. The shape of this surface suggests that Algorithm 5.1 can be improved

by adapting the threshold to the length of each segment.

Algorithm 5.2. Given the Radon transform of the pizelated edge map of an edge indicator

function &,

rij = R{EMIE](x)}(bi, 0),
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Figure 5.2: Contour plot of the length of the segments (b, 01,115,112’512) as a function of the parameters b;
and 6;.

declare an edge with parameters (b;,6;) if

T*S(Qi,j)

’I“i’j Z T l*

(5.3)

where T € [0, 1] is a scaling factor, r* = MAX T, I* = max £(gy,), and g; ; = (bi,9j,Iu]\)/{;1N).

)

Notice that the ratio 2(?,3"]' ) adapts the threshold to the length of segment g; ;. Figure 5.3

presents the results obtained with this algorithm for the edge map of Figure 5.1. It is
clear that, while care must be taken in the selection of an appropriate value for T', the
introduction of the adaptive threshold makes it possible to detect the three lines without
any false positives.

While this is encouraging, the next example shows that the segment model is not suffi-
cient to handle all the problems posed by line detection. In this example, the edge map of
Figure 5.1(a) is augmented with the segment g (O, %’1117410,140>’ as shown in Figure 5.4(a).
The figure also presents the Radon transform of the new edge map, and the lines recovered
by Algorithm 5.2 for two values of T'. It illustrates two shortcomings of Algorithm 5.2.

First, while for both values of T' various spurious lines are detected in the neighborhood of

l1, la, and I3, for T' = 0.3 it is already impossible to detect the extra segment g. This is due
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Figure 5.3: Lines recovered by applying Algorithm 5.3 to the edge map of Figure 5.1 with 7" set to (a)

0.15, and (b) 0.8.

Figure 5.4: Top: (a) Edge map with four segments and (b) its Radon transform. Bottom: Lines recovered

by Algorithm 5.3 with T set to (c) 0.2 and (d) 0.3.
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to the fact that the length of the latter is not well predicted by (5.2), which assumes that
segments span the entire image Iif ;LN. It is not clear how the thresholding approach could
be extended to avoid this problem, since such extension would require the knowledge of the
endpoints of the segment and these are part of what needs to be determined. Second, even
for the values of T" in which g is detected, it is impossible to recover the segment accurately
from the amplitude of the peaks of the Radon transform. While these carry information
about the segment’s length, they provide no information about its start- or end-points. In
fact, due to the additive property of the Radon transform, and the fact that the Radon
transform of a pixelated line has a region of support which is non-negligible, each peak will
receive contributions from various lines. Hence, for non-trivial edge maps, the amplitude of
a peak can only be taken as a very rough estimate of the length of the associated segments.

The two problems, inability to detect segments that do not span the entire image and
localization of endpoints, can be better addressed by localizing the computation of the

Radon transform.
Algorithm 5.3. Given the pizelated edge map of an edge indicator function &,

e define a sequence of subimages

L,C
(Ww,h>z’j =&() 1{w1§$§$i+lvyj§y§yj+l}(w)7 (5.4)
where
- . . 2Tmag
Ti = —Zmax+1C,1€0,..., C -1
_ . . Zyma;c
Yji = —Ymaxt+IL, J€0,..., 17 -1

e apply Algorithm 5.2 to each of the subimages (Wﬁf)” to obtain a sequence of edge

segments G; j = (gl, ... ’gSi’f)z‘j’ where S; j is the number of segments in subimage
(i’j);

e combine the segments extracted from the subimages into a set of image edges.

This algorithm requires requires procedures for 1) determining the best value of the
window size (L,C), and 2) combining local segments into global edges. We assume that
such procedures are available and concentrate on the advantages of localizing the Radon

transform for the purposes of recovering image segments.



§5.1 A TAXONOMY FOR THE RADON TRANSFORM OF A PIXELATED LINE 65

Figure 5.5 presents the subimage of the edge map of Figure 5.4 which contains the seg-
ment g (a) and its Radon transform (b). Comparing the latter with that of Figure 5.4(b),
it is possible to notice two major differences. First, it is now much more clear that there
are two different lines contributing to the overall shape of the Radon transform in the
neighborhood of I = (0, 2F). Second, these two contributions are similar, in terms of shape
and amplitude, to that of the segment g. This means that, when the Radon transform
is localized, it becomes easier 1) to make fine distinctions between lines with similar pa-
rameterizations, and 2) to detect segments whose length is much smaller than the image

size. This, however, does not mean that line detection is trivial once the Radon transform

Figure 5.5: Top: (a) Subimage of the edge map of Figure 5.4 and (b) its Radon transform. Bottom: Lines
recovered by Algorithm 5.2 with T set to (c) 0.65 and (d) 0.7.

is localized. In fact, the localization exacerbates the limitations of the segment model, as

illustrated in plots (c) and (d) of the figure. These plots are the result of applying Algo-
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rithm 5.2 to the edge map (of the window) shown in 5.5(a) for two values of 7. While, in
both cases, various spurious lines are detected in the neighborhood of g and lg, for T = 0.7
it is already impossible to l;. Note that the performance of the segment model is signifi-
cantly worse than in Figure 5.3(b) where it was possible to detect segments spanning the
entire image (l1, lo, and l3) without false positives. For the edge map of Figure 5.5, the
segment model is clearly unable to do so. The problem is that, because the segments are
now significantly smaller, the same holds for the peak amplitudes of the Radon transform.
Hence, what happens in the neighborhoods of these peaks becomes significantly more rel-
evant. This can be seen by comparing the Radon transforms of Figures 5.4 and 5.5, and
noticing that the relatively narrow bowtie patterns of the former have been replaced by a
set of sinusoidal patterns of significantly larger support and magnitude in the latter. To

address this problem, we need to consider the remaining models in Table 5.1.

5.1.3 The strip model

The novelty introduced by the strip model, over its line and segment counterparts, is to
account for the fact that pixelated lines have non-zero width. While the width of a pixelated
line is usually quite small when compared to quantities such as the image or window size, it
turns out that it plays a major role in the number of false positives generated by methods
that threshold the amplitude of the Radon transform.

Lemma 5.1. Let r4(b,0) denote the Radon transform of the indicator function of a strip

s = (bs,0s,ws), as given by (2.22), and let
7s(b,0,Tmaz) = min [r5(b, ), Tmaz) - (5.5)
Assume that 75(b,0,Tmqz) is known for all (b,0). If 75(b,0,Tmaez) = a, then

0 ifa=0
0 + arcsin (%) if 0 < a < Tmag

and, if @ = Tmaz, either
05 € [9, 0 + arcsin (%)] (5.7)

or
0s € [9 — arcsin (%) ,9] . (5.8)

¢

Furthermore, for all a, it is possible to determine if the ‘£’ in (5.6) is a +’ or a ‘=’ and

which of (5.7) or (5.8) holds.
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Proof: The lemma is a simple consequence of (2.22). If 0 < a < Tyqq, it follows,
from (5.5), that r4(b,#) = a and, from (2.22), we have

0 ifa=0
0s = (5.9)

0 + arcsin (%) otherwise.

Still from (2.22), if r4(b,8) = a and a > 0, there exists #', 8' = 20, —6, such that r4(b,0') = a.
Hence, from the observation of 7s(b,0', 7 pmaz), it is possible to determine 65 unambiguously
(set B = 0 + arcsin (%), if 8 < 6 and 0, = 0 — arcsin (%), otherwise). When a = 7,44, it
follows from (5.5) that r4(b,8) > rmpe, and from (2.22) that

|0s — 0] < arcsin < Ws ) )
Tmazx

Repeating the argument above, there exists 6’ = 260, — 6 such that

w
|6s — &'| < arcsin ( : )
Tmazx

and it is possible to say which of (5.7) and (5.8) holds. n

This lemma provides the insight needed to understand the trade-offs between the limit

Tmaz and the accuracy with which line parameters can be recovered.

Theorem 5.2. Let r4(b,0) denote the Radon transform of the indicator function of a strip
8 = (bs,05,ws), as given by (2.22), and let

Ts(b, 0, Tmaz) = min [rs(b, 0), Traz] - (5.10)

Then, from the observation of 7s(b,0,Tmaz), it is possible to recover the angle 65 unequiv-
ocally if and only if 7s(b,0,Tmaz) < Tmaz- For Ts(b,0,Tmaz) = Tmaz, it is impossible to

recover s with an error inferior to

€s(Tmaz) = arcsin( Os ) : (5.11)

Tmaz
Furthermore, if S = {s1,...,8,} is a sequence of distinct strips (s; # s;,Vi # j) such that
fsi(bj,Hj,ri) <4, Vi,j #1,0 >0, (5.12)

R(b,0) is defined as
n
R(b,0) = Y 75, (b,0,7:), (5.13)
=1
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{r1,...,mn} is an arbitrary sequence ordered in a way such that
i<i& R(bj, 9]) > R(bz, 91) (5.14)
and
B[S](b,0,7") = Lirp,0)>r+}(b,0), (5.15)
then
B[S](b;, 6;,7") =1 = B[S](b;,0,7") =1, V5 <14,|0 — 6;| <, (5.16)
where
e; <arcsin [ ——9 ), (5.17)
7= r* —(n—1)0

Proof: The first part of the theorem is a straightforward consequence of Lemma 5.1. To
prove (5.16), we start by assuming that B[S](b;, 0;,r*) = 1. Then, from (5.15), R(b;,0;) > r*
and , from (5.14), R(b;,0;) > r*,Vj < i. It follows that B[S](b;,0;,7*) = 1,Vj < i.

Furthermore, from

1{R(ba9)ZT*}(b’ 0) - 1{"'*_212#—‘]' Ts; (bﬂari)gi‘)‘j (bﬂa”‘j)} (b’ 9)’
it follows that B[S](b;,0,r*) = 1 for all pairs (b;,8) such that
fs]' (bja 0, 'rj) > r— Z Ts; (bja 0, 'ri)
i#]
or, from (5.10) and (5.12),
rs(bj,0) > 1 = 7, (bj,0,7) > 17 — (n — 1) 4.
i#]

Since these are the pairs where
Ts(bj,0,7" —(n—1)8) =7 —(n — 1),

(5.16) follows from the first part of the theorem. n

It is useful to analyze the conditions under which the theorem holds. We start by con-
sidering the various quantities involved. From (5.10), 75(b, 0, 7mqz) is the result of limiting
the Radon transform of the strip s to the value 7,,,,- While we have so far introduced no
motivation for such a limitation, we will see in Lemma 5.5 that it is one of the consequences

of working with the Radon transform of the restriction of the indicator function of s to a
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bounded image. From (5.13), R(b,0) is the Radon transform of a collection of such indi-
cator functions, i.e. the Radon transform of the pixelated edge map containing the lines
{(b1,61),--.,(bn,0,)}, under the strip model. Finally, B[S](b;, ;,7*) is the result of thresh-
olding R(b,0) at the level r*. We next look at the conditions themselves. Condition (5.14)
is really not required for (5.16) and (5.17) to hold, but simplifies the expression of (5.16). It
simply reorders the r; so that the peaks of R(b, #) are ordered by decreasing magnitude and
therefore implies no loss of generality. Condition (5.12) is also not necessary, but simplifies

the expression of €; which would otherwise be

W ;

e; < arcsin - . 5.18
i< ( B SRR am) (519

Tt holds with small values of § when m << min[R(b;, 6;), R(b;,0;)], Vi, j #i. Given

the fast decay of the function , this is a reasonable assumption in most practical

1
sin(z)]
situations.

Theorem 5.2 exposes a fundamental limitation of thresholding algorithms for line de-
tection. On one hand, the parameters of the strip associated with each peak of the Radon
transform of a pixelated edge map can only be recovered uniquely by a threshold smaller
than the amplitude of the peak. On the other, thresholding a peak at a given amplitude
will originate many false positives for all peaks of larger magnitude, namely all lines with
the correct b but # in the range determined by (5.16) and (5.17). Hence, the i** strip s;
can be detected if and only if, for j < 4, the angle of the j** strip is determined with an

error of at least €;. The following corollary establishes a connection between this error and

the image size.

Corollary 5.1. Consider the collection of strips S of Theorem 5.2, where all strips have
the same width ws; and assume that
rn <D (5.19)

where D is a constant. Then, if r* is such that all lines are detected, it is impossible to

recover 8; with an error smaller than

w
Y= in|— 5.20
€" = arcsin (D) , (5.20)

for any j < n.

Proof : From (5.16), given that the n!® line is detected,

w
. *) — | < — 0. < i S — .
B[S](bj,0,7*) =1, Vj <mn, |§ — 0;| < arcsin (r* e 1)6) (5.21)



§5.1 A TAXONOMY FOR THE RADON TRANSFORM OF A PIXELATED LINE 70

On the other hand, combining (5.10), (5.12), (5.13), and (5.19),

R(bn,0n) —(n=1)6 < R(bn,0n) — > 7s,(bn, On, dr;) (5.22)
<n

= 7(by,On,mn) (5.23)

< r, <D. (5.24)

Since, from (5.15), the n** line is detected if and only if r* < R(b,,#8,), it follows that
D > r* — (n — 1) and consequently

w w
] J— < ] N — .
arcsin (D) arcsin (’]"* ( 1)5>

Hence, for j < n, any line (b;,6) such that
w
0 — 0,] < arcsi (—)
| | < arcsin D
will satisfy (5.21) and will therefore also be detected. [

This corollary is interesting in light of results of the following sections, where we will
see (Lemma 5.5) that when one considers the restriction of the strips in § to the image
IUAJ/{ ,’LN, (5.19) holds with D as defined in (4.13). This means that the uncertainty with
which the angles of the lines associated with the strips in § can be recovered is intrinsically
dependent on the image size. Figure 5.6 shows how €* varies with D, suggesting three main
conclusions. The first is that €* is a monotonically decreasing function of D, i.e. (5.20)
establishes a dependence akin to the uncertainty principle of sampling theory: the smaller
the image size, the larger the angular uncertainty of the recovered line parameters. Second,
the angular error can be significant for most values of D that would seem sensible as window
sizes in the context of Algorithm 5.3, e.g. the error is greater than 3° for D < 20 and greater
that 1° for D < 60. Finally, a comparison with Figure 5.5(c) suggests that the lower bound
€* is tight. In the figure, D = 20v/2 ~ 28.2 and the angular error is between 1° and 2°
(the Radon transform was computed with an angular step of 1° and only one spurious line
appears on each size of the true one). This is compatible with the lower bound €* which,
from Figure 5.6, is somewhere between 1.5° and 2°.

Overall, the analysis based on the strip model, enables significant insight on the fun-
damental limitation of thresholding algorithms: the fact they must satisfy conflicting con-
straints. On one hand, from (5.20), it is important that the image size D be large in order
to reduce the angular uncertainty of the recovered lines. On the other, when D is large it is

likely that the image (or window) will contain line segments of significantly different sizes.
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Figure 5.6: Dependence of the lower bound of angular error ¢* (in degrees) on the image size D for a unit
strip (width w = 1).

In this case, from (5.17), the recovery of the smaller ones requires sacrificing the angular
accuracy with which the larger ones are recovered. Hence, for both small and large D, there
will be a significant subset of lines whose parameters cannot be detected accurately. As we
have seen in section 5.1.2, one possibility to overcome this fundamental limitation is to rely
on an adaptive threshold. However, we have also seen that this alternative is not easy to
implement. In particular, properly adapting the threshold would require some knowledge
of the peak locations, which are exactly what needs to be determined. For these reasons,

we next seek alternatives to the thresholding paradigm.

5.2 Line detection by matched filtering in Radon space

From the discussion of the previous section, it is clear that the Radon transform of a collec-
tion of strips exhibits two characteristics that present great challenges to the thresholding
model. The first, is that the strip associated with line (b;, 6;) will originate not only a peak
of R(b,0) at b = b;, 8 = 6;, but also a tail that decays with m. As is visible in
Figure 5.6, under the thresholding model, this decay is not fast enough to guarantee an
acceptable angular accuracy of the recovered lines when the Radon transform is spatially

localized (i.e. computed over a relatively small window). The second, visible in (5.13), is
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that when the image (or window) contains multiple strips, all of them contribute to the
Radon transform at any given (b,0). Hence, by evaluating the magnitude of a given peak,
it is impossible to make any inferences regarding properties of the associated line, e.g. its
length. In this section, we argue that these problems can be significantly smaller when
the Radon transform is replaced by its partial derivative with respect to . We start by

computing this partial derivative for the Radon transform of a strip.

Lemma 5.2. Let R[B(s)](b,0) be the Radon transform of the indicator function of strip
s = (bs,05,ws), as given by (2.22). Then,

OR[B(s)] wy

Proof: Follows by differentiating (2.22) with respect to 6. n

For 6 = 6, the partial derivative above is not defined. However, as we have seen in the
previous section, one never really deals with R[B(s)](b,#) in practical applications. Instead,
one has to deal with an upper bounded function, which is constant in the neighborhood of
0s. For compatibility with this practical scenario, we adopt the convention that

OR[B(s
RGO, ) -

Figure 5.7(a) shows a plot of (5.25) for s = 89 = (0,0,1) normalized by the value
at @ = 1°. It can be seen from the figure that the derivative %(b, #) has two main
properties of interest. First, it decays fairly quickly, being approximately zero for # such that
|#] > 20°. A comparison of the absolute value of (5.25) with R[B(s)](b, ) (also normalized
by its value at § = 1°) is shown in (b). Notice how the derivative decays much faster than
the Radon transform. This means that simply replacing the latter by the absolute value
of the derivative would significantly reduce the two main problems for thresholding. The
second property of interest is that (5.25) is a high-pass filter, i.e. a filter that will respond

strongly to signals containing fast transitions and weakly to smooth signals. Due to this,

using the interpretation of the autocorrelation function
Actr©y = [ 1056~ r (5.27)

as the convolution of f(#) with f(—8), one would expect AC{%(@ 0)} to have even

faster decay than BR[(%(S)] (b,0). This is indeed the case, as can be seen from Figure 5.8,

where the autocorrelation function is compared to the Radon transform. Notice that the

peak centered at # = 0 is narrower than that of Figure 5.7(b) and the side-lobes, having
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Figure 5.7: (a) Partial derivative of the Radon transform of the strip indicator function (5.25) with respect
to 0, as a function of 6. (b) Comparison of the Radon transform of the strip indicator function (dashed)
with the absolute value of its partial derivative with respect to 6 (solid). Both curves are normalized by
their value at 6 = 1°.
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negative amplitude, do not pose any problems for thresholding. In fact, given an edge
map with multiple pixelated lines, the side-lobes of the peak associated with one line will
suppress the contributions of peaks associated with other lines in that peak’s neighborhood.
This is both desirable and consistent with what is known about the human visual system.

These observations suggest the adoption of the following algorithm for line detection.

Algorithm 5.4. Given the Radon transform of the pizelated edge map of an edge indicator

function &,

rij = R{EMIE](x)}(bi, 0;),
perform the following steps:

1. let
_ OR[B(s)

06
where 0 = kOs, 05 is as defined in (4.4), and —% <k< %;

hi (0, 6%) (5.28)

2. compute the correlation function

[Q/9]
Cij = Z T4, j+klks (5.29)
k="12/5)

3. declare an edge with parameters (b;,0;) if

C*Q(gi,j)

cj=>T T

(5.30)

where T € [0,1] is a scaling factor, ¢* = IAX C, I* = n}cazXS(gk,l), and g;; =
(bi,Hj,I%;lN).

Two points are worth noting. The first is that this algorithm can be seen as a form
of matched filtering. This is a technique widely used in digital communications to recover
waveforms that have been corrupted by noise (e.g. due to transmitted over a communica-
tions channel). It can be shown that, under some generic assumptions on the signal and the
noise, matched filtering is the optimal detection technique in the least-squares sense (VAN
TREES (1968)). While we do not pursue here this alternative view of the edge detection
problem, it indicates that the algorithm above should have some resilience against noisy
edge maps. The second is that this algorithm can be combined with Algorithm 5.3 to
achieve spatial localization (simply substitute “Algorithm 5.2” by “Algorithm 5.4” in the
second step of Algorithm 5.3).
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Figure 5.8: Comparison of the Radon transform of the strip indicator function (dashed) with the auto-
correlation function of its partial derivative with respect to 6 (solid). Both curves are normalized by their

value at § = 1°.

In spite of all the theoretical arguments in favor of thresholding the correlation function

instead of the Radon transform itself, it turns out that the practical outcome is not very

different. An example is shown in Figure 5.9 which presents the recovered lines when the

algorithm is applied to the pixelated edge map of Figure 5.5(a), for two values of T'. Notice

that, in both cases, spurious lines are detected in the neighborhood of Iy or g, but, for

T = 0.3, it is already impossible to detect l; and, for T = 0.9, both l; and g are missed.

a0

351

30

251

L
25

,
40

Figure 5.9: Lines recovered by Algorithm 5.4 with T set to (a) 0.3 and (b) 0.9 when applied to the edge

map of Figure 5.5.
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The problem is that the actual Radon transform of the pixelated edge map (see Fig-
ure 5.5(b)) does not fully comply with the model derived from the strip. Notice, for example,
that while (2.22) does not depend on b when 8 # 6, the same does not hold for the functions
associated with each of the three peaks in Figure 5.5(b). In fact, for each b, these functions
are null for certain intervals of # and suddenly transition (at the extremes of these intervals)
to the values predicted by (2.22). Given that, as discussed above, the filter hy is a high-pass
filter, these transitions appear as peaks in the correlation function ¢; j, as can be seen from
the contour plot shown in Figure 5.10. These peaks are responsible for the thresholding

errors and, to account for them, we need to consider the model of the strip segment.

60

I i I I
20 40 60 80 100 120 140 160 180

Figure 5.10: Contour plot of the correlation function produced by the application of Algorithm 5.4 to the
edge map of Figure 5.5.

5.3 The strip segment model

The main limitation of the strip model for line detection is that it does not account for
strips of bounded length. Since images are bounded sets, this is always the case in image
analysis applications. The following lemma relates the Radon transforms of the strip and

strip segment.

Lemma 5.3. The Radon transform of the strip indicator function of the strip segment

‘IMN’ where s = (b, 05, w;), satisfies the following conditions

{ [|IMN]} 0) = R{B]s]} (b,0), if (b,0) EFIS( |IMN>
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2. R {B [s IM,N} } (b,0) < R {Bs]} (b,0), if (b,0) € PIS <s IM,N) ;

w,h w,h
3. R{B |:8 MN:|}(b79) :0, 'Lf (b,@) gIS (3 M,N);
Iw,;t |Iw,h
where R{B[s]}(-,-) is the Radon transform of the indicator function of strip s, as given

by (2.22), and IS <3| ,N> ,FIS (s IM’N)’ and PZS (s IM’N) are as in Definition 4.10.
h

M
Iw, w,h w,h

Proof: Since s‘ N C 8, it follows from Lemma 3.2 that
w,h

R{B 51|} 00) < REBD 0.0 v0.0)
w,h
This proves condition 2. The other two conditions follow from the definition of the Radon

transform of B [s IM,N:|

w,h

RAB o] o) = [ B
= Iy

= d(b—€&-x)dex.
/S(S)OIK;LN
IM,N) = () and the

iFrom Definition 4.9, when | = (b,0) ¢ ZS (S|IM,N>, ShHns (s‘

w,h w,h
integral is therefore zero. This leads to condition 3. From Definition 4.10, when l €
FIS S|IM’N)’ S()nS(s) C Iuj‘)/{;lN, from which S(I) N S(s) = S(I) N S(s) ﬂIu]‘]/’[;LN_ It

w,h

follows that

S|IMhN] ob—€&-x)dx

)5(b—£-:c)dm

R {B [S‘IKAN} } 5.6 = /S(s)ﬁIﬁl’N ob~¢ o) de

h

:/ db—€&-z)dx
S(s)
= R{B[s]}(b,0).

This leads to condition 1. n

The lemma provides an upper-bound to the Radon transform of the strip segment.
While the bound is obviously tight outside the partially intersecting set, it can be quite

loose inside this set. In particular, from (2.22), it goes to infinity as § — 0, and |b—b,| < %¢.
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This is clearly not the case for the Radon transform of the strip segment since the strip
segment has bounded support. To derive a tighter bound, we start by considering the

Radon transform of the indicator function of a rectangle.

Lemma 5.4. Consider a rectangle r,xp with sides of length w and h, its support set

S(rwxn) = {$|-'13 € rwxh}a

and the indicator function

1 ) =
S(erh)( ) 0 otherwise.

{ 1 ifx € S(ryxn),

The mazimum value of the Radon transform of this indicator function, R{1ls(r, ) (@)} is

Proof: Any rectangle 7,xp can be transformed into the pixel py = (0,0, w,h) by the
application of a translation and a rotation. Since, from (2.7), this operation does not
change the relative amplitudes of the Radon transform, the maximum of R{1sy,, )} (b,0)
is equal to that of R{P[py]}(b,0). From (2.27), and due to the symmetry of R{P[py]}(b, ),

it suffices to consider values of (b,6) € [0,00] x [0, §]. To determine the maximum, it is
necessary to consider the three equations of (2.27).

The first, ﬁ, holds in a region where tan @ < 7. In this region, it is a monotonically
increasing function of ¢ and therefore reaches its maximum when tan® = % (since the

tangent is a monotonically increasing function of 6 in [0, §]). Using the equality

o |1
TV T tan?e’

it follows that the function is maximum when 6 = arctan % and the maximum is vw? + h2.
The third, g5, holds in a region where tan® > . In this region, it is a monotonically

decreasing function of 6 and therefore also maximum when tan = % . Using

<ind tanZ @
mb =4/ ———
1+ tan20’

we, once again, obtain a maximum value of v/w? + h?. The second, %w

cos @sin 0 ) 18 &
monotonically decreasing function of b, therefore maximum when b = 0, in which case it
becomes the average of the other two functions. Hence, it has maximum value vw? + h2,

and this is also the overall maximum. -

We next use this result to derive an upper bound on the Radon transform of the indicator

function of the strip segment.
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Lemma 5.5. If s is the strip (bs, 05, ws), then the Radon transform of the indicator function

of the strip segment 3| M.N is bounded by

R {B[S‘IX;LN]} (6,0) < Trmaz (551.1][\,{}71]\[) ) (5.31)

where

( 2
min (D, \/wg + (E(bs,HS,I%;N) + w, tan95> ) ,
if (bs,05) € Ry
in | D, /w2 + (L(bs, 05, oL 0,)
( IM’N) . min > ws+< ( sy YssLw,s )+wsCOt s) >
Tmaz \ $s Ly p | = ]
Zf (bSaes) € RII
2
min (D, \/wg + (ﬁ(bs,ﬁs,Iu]‘]ﬁN) + % (cot O + tan 05)> > ,

Zf (bsaes) € 7z’l”a

\
L(-) is as defined in Theorem 5.1, D as in (4.13), and Ry, Ry, and Ry as defined in (4.7) -
(4.9).

Proof: Since s‘ . C I , it follows, from Lemma 3.2, that R {B |:3|IM;LN:| } (b,0) <

R [1 {zy (b,0). Hence, using the fact that ™ h is a rectangle of dimensions %42 X Ymaz
w,h

and applying Lemma, 5.4, R {B |:3|IM,N:| } (b,0) < D. To prove the second component of
w,h

the bound, consider (bs, ;) € Ry, as illustrated in Figure 5.11. Then, there is a rectan-
gle r with sides of length w,; and h + ws tanfs + “’S cot O such that 3| M C r. From

Lemma 3.2, it follows that R{ [S|IM,N:| } (b,0) < R{B [15(,.)]} and, from Lemma 5.4,
w,h

that R {B |:S|IM,N:| } (b,0) < \Jw?+ (h+ % tan 0, + %= cot 0,)2. Since h is the length of

the line segment (b 05,1 g[ hN) (5.31) follows by application of Theorem 5.1. The proofs
for the cases (bs,8s) € Ry and (bs,0s) € Ry are similar and omitted for brevity. n

The combination of Lemmas 5.3 and 5.5 leads to the following upper-bound for the

Radon transform of the indicator function of the strip segment.

Theorem 5.3. The Radon transform of the indicator function of the strip segment s M 5
w,h
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Figure 5.11: A strip segment in Ry, and the bounding rectangle r used in the proof of Lemma 5.5.
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where IS (

Tmaz (37 Iw h

B

B

N
Sl

’l

°l

IMN

w,h i

IMN

TM.N

w,h |

TM,N

w,h

) ]—"IS( ‘IMN>, and PIS (s‘

) as in (5.31).

= (bs, 05, ws), satisfies the following conditions

(5,6) = iz if
(b 9) |sm(0 9s)|’ Zf
and

} (b, 0) < Tmaz (S,Iw h ) ) if
and

} (ba 0) =0, 7’f

w,h

M,N
s

(b,0) € FIS | 8|_mv | ;
Lu,h

Wg

Tmaa:(sy
(6,8) € PIS (8 aiw
|Iw,h

|0 — 05| < arcsin

|0 — 65| > arcsin

IM,N);

Ws .
Tmaz(sylul\f;l]v) ’

(b,0) ¢ IS (s IM,N> :

) are as in Definition 4.10, and

Proof: Condition 4 follows from Lemma 5.3. To prove the remaining conditions, we start

by noticing that for (b,6) € ZS (s‘IM’N>’ it is never true that 6 = 6, and |b — by| > %=.
w,h

Hence, from (2.22), if (b,0) € PZS (

w,h

Ws

R{BI[s]}(b, 0) =

|sin(@ — 0,)|

S MN) or (b,e)EfIS (8 MN),then
" Iw,;z

(5.32)
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This and condition 1 of Lemma 5.3 lead to condition 1 of the theorem. Furthermore, when

(b,0) € PIS (3|

LM, N), combining condition 2 of Lemma 5.3 with Lemma 5.5 leads to

w,h

R {B [s IM,N] } (b,6) < min [R{B[s]}(b, ), rmas (5, 1113")]

w,h

But, from (5.32), R{B[s]}(b,0) is greater than rmaz (s IM’N) if and only if

' Tw,h

|6 — 65| < arcsin Ws

and the theorem follows. -

It is interesting to analyze the conditions under which the bound above is not exact.
Both conditions correspond to lines in PZS (s LM, N): while condition 3 applies to lines of
w,h
angle close to #s, condition 2 applies to lines whose angles are substantially different from
0s. In Lemmas 4.3 to 4.5 and Theorem 4.3, we have seen that
e theset PZS (s IM’N) is a band that extends the intersecting set of the line ! = (bs, ;)

w,h

along the b dimension;

e the ratio of the width of this band to the width of ZS (l Iﬁiﬁ) decays quickly as 6
deviates from 6.

Hence, condition 2 only really holds in a small sub-region of the region of support of
R {B [s ‘IK}LN] } (b,0). In that region, the Radon transform quickly decreases from |sin(uel+03)\
to zero. Furthermore, given the quick decay of w;|sin(f — 6;)|, condition 3 only holds for a
small range of values of # and, within this range, there is at least one point - (b, 05) - for
which the Radon transform has amplitude £ (bs,Gs,IuAf ,’lN). Since, from Lemma 5.5 and
under the assumption that w; is significantly smaller than the image dimensions (M, N),
Tmaz (s, I 111\;/{ ,’lN) is also only slightly larger than this value, it follows that the bound above
is tight. This implies that, for narrow strips, the Radon transform of the strip segment can

be well approximated by the following function.

Definition 5.1. The narrow strip approzimation (NSA) to the Radon transform of the
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indicator function of the strip segment s M where s = (bs, 05, ws), is

w,h
(
0, if (b,0) ¢ ZS (l IM,N)
w,h
ERGEsE it (0,0) €15 (llffffz”
WSA{B [ ] 0.0 = nd 10002 mesin
M,N .
T'max (S, Iw,h ) , if (ba 0) €1s (l IK;LN>
k and |6 — 6| < arcsin TW“”(ZW

where IS (s IM,N) is as in Definition 4.10, and 7ymag (s [MN ) as in (5.31).

w,h

T w,h

Figure 5.12: Left: Radon transform of the image shown in Figure 5.5 (a). Right: its NSA. Notice that,
for each pixelated line, the NSA is very close to the Radon transform everywhere but in its tails, where the
amplitude of the Radon transform is quite small.

In fact, as illustrated by Figure 5.12, the NSA is a close approximation to the Radon
transform of the pixelated line. The goodness of this approximation suggests the following

algorithm for line detection.

Algorithm 5.5. Given the Radon transform of the pizelated edge map of an edge indicator
function &,

and the number of pizelated lines N that it contains, perform the following steps:

1. set k=0,RP;; =0,Y(3,5).;
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2. while k < N

o compute Ar;j =1;; — RP;

o let (i*,5%) = arg max Arij

o let (b;,07) = (bi*aéj*)

o Py = S NSALB o] b 0000, 10,0

8. return the parameters (bf,0;),k=1,...,N.

This algorithm implements an analysis-by-synthesis (ABS) procedure. A new line is
detected at each iteration of loop 2 by locating the largest peak of the difference Radon
transform Ar; ; (analysis step). The latter is the difference between the Radon transform
and its current best estimate, RP; ;, and is initially equal to the Radon transform. The
NSA is then synthesized according to the parameters of this line (synthesis step) and added
to R'P;j. The new estimate is subtracted to the original Radon transform to obtain an
updated Ar; ; and the process is iterated until NV lines are detected. Note that each time a
new line NSA is added to the current best estimate and the updated estimate subtracted
from the Radon transform, the contributions to the latter from all previously detected lines
are canceled and do not appear in Ar; ;. Hence, the application of the maximum operator
is sufficient to detect the next largest line not yet uncounted for. This is drastically different
from the thresholding algorithms where the tails of the Radon transform are never explicitly
modeled nor suppressed and, therefore, originate spurious detections. Trying to eliminate
those spurious detections is usually not easy, and even quite involved heuristics can lead to
poor performance. In the following section, we present experimental evidence supporting

this claim.

5.4 Experimental procedure

We conducted a series of experiments to compare the performance of the various line de-
tection algorithms discussed so far. In order to have unambiguous ground truth about how
many lines were present in a given test image and what their parameters were, we relied
on synthetically generated edge maps. The procedure used to generate these images was

the following.

1. An image size of 40 x 40 pixels was selected.
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2. The admissible set computed according to (4.6) and a set of k line parameter vectors
(bi,0;),i =1,...,k, drawn independently with uniform probability over this admissi-

ble set.

3. An image was created containing the k pixelated lines defined by the parameters

above.

4. Salt-and-pepper noise was added by randomly reversing the state of each image pixel

with a given probability p.

5. A line detection algorithm was applied to the image, and k line parameter vectors

recovered. Each line was classified as correctly detected if
1(6,0) — (b, 9)]| <2,

where (b, ) are the true line parameters and (b, d) the recovered ones. Otherwise, it

was classified as an error.

6. Steps 1-5 were repeated 500 times for each of the possible combinations of & €
{2,...,5} and p € {0,0.01,0.02,0.03,0.04,0.05}.

Figure 5.13 presents some example synthetic images obtained with k = 2 for the different
values of p considered. Various line detectors were evaluated. Preliminary results showed
that the straightforward implementation of the thresholding methods (Algorithms 5.2
and 5.4) does not reach acceptable levels of detection error. The typical problem is that the
largest line originates various false-positives at locations where the amplitude of the Radon
transform is stronger than that of the peaks associated with the remaining lines. For this
reason we have implemented various heuristics, commonly used in the image processing
literature, to clean up the thresholding results.

The first was the use of morphological operators, namely the thinning operator (JAIN
(1989)). Since the Radon transform gradually decreases from the maximum value associated
with the correct parameters, thresholding always leads to a cluster of false positives around
the location of the maximum. Thinning is an operator that removes pixels from a set
until only a narrow subset remains. It is commonly used, in shape analysis, to obtain
the so-called skeleton of a binary shape and, in edge detection, to clean the edge map
by reducing all lines to single pixel thickness. In the context of line detection, it can be
used to eliminate false-positives by reducing the size of the cluster of detections around the

maximum location. This is illustrated in Figure 5.14 where we show the clusters formed
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Noise parameter 0 Noise parameter 0.01
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Noise parameter 0.02 Noise parameter 0.03

() (d)

Figure 5.13: Synthetic images with two pixelated lines and salt-and-pepper noise. Probabilities of state
reversal: (a) 0, (b) 0.01, (c) 0.02, (d) 0.03, (e) 0.04, and (f) 0.05.
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by thresholding the Radon transform of Figure 5.12 (left) and the result of the thinning
operation. Thinning reduces the number of false positives, but there are no guarantees that

they will be completly eliminated.

Figure 5.14: Left: binary map originated by tresholding the Radon transform shown in the left of
Figure 5.12. Right: corresponding map after thinning.

The second was the combination of a mazimum detector with the thresholding process.
This consisted of centering a 3 x 3 pixel window on each location of the (b,8) plane where
a line was detected (Radon transform above the threshold) and accepting the detection
only if the amplitude of the Radon transform at the central location was the largest in
the window. Once again, the goal was to eliminate the clusters of false positives that
thresholding originates in the neighborhood of the maximum. Figure 5.15 illustrates the
results of this procedure on the Radon transform of Figure 5.14 (left).

Finally, we experimented with various statistical clustering methods. Since image lines
are points in (b, f)-space and the false positives are mostly created by clusters around each
true maximum, a statistical clustering procedure such as the k-means algorithm (DupA
AND HART (1973)) should be able to identify the cluster centers. This turned out, however,
to be quite problematic. In images containing man-made structure (e.g. buildings or other
objects), lines tend to concentrate in a few directions (e.g. horizontal and vertical) and it
is common to find many parallel lines separated by a small distance along the b dimension
(especially when the objects are distant from the camera). In these cases, the clusters
tend to be elongated and each line contributes to the value of the Radon transform at the
locations of other lines by a non-negligible amount. Hence, there can be significant cluster

overlap and the cluster structure can be difficult to infer. This leads to poor performance by
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Figure 5.15: Left: binary map originated by tresholding the Radon transform shown in the left of
Figure 5.12. Right: corresponding map after maximum detection.

standard clustering algorithms. We have tried several variants but never with satisfactory
results or even results comparable to those of the two heuristics described above. Since
clustering methods are also much more expensive from a computational point of view, we

will not consider them in what follows.

5.5 Experimental results

In this section, we report the results of a study comparing the performance of six line detec-
tion procedures based on: 1) Algorithm 5.5, which we will refer to as analysis-by-synthesis
(ABS), 2) Algorithm 5.2, which we denote by thresholding (TH), and 3) Algorithm 5.4
which will be denoted by matched filtering followed by thresholding (MF+TH). The six
procedures were obtained by combining these base algorithms with the post-processing

heuristics discussed above:

—_

. plain ABS;

2. plain TH;

3. TH + Thin;

4. MF + TH;

5. MF 4+ TH + Thin;

6. MF + TH + MX;
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where Thin means morphological thinning, and MX means maximum detection. Figure 5.16
presents a comparison of the performance of the six procedures, in terms of the probability
of line detection error as a function of the salt-and-pepper noise probability p for images

containing 2 to 5 pixelated lines. Four interesting observations can be made from the figure.

3lines
2lines
0.55 T o7 !
k- —
05} B i S .|
— —= 06 ]
l e
045} 4
et P S
_ . 05f T e g L e 4
0.4F S S HFommm Sy e #
S 0351 , s
] = ABS w04 4
5 —— TH 2
> > —— ABS
2 o3 —#~ TH+Thin 4 £ e Th
2 MF+TH g g5l | THeThin i
2 MF+TH+MX S 0. MF+TH
& 0251 MF+Thin ml o MF+TH+MX
MF+Thin
02f . 02k 1
0.15 5
01 M
01f .
0.05 1 I | | | | | I | 0 | | | | 1 I I I 1
0 0005 001 0015 002 0025 003 0035 004 0045 005 0 0005 001 0015 002 0025 003 0035 004 0045 005
Noise parameter Noise parameter
(a) (b)
4lines
07 T 0.7
0.6 . o6 g
I [ B S S
_ I e
,,,7777—*777****‘i77‘* . .
f——————F T _ . _ _ _ et .
05F R S B 05 T B R e s el
s s
b 0.4F - 0 0.4 |
5 —— ABS 5 —— ABS
Z —— TH 2z — TH
3 e THThin 3 —— TH+Thin
§ 03 MF+TH 1 § 03 MF+TH 1
a MF+TH+MX £ MF+TH+MX
MF+Thin MF+Thin
02 4 02k : : . . 1
01 w 0.1 ;/_/,/‘———//"‘/
0 1 I 1 I 1 I | I I 0 I I 1 I 1 I I I I
0 0005 001 0015 002 0025 003 0035 004 0045 005 0 0005 001 0015 002 0025 003 0035 004 0045 005
Noise parameter Noise parameter
(c) (d)

Figure 5.16: Probability of error as a function of change of state probability due to noise for the six line
detection procedures discussed in the text. Results are shown for images with 2 (a), 3 (b), 4 (c), and 5 (d)
pixelated lines.

The first is that the ABS algorithm clearly outperforms all combinations of thresholding
plus heuristics. The performance improvements of the former can be very significant: up
to a 10-fold decrease in probability of error over the remaining techniques. The second
is that the probability of error achieved by the ABS algorithm is quite insensitive to the

noise level p and the number of pixelated lines in the edge map. This indicates that
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the ABS algorithm is robust to variations in these parameters. The third is that, of the
heuristic solutions, the only that performs close to ABS is procedure 6 (MF+TH+MX).
Nevertheless, the probability of error of this procedure is still about twice that of ABS. For
the remaining heuristic solutions, the probability of error is usually more than four times
that of ABS. The fourth observation is that the procedures using matched filtering tend to
do better than those based in straightforward thresholding. This is due to the faster decay
of the filtered Radon transform that leads to smaller tails and less interference between
the contributions from the different lines. However, as the figure clearly shows, matched
filtering does not completely eliminate the problem, which can only be fully addressed by
the explicit modeling of the Radon transform, as is done (through the NSA) in the ABS

procedure.

5.6 Line detection examples

We finalize this chapter with some line detection examples using the ABS algorithm. Fig-
ure 5.17 presents three images containing both significant line structure and richly tex-
tured areas and the associated edge maps (computed by the Canny edge detector (CANNY
(1986))). Textured areas usually pose problems to line detection algorithms since edge
detectors tend to produce many false positives in textured regions. The resulting spurious
edge pixels can lead to false positives for line detection. Figure 5.18 presents the first N
lines detected by the ABS algorithm when N € {25,50}. While we lack absolute ground
truth for the evaluation of line detection in these images, it is clear that the number of false

positives is quite small even when N = 50.
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Figure 5.17: Three images (left column) and associated edge maps (right).

90
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oy - ity

Figure 5.18: Line detection with the ABS algorithm on the three images of Figure 5.17. Left column:
first 25 recovered lines are shown superimposed on the image. Right column: same for 50 lines.



Chapter 6

Probabilistic models for the Radon

transform of pixelated lines

In the previous chapter, we have characterized analytically the Radon transform of a pix-
elated edge map given an edge indicator function. However, for most uses of the Radon
transform in computer vision, the edge indicator function is not known and has to be itself
determined from the observed images. This is an inference problem and, since there are
usually various source of uncertainty (e.g. unknown number of lines, unknown line pa-
rameters) and noise (sensor noise, edge detection noise, image regions without edges but
strongly textured), is naturally formulated as a problem of statistical inference. Such for-
mulation involves assigning a measure to the space of edge indicator functions, and deriving
statistically optimal procedures for determining the various unknowns.

In this chapter, we start from the simplest measure on the space of indicator functions (a
uniform distribution that makes all lines equally likely) and derive closed-form expressions
for various statistics of the Radon transform of pixelated edge maps: its probability density
function, first- and second-order moments, and the probability density function of its sample
mean. This statistical characterization is a significant result in the sense that it proves the
existence of a statistical law which governs the amplitudes of the range function of the
Radon transform. The existence of such laws, for many transforms commonly used in
vision, has been argued by various authors in the recent past (HUANG AND MUMFORD
(1999); PORTILLA AND SIMONCELLI (2000); GRENANDER AND SRIVASTAVA (2001)). We
present a derivation from first principles that, to the best of our knowledge, was previously
unavailable for the Radon transform.

As in the previous chapter, the existence of a sound characterization of the (statistical)
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properties of the Radon transform enables the design of sophisticated inference algorithms.
We illustrate this point by picking up where we left off in the previous chapter: an optimal
algorithm, in the minimum probability of error sense, to determine the number of pixelated
lines in a given edge map. This allows the application of the ABS line detection algorithm
of the previous chapter to local image neighborhoods. The result of integrating the two
algorithms is a line detection procedure that is capable of providing spatially localized line

estimates.

6.1 A probability density function for the Radon transform

To achieve a statistical characterization of the Radon transform, we restrict our attention
to the simplest possible measure, or prior, for edge indicator functions: the one which

assumes that all lines are drawn independently.

Definition 6.1. Consider the edge map EM[E](x) associated with an edge indicator func-
tion & defined on IUAJ/I ,’LN. € is denoted as an independent and identically distributed (iid)
edge indicator function when, for any line n-tupple I = {ly,...,l,|l; € A(Tmaz,Ymaz)},

the probability density function of I satisfies the following condition
n
P, €1, 1) = [[ €] (6.1)
i=1

If py[E(L;)] = &, V1 € A(Zmaz, Ymaz), Where k is a constant, the edge indicator function is

uniformly distributed.

We acknowledge that the assumptions of independence and uniformity may not always
be appropriate. In fact, most images tend to exhibit geometric structure in the form of
mostly parallel or perpendicular line arrangements, as well as dominant line orientations.
In these cases, both the independence and uniformity assumptions will be unrealistic. Nev-
ertheless, these assumptions can be quite useful because they simplify the problem consid-
erably and allow insights that would otherwise be difficult to attain. For this reason, we
restrict our attention to the set of edge indicator functions that are uniform and iid (uiid).

We start by deriving the value of the constant .

Lemma 6.1. Let £ be a wiid edge indicator function according to Definition 6.1. Then,

pl(b, 0) _ K Zf (b, 0) € A(-Tmamaymam) (62)

0 otherwise,
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where A(ZTmaz, Ymaz) S as given by Definition 4.3,
1
K= ,
44/2D cos (% - ¢)

and D, ¢ as in (4.13).

Proof: Consider a line I = (b,0). If | ¢ A(ZmazsYmaz), then py(b,0) = 0. Now, if
le A(a:mawaymaz)a
1

f07r f(b,a)EA(JJmamyymam) dbdf
1

2 f(;r(xmaw| €08 0| + Ymag| sin 0])doO
1
2 f(;T/Q(’ymaz Sin @ + Zypqq cos 6)dO + 2 f:/2 (Ymaz SINO — Tpyqq cos 0)dO
1
2D f07r/2 (sin¢sinf + cos ¢ cos 0)df + 2D f;r/Q (sin ¢ sin@ — cos ¢ cos 0)db
1
2D [ J3? cos(¢ — 0)d — [T, cos(¢ + e)de] ’

P (b7 0) =

with D and ¢ as in (4.13). The lemma follows after some algebraic manipulation. n

Since the Radon transform of a pixelated edge map is a deterministic function of the
associated set, £71(1), of edges, a measure on the space of edge indicator functions induces
a measure on the range space of the Radon transform. We next derive the probability
density function associated with the latter when that associated with the former is (6.2).

For this, we need some intermediate definitions and results.

Definition 6.2. The width of the intersecting set IS (l,Iﬁ{;LN ) of the line I = (b, ;) at 6
is
107(6) = bsup(0, i, 01) — bin s (0, by, 0;) (6.4)

where bgyp(+) and by, f(-) are as defined in Theorem 4.1.

The following lemma shows that the width of the intersecting set of a line is determined

by a simple function of its length and direction.

Lemma 6.2. The width of the intersecting set of line L = (b, ;) is
w1(6) = £(b1,6,) | sin(0; — 0)], (6.5)

where L(-) is defined in Theorem 5.1.
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Proof: Consider the four different cases in the proof of Theorem 4.1. For cases i) and
i), i.e. when |b| < |yma$| sin 0| — ZTynaqe| cos HIH’ the results are straightforward. Consider
now the remaining two cases. For case iii),

b b (sin(6; — )| Tmazx " Ymaz 1 sin @ n cos @

—b; = |sin(6; —
sup i : [sin(6;)] " [cos(8))] "\ [sin(@;)] " Tcos(8y)]
. z Ymaz sin(6; — 0)
= 0,—0 max —2lb)|————=
sin 0 (5o + o) — 2l

Since sign[sin(#; — 0)] = sign[sin(26;)], then

e _ Tmaz Ymaz _ sin(6; — 0)
b i = lsin =0 (s + ) — 2 %o
Similarly, for case iv), and since sign[sin(6; — )] = —sign[sin(26;)],

. Tmaz Ymaz Sin(el - 0)

b — _ 26| —————
bsup bznf |Sln(9l 9)| (‘ Sin(91)| + |COS(01)|> + |bl| Sin(20l)
. Tmazx Ymazx sm(gl - 9)
= - —2
it (s + Teontonr) ~ ey

and the lemma follows. n

One interesting consequence of this lemma is that, given a line I, the probability that a

line I’ will belong to its intersecting set is proportional to its length.

Lemma 6.3. Consider a line l = (b;,0;) € A(Tmaz,Ymaz)- The probability that a line l'
drawn randomly according to (6.2) will belong to ZS (l IM’N) is

L
P [l’ €IS (z,zjﬁ{;ﬁ)] — 2p(") £(b,,6)), (6.6)

where py(l') is given by (6.2).

Proof:
P [l' €IS (l,zju‘{;jv )] - /( — py(l') dbde
— ) [ o) a0
— ) £t0) [ |sin(0, )] dp
and the lemma follows. ]

The following theorem relies on these results, and the NSA approximation, to obtain

an expression for the probability density of the Radon transform of a given line [.
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Theorem 6.1. Consider a line l and denote by r(l') the value of the NSA to the Radon
transform of L (Definition 5.1) at a parameterization ' drawn, independently of 1, according

to (6.2). Then, r(l') is distributed according to
Plr(t') = a|l = (b, 61)] (6.7)

= Pl ezs (1Y) (11(10)21‘:321{W<a<rm}(a)

1—4/1- (%)1 §(a — rmam)> + (1 _P [l' €18 (l,IZZ;LNﬂ) 5(a), (6.8)

where ryaz 18 given by Lemma 5.5.

_I_

Proof: Since l' is drawn independently of I, P[l' = (b,0)|l] = P[l' = (b,6)] and

Plr(l') = a|l = (b, 0)] =

/ Plr(t') = a|l = (b, 00),1' = (b, 0)] Pl' = (b, 0)] dbdo
(bae)EA(zmam ;ymam)

- / Plr = a |1, py(l') dbdf + / Plr = a|1,U]p(I') dbdd (6.9)
(b,0)ezs(l) (b,9)¢ZS(1)

where we omit the conditioning parameters I = (b;,6;) and ' = (b, 0) for brevity. We start
by considering (b,0) € ZS(l), in which case it follows from Definition 5.1 that

Pr(l)=a|lLl] =4 (min [rmw, L&)J - a) .

| Sin(ol —

Hence,

/ Plr(t') = a| L,V py (') dbd6
(b,0)eZS(1)

= m/ow t0;(6) 6 (min [rmm’m] —a) df

T | w ]
= K',,S(bl, el) /O |Sln(0l — 0)| ) (mll’l -’I“maz, m- - a) do
1 M,N
= P ezs(LTyY)]

¥ w T
sin(@; — 0)|6 | min |74z, ————— | —a | d6. 6.10
J; o= 005 (min s =gy | =) 0. 610

Assuming, without loss of generality, that 6; > 7 and exploiting the symmetries of the

functions | sin(d; — )| and m (see Figure 6.1), the integral in (6.10) can be rewritten



§6.1 A PROBABILITY DENSITY FUNCTION FOR THE RADON TRANSFORM

— [sin(@-0)] !
__ 1sin(8-9)| |

Figure 6.1: |sin(4; — 8)| and m as functions of 6.

as

g w
sin(¢; — 0)|d | min |rpeg, ——5—> | —a | d0
[ im0 018 (min s iy | o)

w
w

91—arcsin(rm z) ) 5
= /0 |Sln(0l — 0)' <m — G,) do

01+arcsin(”::’aw)
v / |5in(0; — 0)] 6(rmas — a) dO
/]

l—arcsin( W )
Tmaz

4 w
+ / sin(@; — 0 (5(_7—a>d0
01+arcsin( w ) | ( : )l |Sln(el - 0)'

Tmazx

- /9 fjl(; sin(0, — 0) 5 (sm((;lui—o) _ a) do

0, —arcsin ( rni”m ) w
+ 2/ sinO—Oé(%—a)dﬁ
20,—7 (6 ) sin(6; — 0)

5

0
+ 2/ sin(6; — 0) 6(Tmaz — a) dO
6; —arcsin ﬁ

97
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and, using the change of variable a = m ((9 0, — arcsin (%) df = %%da) ,

w
/ |Sln 0[ |6 <m1n |:Tmaz, m] — a) df

sind; 1 Tmazx 1
w

1— (2)2@ s © Ji- (@2
0

+ 24(a — Tmaz) / sin(6; — 0) d
0

; —arcsin{ —%
T

w? 1 a)
a/3 /1 _ w {wSaS suq:)e, w {smel <a<'fmaw}
a a

1-4/1- (%)2] §(a — Tmaz)- (6.11)

2

+ 2

We next consider the case in which I’ = (b,0) ¢ ZS(l). Since, in this case,
Plr(l") =a|Ll" = (b,0)] = é(a),

it follows that

/ Plr(') = a| 1,V PQU) dbdo
(v.0)gzs ()

5(a) / (') dbdo
(v.0)gzS)

_ 5(a) (1 _ /( rera PO do)
— 5(a) (1 _P [l' €IS (l,I{f;lN)]) . (6.12)

The theorem follows by substituting (6.11) in (6.10), and combining this with (6.12). =

The theorem shows that, under the NSA, the probability density function for the am-
plitude of the Radon transform of a line I is a mixture of three components: two delta
functions located at the extreme values (¢ = 0 and @ = 7p,4;) and a component that con-
tinuously decays from its maximum at ¢ = 1 to its minimum at a = ry,x. Figure 6.2
presents the fit provided by (6.7) to the actual histogram of the Radon transform of the
pixelated line with I = (0,0) (the delta function located at a = 0 is omitted to improve the
clarity of the figure). The fit can be considered very good everywhere except in the region
0 < a < 1. This region corresponds to the values of the Radon transform which are smaller
than one, i.e. values associated with the parameterizations of lines whose intersection with

the pixelated line I, is shorter than one pixel. Such lines can only be members of the
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partially intersecting set of I and, since the partially intersecting set is not accounted for
by the NSA (which accounts for the lines as if they were members of the fully intersect-
ing set), the mismatch was expected. Notice, however, that the probability mass in the
region 0 < g < 1, and therefore in the partially intersecting set, is only a small fraction
of the entire probability. This confirms the previous claims that the NSA provides a close
approximation to the true Radon transform.

b =0and8 =0
0.5 T T T

— Plr=ald, )]
0.45F

Figure 6.2: Histogram of the Radon transform of the pixelated line with I = (0,0) and the fit by (6.7).
The probability at a = 0 is omitted to improved the clarity of the figure.

Theorem 6.1 is interesting in various ways. On one hand, it provides an explicit statisti-
cal characterization of the Radon transform of a pixelated line. The study of the statistics of
various kernel transformations has been a topic of great activity in the recent past, both in
the computer and biological vision literatures (BELL AND SEJNOWSKI (1995); OLSHAUSEN
AND FIELD (1996); HUANG AND MUMFORD (1999); PORTILLA AND SIMONCELLI (2000);
GRENANDER AND SRIVASTAVA (2001)). It has been postulated that there are universal
laws which govern the statistics of these transformations, and a fair amount of experimen-
tal evidence has been presented to this effect. To the best of our knowledge, the theorem
above and the work of (GRENANDER AND SRIVASTAVA (2001)) are the only available proofs

of existence of such laws. In addition to this, the theorem is interesting in the sense that it
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establishes a basis for the design of sophisticated algorithms. One obvious area of applica-
tion is the use of (6.7) as a prior for Bayesian inference procedures. While the major goal
of the thesis is not the development of these algorithms per se, we will consider in the next

section the application of (6.7) to the line detection problem.

6.2 Statistics of the Radon transform

There are various statistical quantities of interest to applications of the Radon transform in
vision that can be derived from Theorem 6.1. The following corollary provides closed-form

expressions for the first- and second-moments of the Radon transform of a pixelated line.

Corollary 6.1. Consider a pizelated line l and denote by r(1') the value of the NSA to the
Radon transform of  (Definition 5.1) at a parameterization l' drawn, independently of 1,

according to (6.2). Then, r(l') has the following first- and second-order moments.

E[r(l") |l = (b,0)]

2
= 2x&|w [E—arcsin( ad )] + Tonaz |1 — 1—( d ) (6.13)
2 Tmazx Tmax

E[r(t)* |1 = (b1, 0))]

2 a2 2
2k ¢ [ w? nTmee T Vimee ZW7 2y 1—( v ) (6.14)
w

mazx

where £ is given by (5.2), k by (6.3), and Tz by Lemma 5.5.

Proof: The corollary follows from the definition of first- and second-moments

Elr(@) |1 = (b,0)] = / o Plr(') = a|l = (b, 0,)) da

a

Elr () 1= (b, 0)] = / o Plr(l') = a|l = (b, 0))] da.

a

[

The following corollary builds on these results to determine the probability of the Radon
amplitude in the case where it is known that there is one pixelated line in the edge map,
but not what its parameters are.

Corollary 6.2. Consider an edge map EM[E](x) associated with the image IHA}/{,’LN and

denote the number of pizelated lines in it by T, i.e.

T = |{l; € SLyp| EL) = 1}]. (6.15)
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Then, if r(l') is the value of the NSA to the Radon transform of the edge map at a param-

eterization l' drawn according to (6.2),

E[r(l")|T =1]

2
= 2kE |8 w[f—arcsin( d )] + Trmaz |1— 1—( d ) (6.16)
2 Tmax Tmazx

Blr@)’ |7 =1]

[r2 2 2
2k Fy | & | w? nlmert Vimae ZW7 o g 1—( v ) (6.17)
w

max
Tmazx

where £ is given by (5.2), k by (6.3), Trmaz by Lemma 5.5, and Ej[-] is the expectation with

respect to 1.

Proof: Since there is only one line in the edge map, the NSA to the Radon transform
of the latter is simply the NSA to the Radon transform of the former. The corollary then

follows from Corollary 6.1 by marginalizing over the line parameters,

Efr(l"h*|T=1 = /E[r(l’)’“ |l = (b,6,), T =1 P[l = (by,0) | T = 1) db; d6; (6.18)
— [ B @)1= (001 mi(br, ) i a8 (6.19)
and applying (6.13) and (6.14). [

The corollary is interesting in the sense that it shows that, once a measure is assigned to
the space of edge indicator functions, the expected value of the Radon transform of an edge
map containing a single pixelated line can be predicted in closed-form. This immediately

leads to the following theorem.

Theorem 6.2. Consider an edge map EM[E]|(x) associated with the image Ii/[,’lN and
containing t pizelated lines drawn independently according to (6.2). Then, if r(l') is the
value of the NSA to the Radon transform of the edge map at a parameterization l' also

drawn according to (6.2),

Elrl)|T=t = tErl)|T=1] (6.20)
varlr)|T =14 = t{EF*V)|T =1 (Er1)|T =1)°}, (6.21)

where var(-) means variance and E[r*(l')|T = 1],k = 1,2 are as given in Corollary 6.2.
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Proof : Consider the parameterization I’. Since the edge map of the ¢ lines is the sum
of the edge maps originated by each of the lines, by the linearity property of the Radon
transform it follows that r(1') = 3¢, r;(!'), where r;(I') is the Radon transform at I’ of

the i** pixelated line. Hence,
E[r(l)|T =t = /E[r(l') =l =0T =tpy,, gy, lt)dl ... dly
_ /ZE[TZ @) Hp, Vdly ... dl;
= Y [ B 1 = it

= tE[r(l') | T =1].

The derivation of the expression for the variance is similar. Because the ¢ lines are drawn
independently, the r;(I') are independent random variables and, therefore, the variance of

the sum is equal to the sum of the variances. Marginalizing over the l; as above leads to
var[r(')|T = t] = tvar[r(l') | T = 1]

and (6.21) follows from the well know relationship between the variance and the first- and

second-order moments of a random variable var(r) = E(r?) — [E(r)]?. [

From the point of view of applications, the significance of this theorem is that, once
a measure is assigned to the space of line indicator functions, the terms E[r*(l')|T =
1],k = 1,2 are completely determined by the image size - which determines £ through
(5.2), Tmaz through Lemma 5.5, and k through (6.3). Hence, given the measure and the
image dimensions it is possible to pre-compute E[r¥(l')|T = 1],k = 1,2, and therefore
E[r(l")|T = t] and var[r(l") | T = t] for all values of ¢ of interest. Indeed, this operation only
has to be performed once, independently of whether the Radon transform is applied to the
entire image or to local neighborhoods, or even independently of the pixel intensities of the
image. Table 6.1 presents the values of the coefficients E[r(l') | T = 1] and var[r(l') | T = 1]
for an example set of neighborhood sizes ranging from 20 x 20 to 100 x 100. Notice that
the values of the coefficients are approximately constant and independent of the image size.
This suggests that a good strategy to determine the number of lines ¢ in a given edge map
would be to obtain an empirical estimate of the mean and variance of its Radon transform
and select the ¢ that leads to the closest values of E[r(l')| T = t] and var[r(l') | T = t]. We

next formalize this intuition.
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Region Size | E[r(I') | T = 1] | var[r(l')|T = 1]
20 x 20 0.6201 0.0042
40 x 40 0.6180 0.0052
60 x 60 0.6173 0.0058
80 x 80 0.6175 0.0062
100 x 100 0.6175 0.0066

Table 6.1: Coefficients of (6.20) and (6.21) for various region sizes.

6.3 Determining the number of lines

One possible way to estimate the mean and variance of a random variable is to obtain a

sample of observations and compute its sample mean.

Definition 6.3. If x is a real valued random variable and z1, zo, . .. ,, a sample of obser-

vations of &, the sample mean < x > is
1 n
<z >=— T;. 6.22
; ]Z ) (6.22)

It is well known that the sample mean satisfies the following properties.

Lemma 6.4. Let < x > be the sample mean of a sample of observations from a random
variable . Then

E[< z >] = Ez]. (6.23)

Furthermore, if the observations are drawn independently,

var(< ¢ >) = %var(w). (6.24)

Finally, for large n, the probability density function of < x > converges to a Gaussian

distribution of mean E[< z >] and variance var(< z >).

Proof: The first two results are straightforward, the third is known as the central limit
theorem. See any text on elementary probability, e.g. (DRAKE (1987); PApouLis (1991)),

for proofs. |

Since the Radon transform of a pixelated edge map is a sample of observations from

r(l'), this lemma suggests the following approximation to its probability density.
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Definition 6.4. The asymptotic independent sample approzimation (AISA) to the proba-
bility density of the NSA to the Radon transform r(l') of a pixelated edge map containing

t lines is

P(<r>|T=t)=
PQ - {_ PQ
V2rvar[r(l')|T = t] 2var[r(l')|T = t]

where P(Q is the cardinality of the sample (number of parameterizations on the grid L’,i?as

(<r>-E[rl)|T = t])Q} (6.25)

used to compute the Radon transform).

There are two reasons why (6.25) is an approximation. The first is the assumption that
the central limit theorem holds. This is a reasonable assumption since, even relatively small
image neighborhoods by image analysis standards (e.g. M, N = 40), will generate a large
number of observations (1600). The second is the assumption that the observations of r(1')
are drawn independently, inherent to (6.24). Notice that while the parameterizations I’ are
drawn independently, the values of the Radon transform at those parameterizations are not,
since each pixelated line contributes to all of them. Due to this, and unlike the estimate of
the mean, the estimate of the variance given by (6.25) is usually incorrect. Nevertheless,
we will see that the AISA can lead to effective algorithms for determining the number of
lines in the edge map.

We start by proposing an algorithm based on the principles of decision theory. It is well
known (BERGER (1985) that, given the observation of a random variable A, the minimum
probability of error estimate of a random variable B is the mazimum a posteriori (MAP)

estimate
byap = argmgme(B =blA =a) (6.26)
= argm(?xP(A =a|B =b) P(B =b). (6.27)

The density P(B = b) is referred to as the prior density, and P(A = a|B = b) as the
conditional likelihood function. In the line detection context, the variable to estimate is the
number of lines 7', and the observed random variable the sample mean of the Radon trans-
form of the pixelated edge map. The AISA provides an approximation to the (unknown)
conditional likelihood function of the latter given the former, enabling the estimation of

the number of lines through the following algorithm.

Algorithm 6.1. Given an edge map EMI[E](x), a parameter lattice [,,Z’fgs, and a prior
probability for the number of pizelated lines P(T = t), perform the following steps to esti-

mate the number of pizelated lines that it contains:
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1. compute the Radon transform R{EM[E](x)}(bi, 0;),Y (i, 0;) € [,,i’fgs;

2. compute the sample mean < R{EMI[E]}(b;,0;) >;

3. compute the maximum a posteriori probability estimate for the number of lines under

the AISA

trap = argm?xP[< R{EMIE]}(bi,0;) > | T =1t] P(T =1t),

(6.28)

where P [< R{EM[E]}(b;,0;) > | T =t] is obtained by using < R{EMIE]}(b;, 6;) >
as < r > in (6.25).

Figure 6.3 presents the Gaussian densities described by (6.25) for a region size of 40 x 40

and ¢t € {1,...,10}. Notice that these densities are clearly separated, indicating that the

probability of error of the MAP decisions should be very small.

30
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However, due to the

<r>

Figure 6.3: Gaussian densities characterizing the AISA to the likelihood of the sample mean of the Radon
transform of a 40 x 40 pixelated edge map, given the number of pixelated lines.

independence assumption inherent to the AISA, the true variances can be much larger than

those suggested by the figure and the probability of error could therefore be much larger

as well. In order to evaluate how this problem may affect the accuracy of Algorithm 6.1,

we conducted the following Monte Carlo experiment:
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e one thousand trial edge maps containing ¢ pixelated lines were independently drawn

according to (6.2);

e the estimate 37 4p was computed for each edge map, according to Algorithm 6.1, and

the number of trials in which t3;4p was different than ¢ was recorded.

The experiment was repeated for images sizes ranging from 40 x 40 to 100 x 100 and ¢
ranging from 1 to 5. Table 6.2 presents the percentage of the estimates that were wrong for
each image size. Clearly, the possible variance mismatch does not seem to be a reason for
much concern. In the image sizes and number of lines considered, the error rarely exceeded
1%, suggesting that the AISA is a good model for determining the number of pixelated

lines in a given edge map.

Region Size | 1 line | 2 lines | 3 lines | 4 lines | 5 lines
40 x 40 0% 04% | 0.6% | 2.2% | 6.3%
60 x 60 0% 0% 0.1% | 03% | 0.4%
80 x 80 0% 0% 0.1% | 0.4% | 0.2%

100 x 100 0% 0% 0.2% | 0.1% 0%

Table 6.2: Error rate for the estimate of the number of lines for the Monte Carlo experiment described in
the text.

6.4 Line detection examples

The main limitation of the line detection examples of chapter 5 was the absence of localiza-
tion. While satisfactory at the whole image level, the strategy of pre-defining the number
of lines does not really generalize to the case in which the Radon transform is computed
over spatially localized neighborhoods. The problem is that different neighborhood will
typically contain different numbers of lines and the estimate of this number must, there-
fore, be adaptive. This is impossible when the number of lines is pre-set, in which case it
is impossible to recover the image lines with any degree of confidence in what regards to
their spatial localization (e.g. start- and end-points).

The statistical characterization developed in this chapter makes it possible to find the
optimal (in the minimum probability of error sense) estimate for the number of lines,
therefore enabling the computation of the Radon transform over localized neighborhoods. In

this section, we finalize the chapter with some examples of spatially localized line detection.
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A collection of natural images containing lines was assembled, each image decomposed into
a set of local neighborhoods, the number of lines in each neighborhood estimated with
Algorithm 6.1 and the line parameters recovered with Algorithm 5.5. Figure 6.4 presents
the images previously analyzed in Chapter 5, and the corresponding estimate of the number
of lines in each image region (activity map). Figure 6.5 presents the recovered lines. We
emphasize that these results are the output of the straightforward combination of the two
algorithms. No post-processing steps were included to try to improve in any way the line
detection results. Comparing with Figure 5.18, it is clear that the spatial localization of
the recovered lines is now significantly higher. Figures 6.6 to 6.8 present a set of additional
images of indoor and outdoor scenes, the associated edge maps, and the lines recovered
with the combination of Algorithms 6.1 and 5.5.

From these examples it can be concluded that the lines that exist in the edge map tend
to be recovered with fairly good accuracy. This is not to say that there are no problems. In
particular, there are two major sources of error: 1) textured areas that lead to a significant
number of false positives, and 2) edge detection omissions that lead to missed line segments.
Finally, all the analysis is limited by the fact that, for each image, all neighborhoods are
of the same size, and the size is currently pre-specified (to roughly % of the image height).
The solution of these problems will require additional modules, e.g. a texture detector that
can automatically disable the line detection module in textured regions, and an algorithm
to estimate the optimal neighborhood size at each image location. Finally, these results
also raise the question of whether assuming the existence of a reliable edge map is feasible

in practice. All these questions remain open for future work.
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Figure 6.4: Left: images previously analyzed in Figure 5.18. Right: associated activity maps.
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Figure 6.5: Left: images previously analyzed in Figure 5.18. Right: lines recovered with the combination
of Algorithms 5.5 and 6.1.
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Figure 6.6: Two images (top), associated edge maps (middle row), and recovered lines (bottom).
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Figure 6.7: Two images (top), associated edge maps (middle row), and recovered lines (bottom).
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Figure 6.8: Two images (top), associated edge maps (middle row), and recovered lines (bottom).



Chapter 7

Conclusions

In this thesis, we have presented a detailed characterization of the Radon transform of
pixelated functions. We believe that several contributions were derived that shed non-trivial
insights on how the Radon transform of the ideal line compares with that of a pixelated
approximation. These include: 1) a closed-form expression for the Radon transform of
the pixelated line, 2) a precise understanding of how the various features of the pixelated
line (bounded support, non-zero width, and pixelization) affect its Radon transform, 3)
a parametric model for the latter that is quite easy to manipulate both analytically and
computationally, 4) a characterization of various statistics of the Radon transform of the
pixelated line, and 5) a proof of existence of a statistical law that governs the value of the
Radon transform of probabilistically specified pixelated lines.

In the process of deriving these main contributions, various other interesting insights
were obtained, namely 1) the decomposition of the range function of the Radon trans-
form into its support set (the intersecting set of the pixelated line) and amplitude, 2) the
realization that while the amplitude is significantly affected by pixelization the support
set is basically unaltered by it, 3) the connection between several variations in the stan-
dard thresholding procedure for line detection and a taxonomy of models that approximate
the Radon transform of the pixelated line with different levels of accuracy, and 4) a clear
understanding of when the assumption that a line is ideal and not pixelated is acceptable.

The main theoretical contributions were also shown to be of practical impact by 1)
exposing fundamental limitations of commonly used procedures, such as the detection of
geometric structures by thresholding, and 2) establishing a principled basis for the deriva-
tion of new algorithms for various components of the line detection problem. These in-

cluded an optimal (in the minimum probability of error sense) procedure for automatically
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determining the number of lines in an image, and an analysis-by-synthesis algorithm for
determining the parameters of those lines, that was shown to be significantly superior to
currently used methods. The combination of the two algorithms enables spatially localized
line detection without degradation of the detection accuracy, something that was shown
not to be possible under thresholding strategies.

While this is a non-trivial set of insights and algorithmic contributions, it is really only
a first step toward a complete understanding of the impact of pixelization on the Radon
transform. In fact, there are many ways in which this work could be extended. In terms
of deriving models that are suitable for line detection, it would be interesting to extend
what was done for the line to other geometric objects. In principle, there is no reason
why the analysis could not be extended to pixelated circles, rectangles, and so forth, but
it remains to be determined what would be the equivalent expressions for quantities such
as the intersecting set, the decay of the amplitude of their Radon transform, or statistical
quantities such as the histogram and second-order moments.

Even for the pixelated line itself, there are various extensions that warrant further
exploration. These include the extension of all statistical results to the case where more
realistic measures are imposed on the space of edge indicator functions. While relaxing the
assumption of a uniform prior distribution should not be too difficult (e.g. to account for
images with a dominant orientation), relaxing the independence assumption is likely to be
a source of greater difficulty. It would nevertheless be interesting to explore priors that can
account for the known geometric structure of most scenes that contain lines (e.g. priors
that favor parallelism) or even encode some well known properties of the human visual
system, e.g. the so-called Gestalt principles of perceptual organization (PALMER (1999)).

Another interesting source of open questions is the issue of extending the results pre-
sented to non-binary pixelated functions. While an exact expression was derived for the
Radon transform of any pixelated function, this expression suffers from the same limitation
as the equivalent one for the pixelated line: it is quite complex. Even in the context of edge
detection, it would be interesting to consider models for the line that apply directly to the
image intensities. This would bypass the need for an edge detection step, that was shown
to be the source of various problems.

In addition to this, and still in the context of vision applications and the edge detection
problem, this work leaves various other questions unanswered. An issue that will require
further investigation is that of how to automatically determine the optimal granularity for

the Radon transform. It is likely that better performance can be achieved by adapting the
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size of the local neighborhood to the local image statistics. This, however, will require some
optimality criterion relating the neighborhood size and the accuracy of the line detection.
At this point, it is not clear what this criteria might be. Another open issue is that of
integrating the local estimates that are currently obtained into a set of coherent global line
estimates. Ideally, this integration should be driven from line estimates derived at multiple
image resolutions and neighborhood sizes. Once again, solving this problem will imply the

derivation of probabilistic models for configurations of line segments.
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