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Optimal control of coupled spins in the presence of longitudinal and transverse relaxation
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In this paper, we develop methods for optimal manipulation of coupled spin dynamics in the presence of
relaxation. These methods are used to compute analytical bounds for the optimal efficiency of coherence
transfer between coupled nuclear spins in presence of longitudinal and transverse relaxation. We derive relax-
ation optimized pulse sequences which achieve these bounds and maximize the sensitivity of the experiments
in spectroscopic applications. This paper is a continuation of our previous work. Here, we take into account
both the longitudinal and the transverse relaxation mechanisms, thus generalizing our previous results, where
the former had been neglected.
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I. INTRODUCTION

In applications involving control and manipulation o
quantum phenomena, the system of interest is not isol
but interacts with its environment. This leads to the pheno
enon of relaxation, which in practice results in signal lo
and ultimately limits the range of applications. Manipulati
quantum systems in a manner that minimizes relaxa
losses poses an important practical problem. A premier
ample is the transfer of coherence between coupled spin
NMR spectroscopy@1#. Presence of relaxation limits the e
ficiency of coherence transfer between coupled spins and
sults in poor sensitivity of the experiments. The proble
becomes pronounced in NMR spectroscopy of large biom
ecules. With increasing size of molecules or molecular co
plexes, the rotational tumbling of the molecules becom
slower and leads to increased relaxation losses. When t
relaxation rates become comparable to the spin-spin c
plings, the efficiency of coherence transfer is considera
reduced, leading to poor sensitivity and significantly
creased measurement times.

This negative effect of relaxation on the efficiency of c
herence transfer automatically gives rise to some impor
practical~and theoretical! problems.

~1! What is the theoretical upper limit for the coheren
transfer efficiency in the presence of relaxation?

~2! How can this theoretical upper limit be reached e
perimentally?

In our previous work, we answered the above questi
for a coupled two-spin system under the presence of tra
verse relaxation@2,3# ~neglecting and including cross
correlation effects, respectively!. In this manuscript, we ex
tend these results to the case where both longitudinal
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transverse relaxation mechanisms are important, and we
not neglect the former.

The methods developed here are also useful for answe
important questions in quantum information theory. It is
fundamental problem to understand the extent to which
open quantum system can be controlled, i.e., where all
state of a quantum-mechanical system can be steered in
presence of relaxation? How much entanglement can be
duced in presence of decoherence and dissipation and wh
the optimal way to synthesize unitary gates in open quan
systems so as to maximize their fidelity? All these proble
are related to optimal control of quantum-mechanical s
tems in presence of relaxation.

II. RELAXATION IN NMR IN LIQUIDS

As a model system, we consider optimal control of e
sembles of nuclear spins in NMR spectroscopy. We user to
denote the density matrix for the spin ensemble. The den
matrix of a closed quantum system (\51) evolves as

dr

dt
52 i @H~ t !,r#, ~1!

whereH(t) is the Hamiltonian of the system.
For an open quantum system, the evolution is no lon

unitary. In many applications of interest, the environment c
be approximated as an infinite thermostat, whose own s
never changes. Under this assumption, also called the M
kovian approximation, it is possible to write the evolution
the density matrix of the system~master equation! alone in
the ~Lindblad! form @4#

dr

dt
52 i @H~ t !,r#1L~r!, ~2!

where the termL(r) is linear in r and models relaxation
The general form ofL is
©2004 The American Physical Society19-1
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L~• !5(
a, b

Jab†Va ,@Vb
† ,•#‡, ~3!

where Va, b are operators that represent various relaxat
mechanisms andJab are coefficients that depend on th
physical parameters of the problem.

Our focus in this paper is on the relaxation phenomen
the liquid state NMR spectroscopy. In this case, the syste
modeled as being composed of two weakly interacting pa
the spin system, consisting of all spin degrees of freedom
the nuclei, and the lattice, consisting of all other degrees
freedom of the liquid sample, associated with the molecu
rotations and translations. Molecules in solution are c
stantly being bombarded with solvent molecules and unde
random ‘‘Brownian’’ motion as a result. This stochast
Brownian motion is the principle mechanism of relaxation
NMR spectroscopy. The small intercollision time of the o
der of 10212–10214 sec, ensures that the correlations b
tween the spin system and the heat bath decay much f
than the evolution of the spin system and thus a Markov
approximation is a valid assumption.

Note that, since we consider classical motion of the m
ecules~rotations and translations!, we adopt the so-called
semiclassical approximation, where the spin system
treated quantum mechanically and the lattice is treated c
sically @5,6#. Specifically, the Hamiltonian for the system
written as the sum of a deterministic HamiltonianH0, which
acts only on the spin system, and a stochastic Hamilton
H1(t), which couples the spin system to the lattice:

H5H01H1~ t !. ~4!

For our purposes, we considerH0 time independent. The
Hamiltonian H1(t) is a random function of time and w
assume that it has a vanishing average value. If it is not,
can incorporate the average value toH0, so the resulting
H1(t) has a zero average. The stochastic Hamiltonian ha
do with the relaxation phenomena and can be written in
form

H1~ t !5(
a

VaFa~ t !, ~5!

where theVa are spin operators~the relaxation operator
defined above! and theFa(t) are random functions of time

To demonstrate the basic principles, we examine an
lated pair of heteronuclear spinsI andS ~spins that belong to
different nuclear species! with indirect interaction~mediated
by the surrounding electrons!. For such a system, the dete
ministic HamiltonianH0 is given in @6#

H05HZ1Hind , ~6!

whereHZ is the Zeeman Hamiltonian for the spinsI andS,

HZ5v I I z1vSSz , ~7!

and Hind is the Hamiltonian for the indirect interaction be
tween them. The general form ofHind for two spins is
02231
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Hind5I•J•S, ~8!

whereJ is a tensor. The only effective part of this interactio
in liquids is its average over all relative orientations of t
spins in space. In isotropic liquids it is of the form

Hind52pJI•S, ~9!

whereJ is the scalar coupling constant. In the weak-coupli
limit ( J!uv I2vSu), the indirect interaction Hamiltonian is
simplified to the form@6#

Hind52pJIzSz . ~10!

For heteronuclear spinsI andS the weak-coupling condition
is always satisfied. Thus, the deterministic Hamiltonian
our system is

H05v I I z1vSSz12pJIzSz . ~11!

We now go to an intermediate representation defined
the operator

U5exp~ iH Zt !5exp@ i ~v I I z1vSSz!t#. ~12!

Observe that this representation corresponds to a doubly
tating frame~a frame rotating with different frequency fo
each spin!. Let

r̃5UrU†. ~13!

In this intermediate representation, the initial equationṙ5
2 i @H,r# becomes

dr̃

dt
52 ipJ@2I zSz ,r̃ #2 i @H̃1~ t !,r̃ #. ~14!

Let tc be the correlation time of the random function
F(t) defined above, i.e., it is the time scalet2t85tc over
which a typical productFa(t)Fb* (t8) decays by a substantia
amount. Following the standard procedure described in R
@7# and using that~1! the evolution through relaxation of th
physical variables under study is slow on the time scaletc
~this is the Markovian approximation and has been justifi
for our spin system in a previous paragraph! and~2! the fact
thatJ21@tc ~the correlation timetc is of the order of nano-
seconds@8#, while the inverse coupling constantJ21 is of the
order of milliseconds@2#!, we end up with the master equa
tion

ds

dt
52 ipJ@2I zSz ,s#1L~s2seq!. ~15!

Heres is the reduced density matrix for the spin system, i
the average of the previousr̃ over the lattice degrees o

freedom. Sos5 r̄̃, where the bar denotes this average. T
thermal equilibrium value ofs is denoted byseq . The form
of the relaxation superoperatorL for our system is given in
the following paragraphs.
9-2
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OPTIMAL CONTROL OF COUPLED SPINS IN THE . . . PHYSICAL REVIEW A 69, 022319 ~2004!
In NMR spectroscopy in liquid solutions, the most impo
tant relaxation mechanisms are due to dipole-dipole~DD!
interaction and chemical shift anisotropy~CSA!, as well as
their interference effects~DD-CSA cross-correlation terms!
@9,10#. We describe briefly these relaxation mechanisms.

Any magnetic nucleus in a molecule generates an ins
taneous magnetic dipolar field that is proportional to
magnetic moment of the nucleus. This field interacts with
magnetic moments of the nearby magnetic nuclei. As
molecule tumbles in solution, the field fluctuates and con
tutes a mechanism for relaxation of the nearby spins.
isotropic distribution of the interaction orientation in spac
which is the case for liquid solutions, the average value
the dipolar interaction vanishes. That is why the~direct!
dipole-dipole interaction does not give any contribution
the deterministic~static! HamiltonianH0, while the indirect
interaction ~mediated through the electrons! gives. The
dipole-dipole interaction contributes only to the stochas
HamiltonianH1(t).

We mentioned above that the indirect interactions
tween spins are mediated through the electrons. The m
netic field, produced by the magnetic moment of one sp
modifies the electronic ground state in such a way that
electronic system achieves a small magnetization pro
tional to that field ~note that the great majority of NMR
experiments is performed on nuclear spins of atoms belo
ing to diamagnetic molecules, in which the orbital and s
angular momenta of the individual electrons are coupled
such a way that their bulk angular momentum and magn
moment both vanish!. This electronic magnetization pro
duces a small extra magnetic field that changes the mag
field experienced by the other spin. By the same means
static external magnetic field, which gives the Zeeman te
in H0, modifies the electronic environment and changes
magnetic field experienced by the spins. The resulting in
action has a nonvanishing average value, which is incor
rated inH0 as a change in the Zeeman frequenciesv I , vS
and is called the chemical shift. The remaining part is inc
porated inH1(t). This part gives the chemical shift aniso
ropy relaxation mechanism~the term anisotropy is used t
emphasize that it corresponds to the anisotropic part of
interaction, which is present because the electronic envi
ment of a nucleus is not isotropic in general!.

The relaxation operatorsVa , corresponding to DD and
CSA relaxation mechanisms, can be found in Ref.@8# and are
given in Table I. If we ignore the interference effects b
tween these two mechanisms~cross-correlated relaxation!,

TABLE I. Relaxation operators for DD and CSA interaction
We have used the standard notationI 65I x6 i I y .

Va
DD 2

A6
I zSz 2

1

2A6
I 1S2 2

1
2 I zS

1 2
1
2 I 1Sz

1
2 I 1S1

2
1

2A6
I 2S1 1

2 I zS
2 1

2 I 2Sz
1
2 I 2S2

Vb
CSA 2

A6
I z 2

1
2 I 1 1

2 I 2
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the relaxation superoperatorL for our system can be written
as the sum of two terms, each of which corresponds to
relaxation mechanism. It is

L~• !5(
a

Ja†Va
DD ,@Va

DD† ,•#‡1(
b

Jb†Vb
CSA,@Vb

CSA† ,•#‡,

~16!

where the coefficientsJa ,Jb depend on the physical param
eters of the system, such as the gyromagnetic ratios of
spins, the internuclear distance, the correlation time of
molecular tumbling, and the anisotropy of the chemical sh
tensor.

Having found the relaxation superoperatorL for our sys-
tem, we can use the master equation~15! to derive evolution
equations for the ensemble averages of the operators tha
are interested in. Doing so, we find that the operatorI z
evolves according to the equation

d^I z&
dt

52pk1~^I z&2I 0!2pkcr~^Sz&2S0!, ~17!

wherek1 is the longitudinal self-relaxation rate forI z , kcr is
the longitudinal cross-relaxation rate between the spinsI and
S, and I 0 , S0 are the equilibrium values for̂I z&,^Sz&, re-
spectively. The relaxation ratesk1 and kcr are functions of
the coefficientsJa ,Jb , thus depending on the same physic
parameters. They are given explicitly in Ref.@8#. For hetero-
nuclear spinsI andS, we ignore the~small! cross relaxation
between spinsI andS, i.e., we setkcr50 ~this approximation
is very good for large molecules wheretc

21!uv I2vSu). The
above equation becomes

d^I z&
dt

52pk1~^I z&2I 0!. ~18!

In general, polarization̂I z& relaxes towards its thermal equ
librium polarizationI 0. For example, this thermal correctio
must be taken into account in transfer steps that are app
in the preparation period of an experiment@1#. However, if
coherences of some nonzero order are selected at a g
point in the pulse sequence using phase cycles or magn
field gradients, the thermal correction can be omitted fr
all subsequent pulse sequence elements@11#. Here, we focus
on this case, which corresponds, e.g., to allmixing stepsin
multidimensional NMR experiments which are always a
plied after an evolution period in which a nonzero coheren
order is selected. Hence, we can setI 050 and Eq.~18! is
reduced to

d^I z&
dt

52pk1^I z&. ~19!

The operatorI x evolves under theJ coupling to 2I ySz and
also relaxes with ratek ~transverse relaxation!,

d^I x&
dt

52pJ^2I ySz&2pk^I x&. ~20!
9-3
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As the operator 2I ySz is produced, it also relaxes with ratek.
This is a very good approximation for many systems.
general the transverse operatorsI x and 2I ySz may relax at
different rates. However the methods presented can be e
extended to account for this case. The operator 2I zSz relaxes
with ratek2 ~longitudinal relaxation!,

d^2I zSz&
dt

52pk2^2I zSz&, ~21!

d^2I ySz&
dt

5pJ^I x&2pk^2I ySz&. ~22!

The ratesk andk2 depend on the same parameters ask1.
In this paper, we address the problem of finding the ma

mum efficiency for the transfers

I a→2I bSg ~23!

and

I a→Sb , ~24!

wherea, b, andg can bex, y, or z. These transfers are o
central importance for two-dimensional NMR spectrosco
and are conventionally accomplished by the INEPT@12# and
refocused INEPT@13# pulse sequence elements, respective
We describe INEPT~insensitive nuclei enhanced by polariz
tion transfer! in the following section and formulate ou
problem in terms of optimal control theory.

III. FORMULATION OF THE PROBLEM IN TERMS
OF OPTIMAL CONTROL

The two heteronuclear spins have well separated frequ
cies, allowing for fast selective manipulation of each spin
a time scale determined by the couplingJ and the relaxation
ratesk, andk1 or k2. Thus, the Cartesian spin operatorI a can
be transformed to an operator of the formI x cosb1
1Izsinb1 by the use of strong, spin selective radi
frequency~rf! pulses without relaxation losses~see Fig. 1!.
Let r 1(t) represent the magnitude of polarization and
phase coherence on spinI at any given timet, i.e., r 1(t)
5A^I x&

21^I z&
2. Using rf fields, we can exactly control th

angleb1. So, we can think of cosb1 as a control paramete
and denote it byu1 ~see Fig. 1!.

In the same manner, by the use of rf pulses, it is poss

FIG. 1. Representation of the system variablesr 1 ,r 2, the angles
b1 ,b2, and of the control parametersu15cosb1,u25cosb2 in
terms of the expectation values^I x&,^I z&,^2I ySz&,^2I zSz&.
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to rotate the operator 2I ySz to 2I zSz . Let r 2(t) represent the
total magnitude of the expectation values of these bilin
operators, i.e.,r 2(t)5A^2I ySz&

21^2I zSz&
2. We can control

the angleb2 ~Fig. 1! and we define cosb2 as a second con
trol parameteru2. Using the equations for the ensemble a
erages, given in the preceding section, we find

d

dt F r 1

r 2
G5A~cosb1 ,cosb2!F r 1

r 2
G , ~25!

where

A~cosb1 ,cosb2!

5pJF 2
k2k1

J
cos2b12

k1

J
2cosb1 cosb2

cosb1 cosb2 2
k2k2

J
cos2b12

k2

J

G .

~26!

Let

j15
k2k1

J
, j̄15

k1

J
, j25

k2k2

J
, j̄25

k2

J
~27!

and rescale the time according totnew5pJtold . Using u1
5cosb1, u25cosb2, we find the following equation forr 1 ,
r 2 ~by abuse of notation we use the samet for the new time!:

d

dt F r 1

r 2
G5F2j1u1

22 j̄1 2u1u2

u1u2 2j2u2
22 j̄2

G F r 1

r 2
G . ~28!

The initial conditions are

r 1~0!51, r 2~0!50. ~29!

Note that starting from the ensemble average equatio
we brought the system equations in a form where the p
ciples of optimal control can be applied. The problem th
we face is as follows: given the dynamical system abo
how shouldu1(t),u2(t), with 0<u1 ,u2<1, be chosen so
that starting fromr 1(0)51 we achieve the largest valu
r 2(T) for a specified finite timeT. In spectroscopic applica
tions this would correspond to the maximum efficiency f
the transfer ofI a to 2I bSg . This transfer is conventionally
accomplished by the INEPT pulse sequence: At timet50 we
apply a hard pulse which rotatesI a to I x . Then, we let this
operator evolve under theJ coupling towards 2I ySz for the
whole time interval@0,T#, i.e., we keepb15b250 @u1(t)
5u2(t)51# during this interval. Finally, by applying the ap
propriate hard pulses att5T, we rotate the operator 2I ySz to
2I bSg . Schematically, the INEPT pulse sequence is

where the solid arrow represents hard pulses, while
dashed arrow represents the evolution under theJ coupling.
In this manuscript we prove that in the presence of rel
ation, this is not in general the optimal procedure. Hav
found the optimal controlsu1(t),u2(t), we can calculate the
9-4
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OPTIMAL CONTROL OF COUPLED SPINS IN THE . . . PHYSICAL REVIEW A 69, 022319 ~2004!
corresponding magnetic-field componentsBx(t),By(t),
which achieve the maximum efficiency.

IV. THEORETICAL RESULTS

The optimal control problem is solved in Appendix A
Here, we describe the characteristics of the optimal pu
sequence for the casej1.j2, i.e., fork1,k2. The results for
k1.k2 are analogous. Presence of finite longitudinal rel
ation rates results in an optimal transfer durationTopt in
which the maximum transfer efficiency is achieved. We co
pute thisTopt by finding the optimal pulse sequence for e
ery choice of transfer durationT and then locating theT that
gives the best transfer efficiency. Depending on the value
the problem parameters, we find three important cases in
optimal solution.

~1! T<TA ~case A! @TA5cot21(2j1)/pJ, for j1.j2]: In
this caseu1(t)5u2(t)51 throughout, i.e.,b1 andb2 in Fig.
1 are always kept zero and this solution corresponds to
INEPT pulse sequence.

~2! TA,T<TB ~case B1! ~we describe how we calculat
TB below!: In this case the optimal pulse sequence has
distinct phases@see Fig. 2~a!#. There is a switching timet1
such that for 0<t<t1 ~phase I!, u2(t)51 andu1(t) is in-
creased gradually from a valueu1(0),1 to u1(t1)51.
Then, for timet1<t<T ~phase II!, the optimal controls are
u1(t)5u2(t)51.

~3! T.TB ~case B2!: Here the optimal pulse sequence h
three distinct phases@see Fig. 3~a!#. There are two switching
timest1 andT2t2. Phases I and II are the same as abo
For 0<t<t1 ~phase I!, u2(t)51 and u1(t) is increased
gradually from a valueu1(0),1 to u1(t1)51. For time
t1<t<T2t2 ~phase II!, the optimal controls areu1(t)
5u2(t)51. Finally, for T2t2<t<T ~phase III!, we have
u1(t)51 and u2(t) is decreased fromu2(T2t2)51 to
u2(T),1.

We now give physical explanation for the existence
these three cases. For small enoughT, the major limitation
for the transferr 1(0)→r 2(T) is not the relaxation, but the
limited available time. The optimal choiceu15u251 maxi-
mizes ~absolute value! the off-diagonal elements6u1u2,
which accomplish the transferr 1(t)→r 2(t), as can be seen
from the system equation~28!. It also maximizes the diago
nal elements, i.e., the relaxation rates ofr 1(t),r 2(t). But for

FIG. 2. Optimal pulse sequence whenTA,T<TB for ~a! k1

,k2 and~b! k1.k2. For case~b! we just interchanged the values o
k1 ,k2 from case~a!, keeping the samek. Observe the symmetry in
the optimal controls.
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small available timeT, the gain that we get by maximizing
the desired transfer at each momentt is more important than
the ~small! relaxation losses. As timeT increases, the relax
ation degrades more the performance and the choiceu1

5u251 ceases to be optimal. Withu1,1 or u2,1 we may
reduce the transfer rate ofr 1(t)→r 2(t), but at the same time
we decrease also the instantaneous relaxation ratesj iui

2

1 j̄ i ,i 51,2. Since for large enoughT the relaxation domi-
nates, we conclude that by an appropriate choice ofu1<1 or
u2<1 we can get a better efficiency for the transferr 1(0)
→r 2(T). This appropriate choice corresponds to the ca
B1 and B2. Note that fork1,k2, the system in case B2
spends more time in phase I (u1,1,u251) than in phase III
(u151,u2,1), see Fig. 3~a!. This happens because fork1

,k2 and u15u25u,1, the relaxation ratej1u1
21 j̄1 is

lower than the ratej2u2
21 j̄2 @note j1u1

21 j̄12j2u2
22 j̄2

5(j12j2)u21 j̄12 j̄2,j12j21 j̄12 j̄250, since j11 j̄1

5j21 j̄25k/J]. Based on the above observation about t
duration of phases I and III, we expect that as we increasT,
from values where case A holds to values where case B
the optimal, there must be an intermediate range of value
T where the optimal pulse sequence has no phase III at
This is the case B1.

The durationTA above which the optimal pulse sequen
is different than INEPT isTA5cot21(2j1)/pJ, for j1.j2 .
We can explain the dependence of this quantity on the
rametersk,k1. Note thatj15(k2k1)/J, soTA is a decreas-
ing function ofk and an increasing function ofk1. For larger
k ~larger transverse relaxation! it is more costly to have the
vectorsr1 ,r2 parallel to thexy plane, i.e., it is more costly to
haveu15u251 ~see Fig. 1!. This explains whyTA , which
determines the range of values ofT where the INEPT pulse
sequence is optimal, is decreased. Now for largerk1 ~larger
longitudinal relaxation! it is more costly to have the vectorr1
parallel to thez axis, i.e., to haveu1,1. This explains why
TA , and with it the range of optimality of INEPT, is in
creased.

The switching timet1 for case B1 is calculated using th
following equation:

FIG. 3. Optimal pulse sequence whenT.TB for ~a! k1,k2 and
~b! k1.k2. Again, for case~b! we just interchanged the values o
k1 ,k2. The symmetry in the controls appears again. Note that
durationT has been set equal to the optimal durationTopt , which
maximizes the optimal transfer efficiencyhT . For the valuesk
5J,k150.05J,k250.25J that we used in ~a!, it is Topt

.0.468J21. For case~b!, Topt is the same.
9-5
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T2t15
1

pJ S p

2
2w1D , ~30!

where

w15tan21
2j1

12k1~t1!

and

k1~ t !5112j1
222j1A11j1

2

3coth~pJtA11j1
212 sinh21j1!.

The switching times for case B2 are calculated by solv
the following system of equations:

T2t12t25
q22q1

pJ
, ~31!

T2t12t25
w22w1

pJ
, ~32!

wherew1 as above and

q15tan21
2j1k1~t1!

12k1~t1!
, q25tan21

12k2~t2!

2j2
,

w25tan21
12k2~t2!

2j2k2~t2!
.

Functionk2(t) is given by a similar formula ask1(t), with
j1 replaced byj2. The relation of these angles to the optim
control problem is explained in Appendix A. The timeTB
mentioned above can be found by solving Eqs.~31! and~32!
for t250, i.e., with unknownsTB andt1. In other words, we
find the timeTB for which the optimal pulse sequence dev
ops the additional phase III by setting the duration of t
phase equal to zero.

The results forj1,j2 (k1.k2) are analogous. The bas
difference is for the case B1~that with only one switching
time!. Here, we start in phase II (u15u251) and at timet
5T2t2 we switch to case III, as it is shown in Fig. 2~b!.
The timet2 is calculated by

T2t25
q2

pJ
5

1

pJ
tan21

12k2~t2!

2j2
. ~33!

For case B2~that with the two switching times! we have
three phases, as before, but now we spend more tim
phase III than in phase I@see Fig. 3~b!#. The timest1 , t2 are
still calculated using Eqs.~31! and ~32!.

We describe also what happens for the symmetric c
j15j25z. In this case, the optimal pulse sequence spe
equal timet in phases I and III~see Fig. 4!.

Note that whenj15j2 there is no intermediate case~B1,
with only one switching time!. Here, the optimal pulse se
quence is either the INEPT or that with the three phases~and
the two switching times!. The timet can be calculated by
solving the equation
02231
g
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T22t5
1

pJ F tan21
12k~t!

2z
2tan21

2zk~t!

12k~t!G , ~34!

wherek(t) is given by the formula fork1(t), with j1 re-
placed byz.

For each of the cases presented above, the maxim
transfer efficiencyhT5r 2(T) is calculated in Appendix B.
The results are

~1! Case A~INEPT!,

hT5e2pkT sin~pJT!. ~35!

~2! Case B1~one switch!,

hT5e2p[k1t11k(T2t1)]A12j1 sin 2w1, ~36!

for k1,k2 and

hT5e2[k2t21k(T2t2)]A12j2 sin 2q2, ~37!

for k1.k2
~3! Case B2~two switches!,

hT5exp$2p@k1t11k~T2t12t2!

1k2t2#%
A12j1 sin 2w1A12j2 sin 2q2

cos~w12q1!
. ~38!

In general, we can easily prove that the efficiency rema
the same if the values ofk1 andk2 are swapped. In Fig. 5 we
plot the efficiencyhT as a function ofT for various values of
the parametersk,k1 ,k2.

We observe that fork,k1 ,k2Þ0 there is an optimal time
T5Topt for each choice of the parameters, while fork150
or k250 the maximum efficiency~maximum forT specified!
increases with increasingT and approaches a limiting valu
asT→`. The existence of this optimal durationT is a con-
sequence of the fact that fork1 ,k2Þ0 none of the operators
I z ,2I zSz is protected against relaxation, while fork150 or
k250 at least one of them is. We can explain the existenc
this optimalT intuitively. For smallT the available time for
the application of the controls is not enough~we cannot

FIG. 4. Optimal pulse sequence fork15k2. Observe the sym-
metry in the controls. Specifically, the relationu1(t)5u2(T2t)
holds here. For the valuesk5J,k15k250.20J that we use, the
optimal duration isTopt.0.353J21.
9-6
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‘‘put’’ much control to the system! and thus the maximum
efficiency that we get is small. For largeT the phenomenon
of relaxation dominates, since there is no operator prote
against it, and the maximum efficiency that we achieve
poor. So, there must be an intermediate timeT such thathT
becomes maximum. This time isTopt . In Fig. 6~b! we plot

FIG. 5. Optimal transfer efficiencyhT as a function of the tota
transfer timeT for k5J and various values ofk1 ,k2 ~normalized
with respect toJ). Observe that fork1 ,k2Þ0 there is an optimal
transfer timeTopt .
02231
ed
s

the maximum efficiency, calculated atTopt for each choice of
the parameters, along a specific line in (k1 ,k2 ,k) space. This
line is shown in Fig. 6~a! and has been chosen to simulate t
transition from the slow molecular motion~slowly tumbling
regime!, wherek@k1.k2, to the rapid molecular motion
wherek.k1;k2.

For 0<t<t1 ~phase I!, the optimal control is given by

FIG. 6. ~b! Maximum transfer efficiencyhT evaluated atTopt

for each point of the line in (k1 ,k2 ,k) space shown in~a!. The line
is parametrized by the parameter 0<s<1 and has been chosen suc
that the increase ofs from 0 to 1 simulates the transition from slow
molecular motion, wherek@k1.k2, to rapid molecular motion,
wherek.k1;k2. Note the superiority of the relaxation optimize
pulse element~ROPE! compared to the INEPT pulse sequence
the casek@k1.k2.
u1~ t !5A L̄2
2@11coshf1~ t !#

2L̄1
2 sinh2 f1S t1

2 D1L̄2
2 coshf1~t1!2L̄2

2 coshf1~ t !

, ~39!

wheref1(t)52pJtA11j1
212 sinh21j1 and

L̄15
hT

A11k1~t1!tan2 w1

, L̄25
hT

Ak1~t1!1
1

tan2 w1

. ~40!

For T2t2<t<T ~phase III!, the optimal control is

u2~ t !5A R̄1
2@11coshf2~T2t !#

2R̄2
2 sinh2f2S t2

2 D1R̄1
2 coshf2~t2!2R̄1

2 coshf2~T2t !

, ~41!
wheref2(t)52pJtA11j2
212 sinh21j2 and

R̄15
hT

Ak2~t2!1tan2 q2

, R̄25
hT

A11
k2~t2!

tan2 q2

. ~42!

The corresponding rf amplitude for phase I is given by
vy5g IBy52pJ
u1

A12u1
2
tanhS f1

2 DA11j1
2 ~43!

and for phase III by

vx5g IBx52pJ
u2

3

A12u2
2
tanhS f2~T2t !

2 DA11j2
2,

~44!
9-7
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whereg I is the gyromagnetic ratio of spinI. The details of
these calculations are described in Appendix C. Note
asymmetry in the expressions forvx ,vy , while the expres-
sions foru1 ,u2 are symmetric. This asymmetry is a dire
consequence of the phenomenon of relaxation. We refe
Fig. 1. Observe that the magnetic fieldBy rotates the vector
r1 clockwise, while the phenomenon of relaxation~dissipa-
tion of ^I x& with ratepk and of^I z& with ratepk1) rotatesr1
counterclockwise, sincek.k1. On the other hand, both th
magnetic fieldBx and the phenomenon of relaxation rotater2
counterclockwise, i.e., in the same sense. This difference
tween the two cases is the origin of the asymmetry in
expressions forvx ,vy .

The optimal rf amplitudes for a specific choice of th
parameters are shown in Fig. 7. The optimal transfer stra
from I z→2I zSz is then as follows. We start with an initia
hard pulse that precedes phase I and rotates the vectr1
~Fig. 1!, from the angleb1(02)590° ~parallel toz axis! to
the initial angleb1(01)5cos21u1(0). During phase I (01

<t<t1), we rotater1 slowly towards thex axis using the
field By(t). During phase II (t1<t<T2t2), no rf pulses are
applied. We just letr1 evolve towardsr2 on thexy plane. In
phase III (T2t2<t<T2), we rotater2 slowly from they
axis towards thez axis using the fieldBx(t), up to the angle
b2(T2)5cos21 u2(T). Following phase III, we apply a fina
hard pulse that rotatesr2 from b2(T2) to b2(T1)590°, in
order to complete the transfer to 2I zSz . This optimal pulse
sequence takes the place of INEPT. For the transferI a
→2I bSg , we just need to include the appropriate initial a
final hard 90° pulses.

Note that approaching phase II the rf amplitude becom
large for a very short time period. This can experimentally
very well approximated by a hard pulse of small flip ang

Up to this point we have considered in detail the optim
way for the transferI z→2I zSz . The optimal transferI z

FIG. 7. The rf pulse sequence corresponding to the cont
u1 ,u2 of Fig. 3~a!. The pulse sequence starts with a hard 13.3
pulse aroundy axis, which establishesu1(0)50.229, followed by
phase I as shown above. During phase II, no rf pulses are app
Approaching phase II the rf amplitude becomes large for a v
short time period. This can experimentally be very well appro
mated by a hard pulse of small flip angle. Following phase III
shown above, we apply a final hard 35.20° pulse around thex axis,
which completes the transfer.
02231
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→Sz is achieved by first doing the transferI z→2I zSz opti-
mally, followed by optimal transfer of 2I zSz→Sz . The opti-
mal pulse sequence for the later transfer is analogous to
pulse sequence as discussed in the paper, with spinSplaying
the role of spinI andk1 , k2 now representing the relaxatio
rates of longitudinal operators 2I zSz and Sz , respectively.
Now k represents the transverse relaxation rates for opera
2I zSx ,Sx , etc.

V. CONCLUSION

In this manuscript, we examined the application of op
mal control theory to a quantum-mechanical system in
presence of relaxation. The focus was on the study of
isolated pair of scalar coupled heteronuclear spins un
dipole-dipole and chemical shift anisotropy relaxation. F
this example, a new transfer scheme was found, which yie
substantial gains in transfer efficiency, compared to the
ditionally used INEPT pulse sequence. The methods p
sented here are by no means limited to the case of cou
two spins. They can be generalized for finding relaxat
optimized pulse sequences for larger spin systems, as c
monly encountered in backbone and side chain assignm
in protein NMR spectroscopy. Furthermore, these meth
are expected to find applications in the coherent contro
other quantum-mechanical phenomena in the presenc
dissipation and decoherence.
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APPENDIX A: SOLUTION OF THE OPTIMAL
CONTROL PROBLEM

The solution of the optimal control problem depends
the relative magnitude of the parametersj1 ,j2. In the fol-
lowing, we solve the problem for the nonsymmetric ca
j1.j2, i.e., k1,k2. The results for the casej1,j2 (k1
.k2) are analogous. At the end of this section we descr
also what happens for the symmetric casej15j2.

To find the optimal controls„u1* (t),u2* (t)… in Eq. ~28!, we
use the principle of dynamic programming@14# and solve for
the maximum achievable value ofr 2 for all initial points
(r 1 ,r 2). Starting from (r 1 ,r 2), we denote the maximum
achievable value ofr 2 by V(r 1 ,r 2 ,t), also called the optima
return function for the point (r 1 ,r 2) at timet. Note here that
for the finite time problem (T finite!, the optimal return func-
tion has explicit dependence on time@14#. If we start at
(r 1 ,r 2), then by making a choice of controls in Eq.~28! and
letting the dynamical system evolve, after small timedt we
can make a transition to all points (r̃ 1 , r̃ 2) which are related
to (r 1 ,r 2) by

ls
°

d.
y
-
s
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F r̃ 1

r̃ 2
G5F r 1

r 2
G1dtF2j1u1

22 j̄1 2u1u2

u1u2 2j2u2
22 j̄2

G F r 1

r 2
G .

~A1!

From all points (r̃ 1 , r̃ 2) that can be reached by appropria
choice of (u1 ,u2) in small timedt, we should choose to go
to that (r̃ 1 , r̃ 2) for which V( r̃ 1 , r̃ 2 ,t1dt) is the largest. But
now note by definition of V that V(r 1 ,r 2 ,t)
5maxr̃1, r̃2

V(r̃1,r̃2,t1dt). This can be rewritten as

V~r 1 ,r 2 ,t !5 max
u1 , u2

V$r 11dt@~2j1u1
22 j̄1!r 12u1u2r 2#,

r 21dt@~2j2u2
22 j̄2!r 21u1u2r 1#,t1dt%, ~A2!

for infinitesimaldt. The right-hand side of the above expre
sion can be expanded~Taylor series expansion! in powers of
dt and retaining only the terms linear indt ~for dt approach-
ing zero!, we obtain the well-known Hamilton Jacobi Bel
man equation

]V

]t
1 max

u1 , u2

H~u1 ,u2!50, ~A3!

where

H~u1 ,u2!5F ]V

]r 1

]V

]r 2
GF2j1u1

22 j̄1 2u1u2

u1u2 2j2u2
22 j̄2

G F r 1

r 2
G
~A4!

is the Hamiltonian for the optimal control problem. Let

l15
]V

]r 1
, l25

]V

]r 2
. ~A5!

If, additionally, we set

a5
l2

l1
, b5

r 2

r 1
, ~A6!

then the Hamiltonian can be expressed as

H~u1 ,u2!52l1r 1@j1u1
22~a2b!u1u2

1abj2u2
21 j̄11abj̄2#. ~A7!

The optimal return function is a nondecreasing function
r 1 ,r 2 @starting from a largerr 1(0) or r 2(0) you can achieve
a largerr 2(T)] so l1 ,l2 ,a>0. Sincel1 ,r 1>0, in order to
maximize H in the square 0<u1 ,u2<1 it is equivalent to
minimizing the function

F~u1 ,u2!5j1u1
22~a2b!u1u21abj2u2

21 j̄11abj̄2
~A8!

or the quadratic form

Q~u1 ,u2!5j1u1
22~a2b!u1u21abj2u2

2 , ~A9!
02231
-

f

which is the part ofF(u1 ,u2) that contains explicitly the
controls u1 ,u2. Note thata,b,j1 ,j2 ,u1 ,u2>0. If (a2b)
<0 then the solution to the minimization ofQ(u1 ,u2) is the
trivial one u15u250. Therefore (a2b).0. Now suppose
that (a2b)2<4j1j2ab, i.e., (a2b)2/4j1j25ab2e for e
>0. Then

Q5F ~a2b!

2Aj1

u22j1u1G 2

1ej2u2
2 ~A10!

and the solution to the minimization ofQ is again the trivial
one u15u250. Therefore the acceptable case is (a2b)2

.4j1j2ab. Using the conditions

a2b.0, ~a2b!2.4j1j2ab, ~A11!

that we just derived, we minimizeQ in the square 0
<u1 ,u2<1. We find three separate cases~actually, there is
one more case but, since it is not important for the rest of
problem, we do not present it!.

~1! Case I: If a2b,2j1 and (a2b)/ab>2j2, then the
minimum of Q ~maximum ofH) is obtained foru251 and
u15(a2b)/2j1.

~2! Case II: If a2b>2j1 and (a2b)/ab>2j2, then the
minimum of Q is obtained foru151 andu251.

~3! Case III: If a2b>2j1 and (a2b)/ab,2j2, then the
minimum of Q is obtained for u151 and u25(a
2b)/2j2ab.

It is a standard result@14# that, along the optimal trajec
tory „r 1* (t),r 2* (t)…, the adjoint variables

„l1~ t !,l2~ t !…5S ]V

]r 1
,
]V

]r 2
D U

„r
1* (t),r

2* (t)…

satisfy the equationsl̇152]H/]r 1 andl̇252]H/]r 2, i.e.,

d

dt Fl1

l2
G5F j1u1

21 j̄1 2u1u2

u1u2 j2u2
21 j̄2

G Fl1

l2
G , ~A12!

with the terminal conditions

l1~T!50, l2~T!51. ~A13!

For the optimal trajectory starting at (r 1 ,r 2)5(1,0) it is
b(0)50, so depending ona(0) we have the following
cases.

Case A.If a(0)>2j1 ~first condition! then we start in
case II discussed above. We stay there for the whole inte
T if ~note thata2b is increasing! @a(T)2b(T)#/a(T)b(T)
>2j2 ~second condition!. In case II,u15u251 and using
Eqs.~28! and~A12! we can finda(T),b(T) in terms ofa(0)
and b(0)50. It is a(T)5@a(0)1tanT#/@12a(0)tanT#,
b(T)5tanT so

a~T!2b~T!

a~T!b~T!
5

a~0!~11tan2T!

tanT@a~0!1tanT#
. ~A14!
9-9
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Now note thata(T)5l2(T)/l1(T)5` sincel1(T)50, so
must bea(0)51/tanT if we spend the whole interval in cas
II. For tanT<1/2j1 it is a(0)>2j1, so we are consisten
with the first condition, and@a(T)2b(T)#/@a(T)b(T)#
51/tanT>2j1.2j2, so we are also consistent with the se
ond condition. The conclusion is that for tanT<1/2j1 we
start in case II and stay there for the whole time intervalT.
This corresponds to the INEPT pulse sequence.

Case B. If a(0),2j1 we start in case I. In this case it i
u251, u15(a2b)/2j1 and the equation for the state var
ables becomes

d

dt F r 1

r 2
G5F2j1u1

22 j̄1 2u1

u1 2j22 j̄2
G F r 1

r 2
G . ~A15!

But j11 j̄15j21 j̄25k/J so the above equation is the sam
as

d

dt F r 1

r 2
G5F2j1u1

22 j̄1 2u1

u1 2j12 j̄1
G F r 1

r 2
G . ~A16!

If we make the transformationr̄ i5ej̄1tr i we get

d

dt F r̄ 1

r̄ 2
G5F2j1u1

2 2u1

u1 2j1
GF r̄ 1

r̄ 2
G . ~A17!

Analogously, for the adjoint variables we find the equatio

d

dt F l̄1

l̄2
G5F j1u1

2 2u1

u1 j1
GF l̄1

l̄2
G , ~A18!

where l̄ i5e2 j̄1tl i . Now observe thatb̄/ā5 r̄ 2l̄1 / r̄ 1l̄2

5b/a. If we setb̄/ā5b/a5k1(t) thenk1(0)50 andk1(t)
satisfies the differential equation

dk1

dt
5

~k121!2

2j1
22j1k1 . ~A19!

This can be proved using Eqs.~A17! and ~A18!. So b/a(t)
satisfies Eq.~A19! for case I. After timet1 ,(a2b)/2j1 be-
comes equal to 1 and the system switches to case II. U
@a(t1)2b(t1)#/2j151 and that (b/a)(t1)5k1(t1) we find

a~t1!5
l2~t1!

l1~t1!
5

2j1

12k1~t1!
[tanw1 , ~A20!

b~t1!5
r 2~t1!

r 1~t1!
5

2j1k1~t1!

12k1~t1!
[tanq1 . ~A21!

As time goes by (a2b)/ab decreases. If this fraction doe
not reach the value 2j2 in the remaining time interval@t1 ,T#
then the system remains in case II and we call this case
Else, the system switches to case III and we call this case
We examine first the full scenario~case B2!. Suppose that
(a2b)/ab52j2 at time T2t2. This is the switching time
02231
-

ng

1.
2.

from case II to case III. If we work as before we find that
case III, (b/a)(t)5k2(T2t) wherek2(t) satisfies the differ-
ential equation

dk2

dt
5

~k221!2

2j2
22j2k2 , k2~0!50. ~A22!

For t5T2t2 it is b(T2t2)/a(T2t2)5k2(t2) and @a(T
2t2)2b(T2t2)#/@a(T2t2)b(T2t2)#52j2. Using these
we find

a~T2t2!5
l2~T2t2!

l1~T2t2!
5

12k2~t2!

2j2k2~t2!
[tanw2 , ~A23!

b~T2t2!5
r 2~T2t2!

r 1~T2t2!
5

12k2~t2!

2j2
[tanq2 . ~A24!

In order to find the switching timest1 ,T2t2 we have to
connect Eqs.~A20! and ~A21! with Eqs. ~A23! and ~A24!.
We can do so by examining the evolution of the syst
while it is in case II, i.e., in the time interval@t1 ,T2t2#. In
case II it isu15u251 so the system equation~28! becomes

d

dt F r 1

r 2
G5F2j 21

1 2j
GF r 1

r 2
G , ~A25!

where j5j11 j̄15j21 j̄2. This is the same as the syste
equation for a damped harmonic oscillator with angular f
quencyv51. Fromt5t1 to t5T2t2 the vector (r 1 ,r 2) is
rotated through the angle

q22q15T2t12t25tan21
12k2~t2!

2j2
2tan21

2j1k1~t1!

12k1~t1!
.

~A26!

The evolution equation for the adjoint variables in case II

d

dt Fl1

l2
G5F j 21

1 j
GFl1

l2
G . ~A27!

The vector (l1 ,l2) is rotated through the angle

w22w15T2t12t25tan21
12k2~t2!

2j2k2~t2!
2tan21

2j1

12k1~t1!
.

~A28!

Equations~A26! and~A28! constitute a system of two equa
tions for the two unknownst1 ,t2 which can be solved nu
merically. For the case B1 there is only one switching tim
(t1) and working analogously we can easily find that it s
isfies the equation

T2t15w22w15
p

2
2tan21

2j1

12k1~t1!
. ~A29!

As we showed above, case B happens when the duratio
the experiment satisfiesT.TA5tan21(1/2j1). The question
is when we are in case B1 and when in case B2. Intuitive
we expect that up to some durationTB we have to apply the
controls of case B1 and forT.TB , where the phenomeno
9-10
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of relaxation degrades more the performance, we nee
apply the more fancy controls of case B2.TB can be obtained
from Eqs. ~A26! and ~A28! by substitutingt250. So, we
have a system of two equations with unknowns the dura
TB and the switching timet1 and thus we can findTB . For
T,TB the system of Eqs.~A26! and ~A28! gives t2,0,
while for T.TB gives t2.0. Note that all the times tha
appear in this section are normalized according totnew
5pJtold .

The results forj1,j2 (k1.k2) are analogous. The bas
difference is for the case B1~that with only one switching
time!. Here, we start in phase II (u15u251) and at timet
5T2t2 we switch to case III, as it is shown in Fig. 2~b!.
The timet2 is calculated by

T2t25q22q15tan21
12k2~t2!

2j2
. ~A30!

For case B2~that with the two switching times! we have
three phases, as before, but now we spend more tim
phase III than in phase I@see Fig. 3~b!#. The timest1 , t2 are
still calculated using Eqs.~A26! and ~A28!.

Figure 8 depicts the anglesq1 ,q2 andw1 ,w2, the optimal
trajectory„r 1(t),r 2(t)… and the trajectory for the adjoint var
ables„l1(t),l2(t)….

Finally, we examine what happens forj15j2[z. In this
case it isk1(t)5k2(t)[k(t), and Eqs.~A26! and ~A28!
take the form

T2t12t25tan21
12k~t2!

2z
2tan21

2zk~t1!

12k~t1!
,

~A31!

T2t12t25tan21
12k~t2!

2zk~t2!
2tan21

2z

12k~t1!
.

~A32!

If we set

f ~t1 ,t2!5tan21
12k~t2!

2z
2tan21

2zk~t1!

12k~t1!
, ~A33!

it is not hard to see that

FIG. 8. Figure depicts the anglesq1 ,q2 andw1 ,w2, the optimal
trajectory„r 1(t),r 2(t)… and the trajectory for the adjoint variable
„l1(t),l2(t)….
02231
to

n

in

f ~t2 ,t1!5tan21
12k~t2!

2zk~t2!
2tan21

2z

12k~t1!
, ~A34!

thus we end up with the system

T2t12t25 f ~t1 ,t2!, ~A35!

T2t12t25 f ~t2 ,t1!. ~A36!

These equations imply

f ~t1 ,t2!5 f ~t2 ,t1!. ~A37!

This gives

t15t2[t, ~A38!

so for the symmetric casej15j2 the optimal pulse sequenc
spends equal timet in phases I and III~see Fig. 4!. Note that
for j15j2 there is no intermediate case~B1, with only one
switching time!. Here, the optimal pulse sequence is eith
the INEPT or that with the three phases~and the two switch-
ing times!. The timet can be calculated by using either o
Eqs.~A31! and ~A32! with t15t25t.

APPENDIX B: CALCULATION OF THE MAXIMUM
TRANSFER EFFICIENCY

Here we derive the value ofhT5r 2(T) for each of the
cases presented in Appendix A.

Case A (INEPT). For u15u251 the system equation i
Eq. ~A25!. With initial conditions r 1(0)51,r 2(0)50 we
find

hT5r 2~T!5e2jTsinT. ~B1!

Case B2. Using Eqs.~28! and ~A12! we can show that

V~ t !5l1~ t !r 1~ t !1l2~ t !r 2~ t !, 0<t<T ~B2!

is a constant along the system trajectories and equals
optimal return functionV(t)5l1(0)5r 2(T). Analogously
we can show that

V1~ t !5e2 j̄1tAl1
2~ t !1k1~ t !l2

2~ t !, 0<t<t1 ~B3!

and

V2~ t !5e2 j̄2(T2t)Ar 2
2~ t !1k2~T2t !r 1

2~ t !, ~B4!

T2t2<t<T, are constants along the system trajector
with V1(t)5l1(0),V2(t)5r 2(T). So they are also equal t
the optimal return function. Define

R~ t !5Ar 1
2~ t !1r 2

2~ t !, L~ t !5Al1
2~ t !1l2

2~ t !. ~B5!

Since r 2 /r 15tanq and l2/l15tanw it is also r 2
5R sinq,r15Rcosq and l25L sinw,l15L cosw. Using
these relations and Eq.~B3! we find

V1~t1!5e2 j̄1t1L1A12j1 sin 2w1, ~B6!
9-11



-

v
s

e

STEFANATOS, KHANEJA, AND GLASER PHYSICAL REVIEW A69, 022319 ~2004!
whereL15L1(t1). Using Eq.~B2! we find

V~t1!5L1R1 cos~w12q1!, ~B7!

whereR15R(t1). SinceV(t1)5V1(t1) from Eqs.~B6! and
~B7! we easily deduce that

R15e2 j̄1t1
A12j1 sin 2w1

cos~w12q1!
. ~B8!

From Eq.~B4! we find

V2~T2t2!5e2 j̄2t2R2A12j2 sin 2q2. ~B9!

But R25R1e2j(T2t12t2) ~case II, damped harmonic oscilla
tor!. Using the above relations we find finally

hT5exp$2@ j̄1t11j~T2t12t2!

1 j̄2t2#%
A12j1 sin 2w1A12j2 sin 2q2

cos~w12q1!
. ~B10!

Case B1. Following a procedure analogous to the abo
we can find that the maximum transfer efficiency in this ca
is given by

hT5e2[ j̄1t11j(T2t1)]A12j1 sin 2w1. ~B11!

This is the result fork1,k2. For k1.k2 the result is analo-
gous,

hT5e2[k2t21k(T2t2)]A12j2 sin 2q2. ~B12!

APPENDIX C: CALCULATION OF THE OPTIMAL
CONTROLS AND OF THE CORRESPONDING rf FIELD

Case I(0<t<t1). In this caseu251 and

u15
a2b

2j1
5

1

2j1

l2~ t !

l1~ t !
@12k1~ t !#.
02231
e
e

The functionk1(t) is the solution of Eq.~A19! with initial
condition k1(0)50. We can easily find thatk1(t)51
12j1

222j1A11j1
2 cothf̄1(t), where f̄1(t)5tA11j1

2

12 sinh21j1 for t normalized or f̄1(t)5pJtA11j1
2

12 sinh21j1 for t not normalized. We still need to calculat
l1(t),l2(t). Using Eq.~A12! for the adjoint variables, we
can see thatl2(t) satisfies the equation

l̇2~ t !5@ j̄11A11j1
2 cothf̄1~ t !#l2 ~C1!

or

l̇̄2~ t !5A11j1
2 cothf̄1~ t !l̄2 , ~C2!

where as usuall̄25e2 j̄1tl2. We can solve Eq.~C2! in the
interval 0<t<t1 with final condition l̄2(t1)5L̄2 @we cal-
culateL̄2 and L̄15l̄1(t1) later#. The solution is

l2~ t !5ej̄1tl̄2~ t !5ej̄1tL̄2

sinhf̄1~ t !

sinhf̄1~t1!
. ~C3!

Now using the expressionhT5e2 j̄1tAl1
2(t)1k1(t)l2

2(t) for
the optimal return function we have

l1~ t !5Ae2j̄1thT
22k1~ t !l2

2~ t !. ~C4!

Using again the expression forhT but with t5t1 we find

hT5e2 j̄1t1AL1
21k1~t1!L2

25AL̄1
21k1~t1!L̄2

2, ~C5!

whereL15l1(t1), L25l2(t1) andL̄1 ,L̄2 as above. Com-
bining Eqs.~C3!–~C5! we get

l1~ t !5ej̄1tAL̄1
21k1~t1!L̄2

22k1~ t !L̄2
2 sinh2 f̄1~ t !

sinh2 f̄1~t1!
.

~C6!

Using Eqs.~C3! and ~C6! we find
u1~ t !5A L̄2
2@11coshf1~ t !#

2L̄1
2 sinh2f1S t1

2 D1L̄2
2 coshf1~t1!2L̄2

2 coshf1~ t !

, ~C7!
lly
where f1(t)52pJtA11j1
212 sinh21(j1). In order to find

L̄1 ,L̄2 we use Eq.~C5! and thatL̄2 /L̄15L2 /L15tanw1.
We get

L̄15
hT

A11k1~t1!tan2w1

, L̄25
hT

Ak1~t1!1
1

tan2w1

,

~C8!
where tanw1 is given by Eq.~A20!.
Case II (t1<t<t2). In this case,u1(t)5u2(t)51.
Case III (t2<t<T). In this case,u151 and

u25
a2b

2j2ab
5

1

2j2

r 1~ t !

r 2~ t !
@12k2~T2t !#.

Following a procedure analogous to that for case I we fina
find
9-12



u2~ t !5
R̄1

2@11coshf2~T2t !#
, ~C9!
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A
2R̄2

2 sinh2f2S t2

2 D1R̄1
2 coshf2~t2!2R̄1

2 coshf2~T2t !
tic
q

-

for
d in

ly

ined
where

f2~ t !52pJtA11j2
212 sinh21 j2 , ~C10!

R̄15
hT

Ak2~t2!1tan2 q2

, R̄25
hT

A11
k2~t2!

tan2 q2
~C11!

and tanq2 is given by Eq.~A24!. We finally calculate the rf
field that produces the optimal controlsu1 ,u2. The infinitesi-
mal change in angleb1 ~see Fig. 1! is given by

db15db̄12vydt, ~C12!

where db̄1 is the infinitesimal change when the magne
field is zero, i.e., when the system evolves only under E
~28!, andvy5g IBy . We see that

vy5 ḃ̄12ḃ1 . ~C13!

But u15cosb1, so

ḃ152
u̇1

A12u1
2

. ~C14!

Using Eq.~C7! for u1 we find, after some lengthy calcula
tion, that

ḃ152pJ
u1~11u1

2!

A12u1
2

tanhS f1

2 DA11j1
2. ~C15!

When the magnetic field is zero it isb15b̄1 so tanb̄1
5^I z&/^I x& and
on

so

c

R

e

02231
s.

ḃ̄15cos2 b1

d

dt S ^I z&

^I x&
D5u1

2 d

dt S ^I z&

^I x&
D . ~C16!

We can find the time derivative above using the equations
the time derivatives of the ensemble averages presente
Sec. II. Doing so, we end up with the formula

ḃ̄15pJu1A12u1
2S j11

r 2

r 1u1
D . ~C17!

But

r 2

r 1
5b5u1

2j1k1~ t !

12k1~ t !

with k1(t) given above. After some calculations we final
find

ḃ̄15pJu1A12u1
2 tanhS f1

2 DA11j1
2. ~C18!

Combining Eqs.~C13!, ~C15!, and~C18! we find that

vy5g IBy52pJ
u1

A12u1
2
tanhS f1

2 DA11j1
2. ~C19!

Working analogously we find

vx5g IBx52pJ
u2

3

A12u2
2
tanhS f2~T2t !

2 DA11j2
2.

The asymmetry in the expressions forvx ,vy is a direct con-
sequence of the phenomenon of relaxation and it is expla
in Sec. IV.
,
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