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Abstract

We present an analysis of SFM from the point of view of

noise. This analysis results in an algorithm that is provably

convergent and provably optimal with respect to a chosen norm.

In particular, we cast SFM as a nonlinear optimization problem

and de�ne a bilinear projection iteration that converges to �xed

points of a certain cost-function. We then show that such �xed

points are \fundamental", i.e. intrinsic to the problem of SFM

and not an artifact introduced by our algorithm. We classify

and characterize geometrically local extrema, and we argue that

they correspond to phenomena observed in visual psychophysics.

Finally, we show under what conditions it is possible - given

convergence to a local extremum - to \jump" to the valley con-

taining the optimum; this leads us to suggest a representation of

the scene which is invariant with respect to such local extrema.

1 Introduction

The problem of \Structure From Motion" (SFM) deals
with extracting three-dimensional information about the
environment from the motion of its projection onto a two-
dimensional surface. We restrict our attention to a point-
wise representation of the world. Despite being a rudi-
mentary model, it allows us to touch upon some important
issues in SFM that have been addressed only marginally in
the past.

After 20 years of work in SFM, we can safely say that
the geometry of the problem is fairly well understood (for
the case of feature-points), and nicely summarized in the
forthcoming book of Faugeras and Luong [5]. At the same
time, the performance of many of the algorithms has been
demonstrated on (more or less controlled) sequences of real
images, and this has led many in the Computer Vision
community to conclude that SFM has been solved. On
the other hand, we are witnessing the frustration of many
others, especially engineers, who are implementing existing
algorithms for SFM in real-world situations, and observe
that they behave in a way that is much di�erent from their
declared performance. This has led some to conclude that
SFM is too di�cult a problem to be solved in full generality
even in the case of point features [9].

We believe that such a diversity of feelings comes from
the fact that, while the geometry has been studied exten-
sively, the issue of noise has been touched upon only in a
super�cial way (with some notable exceptions upon which
we will comment later).

Relation to previous work

This paper relates to many previous works in SFM, and
some of the relationships are pointed out throughout the
paper. In particular, Weng et al. [18] test various general-
purpose nonlinear optimization techniques on cost func-
tions that include the epipolar constraint as well as the
average 2-norm of the image-measurements. Cram�er-Rao
bounds are evaluated, and an extensive set of simulation ex-
periments compares existing linear algorithms against the
optimal. In [18], iterative optimization schemes are ini-
tialized using a linear algorithm (such as a variation of the
8-point algorithm), and therefore the process can be viewed
as the optimal re�nement of existing SFM algorithms. Un-
der conditions in which the linear algorithms do not give
a satisfactory answer, Weng et al. only guarantee conver-
gence to a local minimum, with no indication as to how
this is related to the optimum.

Recently, Szeliski and Kang have also addressed the is-
sue of optimal estimation of SFM and characterization of
ambiguities [14, 15]. They use the Levemberg-Marquardt
algorithm to �nd the extrema of the sum of reprojection er-
rors. They perform an analysis of the bas-relief ambiguity
based on the singularities of the Hessian of the information
matrix. However, their results are essentially local, since
they rely on a linearized model and assume small measure-
ment errors.

The inherent ambiguities in SFM have been studied be-
fore also by Adiv [1], Young and Chellappa [20] (who also
address the aperture problem), Oliensis [9] (who gives a
provably convergent algorithm ), and Spetsakis and Aloi-
monos [13] (who also propose an optimal algorithm). Our
paper extends the above results: When other optimal al-
gorithms converge to their global minimum, the solution
is identical to the one we obtain. However, we achieve
useful results for noises that are one order of magnitude
higher than what commonly handled in the literature, with-
out imposing restrictions on the initial conditions. We also
classify and interpret geometrically local extrema, and we
observe that they correspond to phenomena observed in
visual psychophysics. We show how it is possible, under
certain conditions, to obtain the global solution to SFM
given convergence to a local extremum.

2 Spherical Least-Squares

Suppose we are given p unit-norm vectors x1; : : : ;xp 2
S2 and an unknown transformation a 2 IR3 that acts on
each xi; i = 1 : : : p via the cross-product a � xi 2 TxiS
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(the tangent plane to the unit-sphere S2 at xi). Suppose
further that we can measure each transformed vector up to
an unknown scaling factor �i 2 IR+: yi = a�xi�i+ni i =
1 : : : p where each ni represents the uncertainty (or error)
in the measurement yi, and hence ni 2 TxiS

2. Now, given
a number p of vectors xi; i = 1 : : : p and the corresponding
measurements yi, we want to �nd the transformation a 2
IR3 and the scales � = [�1; : : : ; �p]

T 2 IRp
+ that minimize

the norm of the uncertainty n:

min
a2IR3

;�2IRp

+

pX
i=1

knik
2
wi

subject to yi = a�xi�i+ni 2 TxiS
2

(1)

where wi indicate the weights chosen for the components
of the cost function. In the next three subsections we will
analyze three distinct cases. Obviously, in the absence of
noise (n = 0) the three problems of minimizing the cost
function above under the di�erent choices of weights have
the same exact solution.

In this and the following sections we use the \hat" op-
erator to indicate a skew-symmetric matrix bx 2 so(3) that
performs the cross product between two vectors x and v:bxv = x � v. Since in all equations the parameters a and
� appear as a product, it is clear that they can only be
recovered up to a common scale. Therefore, we choose to
normalize a, so that kak = 1, although any other choice for
the normalization would do. Using this notation, we can
formulate the \Spherical Least-Squares Problem" (SLS) as

aopt; �opt = arg min
a2S2;�2IRp

+

pX
i=1

kyi + bxia�ik2wi : (2)

We refer to the sum above as the cost function of SLS.

2.1 Weighted Spherical Least Squares
In this section we consider wi(a)

:
= ka� xik 2 [0; 1].

Claim 2.1 Given p > 3 points xi 2 S2; i = 1 : : : p and the cor-
responding measurements yi, under general position conditions
the SLS problem (2) with wi = wi(a) admits a unique solution
aopt and �opt up to a sign. If we de�ne M to be the symmet-
ric 3 � 3 matrix M =

Pp

i=1
yiyi

T , then the optimal unit-norm
solution aopt is the eigenvector of M corresponding to its small-
est eigenvalue: aopt = vmin(M) and the optimal scales �opt are
obtained from aopt via

�iopt = �
yi

Tbxiaopt
aToptbx2iaopt i = 1 : : : p: (3)

Proof: Consider the cost function of SLS, de�ned in equation
(2). For any given a, the � that minimizes it is given, as a
function of a, by

�i(a) = �(bxia)yyi = �
aT bxiyi
aT bxi2a i = 1 : : : p: (4)

Once we substitute �(a) back into (2), the components of the
cost function become k(bxia)?yik. We now use the fact that

x? = �bx2 to replace (bxia)?yi with (bxia)
kbxiak � yi, ending up

with minimizing for a the cost function
P

i

k(bxia)�yik2wi
kbxiak2 : Since

(bxia)� = axi
T � xia

T , and yi is orthogonal to xi, we can fur-
ther simplify the SLS problem, that becomes

arg min
a2S2

pX
i=1

kxia
Tyik

2 = aT

 
pX
i=1

yiyi
T

!
a: (5)

It is immediate to see that the least-squares unit-norm solution

for a is given by the eigenvector ofM corresponding to the small-

est eigenvalue. Note that, since M is symmetric, the eigenval-

ues are real and positive, and the eigenvectors are unit-norm

orthogonal vectors. Once the optimal a has been computed, the

corresponding optimal � can be obtained as �i(a) from equation

(4). Note that there is a sign ambiguity in a, that re
ects onto

the sign of the vector �.

2.2 Balanced Spherical Least Squares

Let us assume for a moment that the weights wi are all
identical to 1. We can still follow the procedure outlined
in the proof of claim 2.1, but rather than ending up with
minimizing the cost function

Pp

i=1 kxia
Tyik

2 in (5), we

have
Pp

i=1
kxia

Tyik
2

kxi�ak2
, which can be re-written as

pX
i=1

< yi; a >
2

kxi � ak2
: (6)

If we assume that xi span a small solid angle (compared
to the full sphere), then it makes sense to talk about an
average direction �x. If we weight each point with wi =
kxi�ak
k�x�ak , the cost function to be minimized becomes aTMa

aTNa
,

where M
:
=
Pp

i=1 yiy
T
i and N

:
= b�x2. The solution for this

problem has to do with Singular Rayleigh quotients and is
derived in [11]. We summarize the result in the following

Claim 2.2 The solution aopt for the problem of minimiz-
ing the cost function (6) is obtained by minimizing the cor-

responding Singular Rayleigh Quotient aTMa
aTNa

. The solution

is given by the eigenvector of the matrix Ms
:
=M�M �x�xTM

�xTM �x
relative to the matrix N corresponding to the smallest non-
zero eigenvalue.

2.3 Unweighted Spherical Least Squares

When we choose all weights wi to be identically equal
to one, the problem of Spherical Least Squares can be re-
duced, following the proof of claim 2.1, to minimizing (6)
subject to the constraints < yi;xi >= 0 and kxik = 1. In
the presence of noise, we have not found a closed-form op-
timal solution for the Unweighted Spherical Least-Squares
problem. However, the following simple iteration can be
easily proven to be contractive and therefore to converge
to a �xed point:

ak+1 = prS2
�
I �H�1DT

�
ak (7)

where D =
P yyT (aTbx2a)�bx2(aTyyTa)

(aTbx2a)2 , H isP
yy

T
�2aaTbx2+aT yyT abx2�2aaT yyT

(aTbx2a)2 � 4
�yy

T
aa
Tbx2�bx2aaT yyT aaTbx2

(aTbx2a)3 ,

and prS2 denotes renormalization (projection onto the
sphere). Of course this iteration is only guaranteed to con-
verge to a local solution of the Unweighted SLS. However,
we have noticed that using a Weighted SLS or a Balanced
SLS as an initialization step usually places the iteration in
the basin of attraction of the global minimum. In partic-
ular, for small levels of noise (up to 50% of the average
signal), we have observed that both the Weighted SLS and



the Balanced SLS approximate well the solution of the un-
weighted SLS, and therefore running an iteration of the
type above improves only marginally the solution. For
higher noise levels we have observed that when the devi-
ation of the xi is large, the solution to the Weighted SLS
provides an accurate initialization, while when deviation of
the xi is small (on the order of 40o or less), the solution of
a Balanced SLS is more accurate. In both cases, however,
the iteration converges in a few steps (less than 10).

3 Structure From Motion
Consider a variation of the Spherical Least-Squares

problem of equation (2), where we add to the cost
function the a�ne term bx2ib, with b 2 IR3 unknown:
min

a2S2;b2IR3
�2IRp

+
r0(a;b; �) where we de�ne

r0(a;b; �) =

pX
i=1

kyi + bxia�i � bx2ibk2 (8)

as the cost function of SFM, and we neglect the subscripts
wi that indicate the choice of weights. This problem can be
interpreted as that of estimating the direction of translation
a 2 S2, the rotational velocity b 2 IR3 and the depth
1=�i i = 1 : : : p of a number p of moving points in 3-D,
from the noisy projection of their velocity onto the retina,
modeled as a unit-sphere [7]. The estimation criterion is to
minimize the (weighted) norm of the \reprojection error".

In the special case b = 0 (no rotation), (8) reduces to
a SLS problem. Depending upon the weights chosen, we
have shown in section 2 how to obtain a (local) solution for
the direction of translation a and the scaling parameters
(inverse depths) �i.

In the presence of rotation b 6= 0, the problem de�ned by
equation (8) is no longer a standard SLS problem. Many in
the Computer Vision literature have proposed methods to
\undo" the rotation, by either warping the image [12, 10, 3],
by applying a linear transformation to the measured data
[16, 7], or by estimating a rotational velocity assuming
small translation [9]. In all cases, however, the transfor-
mation acts on the noise as well as on the data, therefore
spoiling the goal of achieving an optimal estimate. Here
we take a di�erent approach, that is somewhat more aware
of noise and results in an optimal (although non-linear)
estimator.

Following the derivation of the solution of SLS in claim
2.1, we can transform the problem of SFM into

arg min
a2S2;b2IR3

pX
i=1

kxia
T (yi � bx2ib)k2 (9)

Now, for any given b, the a that minimizes the norm of the
cost function of SFM in (8) can be obtained by solving the
SLS problem (2) with yi being substituted by ~yi = yi�bx2ib:
In the same fashion { given a { the b that minimizes the
norm of the n is obtained immediately from (9) as

b(a) =

 
pX
i=1

bx2iaaTbx2i!�1 pX
i=1

bx2iaaTyi: (10)

Therefore, the \conditional" problems of estimating a given
b { or b given a { are particularly simple. Based on
the simplicity of the conditional problems, one may be

tempted to try the following Bilinear Projection Algo-
rithm (BPA):

� let k = 0 and choose any initial value for b 2 IR3

� iterate the following:

{ ak = argmina2S2
Pp

i=1 kxia
T (yi � bx2ibk)k2

{ bk+1 =
�Pp

i=1 bx2i akaTk bx2i ��1Pp

i=1 bx2i akaTk yi:
{ k = k + 1

We are implicitly excluding the case a = 0, for that case
can be easily detected and treated separately (see [11]).
It is straightforward to prove that this iteration converges
\somewhere". It is less obvious to make sure that the iter-
ation converges to some meaningful local extrema. Luckily
we have the following

Claim 3.1 Given p > 5 points in general position, the Bilinear
Projection Algorithm converges to a local extremum of the bi-
linear cost function (BCF) r(a;b)

:
=
Pp

i=1
kxia

T (yi� bx2ib)k2:
Extrema of the bilinear cost function r are in one-to-one corre-
spondence with those of the cost function of SFM in (8).

In order to prove the claim we need to establish that the bilinear
iteration does not introduce \phantom" stationary points to the
cost function. This is guaranteed by the following:

Lemma 3.1 Let  (a) be the p-dimensional vector with i-th
component xia

Tyi, and � the p� 3 matrix with i-th row equal
to xia

Tbx2i . Then r(a;b) = k (a) � �(a)bk; de�ne r2(a)
:
=

k�(a)? (a)k 1. Furthermore, assume that � has constant rank
� = 3 in some open subset 
 of IRp. If a� is a critical point
(or a global minimizer) of r2, and b�

:
= �y(a�) (a�), then

(a�;b�) is a critical point (or a global minimizer) of r and
r2(a

�) = r(a�;b�). If (a�;b�) is a global minimizer of r, then
a� is a global minimizer of r2 and r2(a

�) = r(a�;b�). y denotes
the (least-squares) pseudo-inverse.

Proof: This is a a special case of theorem 2.1 on page 416 of
[6], with the simple extension of allowing the a�ne term  to
depend on a.

Proof of claim 3.1: The Bilinear Projection Algorithm is

a Gauss-Newton iteration for the cost function r(a;b). The

lemma guarantees that the iteration performed by alternating

the variables a and b has the same �xed points of the itera-

tion performed simultaneously on a and b. The �rst part of the

claim follows from standard properties of Gauss-Newton itera-

tions. That such extrema correspond to those of the original cost

function in (8) follows by applying the lemma again to the SLS

problem.

The above claim guarantees that, following the BPA out-
lined in this paragraph, we do not introduce spurious solu-
tions to the problem of SFM. Therefore, it remains to be
established whether the original problem of SFM, as formu-
lated in (8), admits spurious local solutions in the presence
of noise n. This is the subject of the next section.

1Here the notation �? stands for the projector operator onto the
orthogonal complement of the range space of �, de�ned as �? =
I � ��y, where y denotes the pseudo-inverse.



4 \Bas-relief ambiguity", \rubbery mo-

tion percept" and a robust representa-

tion of shape
In order to detect and classify the local extrema associ-

ated with the cost function of SFM, one can start by setting
up a random sampling simulation. Note that, by virtue of
lemma 3.1, it is equivalent to check any of the cost functions
r0(a;b; �), r(a;b) or r2(a), de�ned in (8) and in lemma 3.1
respectively. This makes the random search particularly fa-
vorable for r2(a), since it only depends upon 2 parameters,
and can therefore be visualized, as we will see in section
5. We �rst observe that local extrema tend to cluster in
a small number of groups (eight), and then give analyti-
cal explanation for the geometric/noise con�gurations that
give raise to such local minima.

The \bas-relief" ambiguity

One of the common complaints to SFM algorithms from
perspective is that they become unreliable in the presence
of small �elds of view, and when the rotational component
of motion is \confused" with the translational component
(see for instance [18]). It is our goal in this section to
formalize this concept and establish that this e�ect is \in-
trinsic", and not an artifact of the algorithm. We will also
discuss what information can be robustly recovered under
these conditions.

When an object occupies a small portion of the visual
�eld, xi tend to be similar. We call their average direction
�x. Rotation about an axis orthogonal to the line of sight
passing through the object corresponds to a and b being
orthogonal to each other and both orthogonal to �x. We
will now show that these conditions, in presence of noise,
give rise to a minimum of the cost function (8).

Claim 4.1 Let yi = �bxia�i + bx2ib + ni, and �x ? a ? b.
Furthermore, let b = b0 + �b, with k�bk �= knk, the aver-
age norm of the measurement error. Then the cost function
r0(a;b; �)

:
=
Pp

i=1
kyi + bxia�i � bx2ibk2 has a local extremum

at ~b = b0, ~� = � � ��, and ~a = vmin(
Pp

i=1
yiyi

T ), where the
bar denotes the average, and vmin denotes the eigenvector cor-
responding to the smallest eigenvalue.

ProofWithout loss of generality, assume b0 = 0, so that b = �b
is of size comparable to the noise: kbk �= knk. Since �x ? b and
xi 2 S2, we have kbx2ibk �= kbk 8i = 1 : : : p and therefore
the terms bx2ib are comparable with the noise ni, and they can
be lumped as a bias into ~ni = bx2ib + ni: The value of b that
minimizes the norm of ~n is ~b = 0, and the corresponding ~a
is obtained as the solution to the SLS problem (2), e.g. ~a =
vmin(

Pp

i=1
yiyi

T ). In order to evaluate the corresponding ~�,

we observe that �i = �(bxia)yyi+(bxia)yb�x2b �= �0i +(b�xa)yb�x2b =
�0i + �� where �0i are obtained assuming b = 0 and �� is the
average of the scales �i. Therefore, the scales corresponding to
the local solution b = 0 are the zero-mean version of the original
ones ~�i �= �i � ��:

Remark 4.1 From the claim we can conclude that, in presence
of high noise levels, a portion of the rotational velocity b can be
confused with noise and compensated by a \bias" in the trans-
lational velocity a, and the corresponding inverse depths �i are

o�set towards the origin. This statement con�rms the obser-
vations of Weng et al. [18], although they attribute the e�ect
to the geometry of the epipolar constraint. The consequence of
claim 4.1 seems in contrast with the observations of [17], that
the axis of rotation has no impact on the bias of the estimate of
translation. However, in order for the bas-relief e�ect to show,
the conditions of claim 4.1 must be met, in particular the aper-
ture angle must be small, the noise level must be high and the
algorithm must be initialized far away from the true solution.
Some of these conditions were not explored in the experimental
setup of [17], and therefore the e�ect was not observed.

Other extrema

In the proof of claim 4.1 we have computed the local min-
imum ~a associated with ~b = 0 as the solution of the cor-
responding weighted SLS problem. Such a solution is the
eigenvector of the matrix M (de�ned in claim 2.1) corre-
sponding to its smallest eigenvalue. In the absence of noise,
such eigenvalue is 0. For small noise levels, it still is dis-
tinctively smaller than the remaining two. However, in the
presence of large noise, the eigenvalues become comparable
and therefore the actual solution of the SLS problem can be
any of the three eigenvectors of M . This indeed happens
{ for large noise levels { and it accounts for three of the
extrema of the cost function found experimentally.

Detecting local minima and switching between ex-
trema

We have established that there are (at least) two extrema of the
bilinear cost function (BCF) for b: one corresponding to the
true solution, and one corresponding to the bas-relief ambigu-
ity ~b = 0. Correspondingly, there are three extrema for a, the
eigenvectors of the matrix M de�ned in claim 2.1. Out of these
three extrema, there is a minimum, a saddle, and a maximum,
as a consequence of the analysis in section 2. It is possible to
detect whether a stationary point ~a is a local minimum or not.
In fact, given ~a, we can compute its orthogonal complement (the
remaining two eigenvectors ofM), and compute the correspond-
ing residual. We then just choose the eigenvector that carries
the smallest residual. By doing so, we rule out 4 local extrema
(2+2), and we are left with 2 possibilities: ~b = b, or ~b �= 0, the
bas-relief ambiguity.

As it turns out, this situation can also be detected easily, even

without knowing the noise level knk (which gives a lower bound

on the residual). In fact, the correct b leads to reconstructed

scales � that are positive, while in the bas-relief ambiguity they

are o�set towards the origin and, as long as not all �i are equal

(i.e. when the structure is a perfect fronto-parallel plane), some
~�i will be negative, as a consequence of claim 4.1. Note that even

in the latter case, which corresponds to the bas-relief ambiguity,

it is still possible to retrieve a useful representation of shape,

for ~� can be re-scaled by choosing � so that ~� + � > 0, which

leads to the bas-relief. These scaled parameters can be chosen

to e�ectively re-initialize the algorithm, as we will see in the

experimental section.



\Rubbery motion" percept

An interesting phenomenon that has been observed in psy-
chophysical experiments occurs under the same conditions
of the bas-relief ambiguity. However, instead of rotational
velocity being underestimated, it is perceived as being the
opposite of the true one.

In order to analyze this phenomenon from the point of
view of noise, let us consider the same conditions of the bas-
relief ambiguity as expressed in claim 4.1, and assume that
~b = �b, and ~�i = ��0i �

��. In order for this to be a legiti-
mate local extremum, as a consequence of lemma 3.1, there
must exist some ~a that makes the noise ~ni small, where
yi = �bxi~a~�i+bx2i ~b+~ni: If we substitute the expressions for
~�i and ~b we get yi �= bxi~a�0i�(b~a�x)(ba�x)yb�x2b�b�x2b+~ni: From
that expression it is possible to see that, under the assump-
tions of the bas-relief ambiguity, ~a = �a0, where a0 is the
solution to the SLS problem obtained by assuming b = 0.

In fact, in that case we have yi �= bxi~a�0i � (ba�x)?b�x2b + ~ni

but b�x2b �= b and ba�x �= b
kbk , so that (ba�x)� (b�x2b) = 0 and

the second term in the previous expression is negligible. We
have therefore

yi �= bxi~a�0i + ~ni: (11)

The value of ~a that minimizes the sum of the norms of ~ni
is obtained as the solution of the SLS problem associated
to (11).

Remark 4.2 Note that this solution, which we call the \rubbery
motion" e�ect, is not just the correct solution with the 
ipped
sign, for that would correspond to ~�i = ��i, while here we have
~�i = �i � 2�0i .

A robust representation of shape

The averaged inverse depth is invariant under the bas-relief
ambiguity. The rubbery motion percept consists in a sign
change of the averaged inverse depth. Therefore, the aver-
aged inverse depth represents shape up to a global scaling
factor and a sign, and it is invariant under the bas-relief
ambiguity and the rubbery motion percept.

5 Experiments
How much noise is too much noise?

Typical feature-tracking/optical-
ow algorithms declare
accuracy in locating corresponding feature-points in the
order of 0:1 pixels std [2]. It is our experience that this
is indeed the case for about 30% of the feature-points ex-
tracted automatically according to a SSD (Sum of Squared
Di�erences) criterion. However, for 70% of the features,
a more realistic �gure for the localization error is 1 pixel
std. Now consider a camera with a 30o �eld of view and
an imaging sensor of 512� 512 pixels, translating forward
at 0:5m=s. Depending upon the scene being viewed, the
average norm of the 
ow vectors on the imaging sensor is
in the order of 1-2 pixels (for a 15 frames/second capture
rate). Therefore, an error in the order of 1 pixel corre-
sponds to 50%-100% of the measurements. Consider again
the camera just described, but now looking at an object

that is 2m ahead of the camera and rotating about an axis
passing through its centroid at 1o=s. In this case the av-
erage norm of 
ow vectors is 0:1 pixels/frame, and 1 pixel
error corresponds to an intolerable 1000%.

Therefore, even the use of the most accurate feature-
tracker does not dispense us from dealing with noise in
scenarios that are very often encountered in real-world sit-
uations.

Sample tests on real images

Since the algorithm described in section 3 is optimal by con-
struction, we should expect it to work at least as well as any
other algorithm. Most real image sequences available do not
have a reliable ground-truth, and therefore a fair comparison is
impossible. Later in this section, however, we report the results
of a simulation to compare the optimal algorithm versus ones
based upon epipolar geometry and linear subspace constraints.

Here we just report the use of the algorithm on a real image
sequence for the sake of example. We have chosen as a sample
experiment a \box-sequence" that was available on the Web
in Matlab format with calibration data (�gure 1); the motion
pattern is the one leading to the bas-relief ambiguity. The box
rotates about a vertical axis at a rate of 3o=frame, which is
a fairly large motion. Under these conditions even the 8-point
algorithm of Longuet-Higgins works.
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top−view of the reconstructed box scene

Figure 1: Box scene A box rotates about a vertical axis at
3o=frame. The top-view of the reconstructed scene is shown on the
right in normalized units (units of translational velocity). No reliable
ground-truth is available.

Sample of convergence behavior during simulations

In �gure 2 we show a typical case where the iteration converges
to the global minimum. The residual decreases up to the level
of the noise (left), and both the parameters a;b (center) and
the scales � (right) are within bounds from the true values.
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Figure 2: Convergence to the global minimum (left) residual
cost function, (center) parameter estimation error, (right) estimated
scales. Ground truth is in dotted lines (if you can see them, that is).

However, sometimes the residual stabilizes at a level di�erent

from the noise level, as in �gure 3 (top-row left), but both the

parameters (center) and the scales (right) are quite far from

their true values, indicated in dotted lines. This is a clear sign



that the algorithm has converged to a local extremum. However,

if we check all three eigenvectors of the matrixM and the scales

� that they generate (3 middle-row), we see that one of them

(center) produces an estimate that corresponds to the averaged

version of the correct scales. Therefore, there has been a switch

of the eigenvalues of M . We can now switch to the solution

for a and � corresponding to the eigenvector that generates the

smallest residual, and use that as initial condition for a second

run of the algorithm, that converges in 5 iterations (3 bottom-

row). Figure 4 shows convergence to the bas-relief ambiguity.
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Figure 3: Convergence to a local extremum (top) the residual
stabilizes (left), but the parameter error (center) and scales (right)
are far away from their true values (in dotted lines). The normalized
scales corresponding to the 3 eigenvectors ofM , plotted in the middle
row, show that one of them corresponds to the correct estimate. We
may then switch to the correct solution and re-initialize the algorithm,
that converges to the correct solution within 5 steps (bottom row).
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Figure 4: Convergence to the bas-relief ambiguity The resid-
ual stabilizes (left), the parameters (center) are far away from the
true values, but the estimated scales (right) are an averaged version
of the true ones.

Predicted behavior based on the analysis

Based upon the analysis carried out in section 3, we know
that local extrema of the original function of SFM r in
(8) are in correspondence with the local extrema of the re-
duced function r2(a). Since kak = 1, we can represent a
in spherical coordinates and plot the cost function r2 (�g.
5). The motion is a �xating one similar to that of the
box experiment (�gure 1). In addition to the global mini-
mum, corresponding to the coordinates (0; �=2) (azimuth,

elevation), we expect a maximum and a saddle in the or-
thogonal direction. These are showed in �gure 5 (top left).
The saddle coincides with the singularity of the spherical
coordinates: in fact, the two lines (��=2; �), and (�=2; �)
correspond to a point on the sphere. The rubbery inter-
pretation corresponds to the local minimum diametrically
opposed to the true motion (�gure 5 top right). the local
extrema corresponding to the bas-relief ambiguity are re-
ported in �gure 5 (bottom left), while in (bottom right)
we show the location of the extrema corresponding to the
\rubbery" bas-relief ambiguity. We expect that our simu-
lations will show convergence to some or all of these local
extrema.
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Figure 5: Predicted extrema for �xating motion Local extrema
are plotted as black asterisks superimposed to the residual of the cost
function r2 (top left). We also show the local extrema corresponding
to the rubbery interpretation (top right), the bas-relief ambiguity
(bottom left), and the rubbery bas-relief ambiguity (bottom right).

Experimental trials

We have considered p = 20 points on a volume of side 1m
centered 2m from the center of projection. The points have
images on the unit sphere. First we have considered for-
ward translation at 0:2m=frame, and noise levels of 0:1,
1 and 10 pixels std, corresponding to 4%, 40% and 400%
of the measurements respectively. For each noise level we
have performed 200 trials. In �gure 7 we show the plot of
the residual of the cost function superimposed to the point
where the Bilinear Projection iteration converged (a black
asterisk). On the second column, the same points have
been checked against local minima, and the global mini-
mum has been chosen correctly in all cases. The situation
is very di�erent for a �xating motion. We have considered
the same situation just described, but where the cloud of
dots rotates of 1o=frame about an axis passing through
the centroid. In this case we have considered noise of 0:05,
0:5 and 5 pixels std, corresponding to 2%, 20% and 200%
of the measurements. Already at 2% noise we notice that
the algorithm converges to local minima corresponding to
both the saddle, the bas-relief ambiguity, and the rubbery
motion perception. If we check for local minima, however,
we can get to the correct estimate in all 200 trials (right).
For 200% noise, however, the rubbery motion perception
becomes stable, so that about 40% of the trials return the
rubbery motion solution even after correction.
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Figure 6: Comparison with epipolar geometry and linear

subspace methods (Top row) the estimates of translation (left) and
the scales (center) obtained with the BPA are plotted with errorbars
for 100 trials of the experiment. Noise is 50% of the measurements.
The residual (right) is small, but it can be no smaller than the noise
level, plotted in dashed lines. (Center row) algorithms based on the
epipolar constraint perform considerably worse (left and center), de-
spite the fact that the residual is smaller (right). The fact that the
residual is smaller than the noise level is indeed a consequence of the
fact that the epipolar constraint does not minimize the reprojection
error. Linear subspace methods (bottom row) exhibit a bias both in
the estimates (left and center) and in the residual (right).

Comparison with other algorithms

In this section we compare the optimal algorithm proposed
in section 3 with other approaches based upon epipolar ge-
ometry [4], and upon linear subspace methods [7]. We use
as a representative of the �rst class the algorithm described
in [19], and as a representative of linear subspace methods
the one in [16]. We consider p = 20 points distributed
uniformly in a cube of side 1m centered at 2m, rotating
at 1o=frame, with measurements on the unit sphere cor-
rupted by 50% noise. In �gure 6 we show the result of 100
trials. The upshot is, not surprisingly, that the optimal
algorithm works better. The outcome of the experiments
for linear subspace methods show that the estimates are
biased, as reported in [16].

6 Conclusions
The assumption of \small noise" is often illegitimate in

conditions normally encountered in real-world experiments
with SFM. Therefore, SFM needs to be addressed from the
point of view of noise. We have proposed a provably con-
vergent algorithm (the bilinear projection iteration), char-
acterized the set of local extrema, given a geometric inter-
pretation and proven that they are intrinsic to SFM, and
proposed a representation of shape that is invariant to local
minima.
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Figure 7: Forward translation (left) The residual of the cost
function r2 is superimposed to the �xed points of the Bilinear
Projection iteration before (left) and after (right) correction for
local extrema. Noise is 4% (top), 40% (center) and 400% (bot-
tom) of the measurements. Convergence to the valley of the
global optimum is achieved in all 200 trials. Bas-relief am-
biguity (right) The Bilinear Projection algorithm converges
to local minima corresponding to both the bas-relief ambigu-
ity and the rubbery interpretation (left). For noises of 2% (top
row) and 20% (center row), checking for local extrema is su�-
cient to achieve the correct solution in all 200 trials. For 200%
noise (bottom), the rubbery interpretation is stable in 30% of
the trials.
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