WAS - 10:15

Proceedings of the 28th Conference
on Decision and Contro}
Tampa, Florida * December 1989

Harmonic Maps and the Optimal
Design of Mechanisms

Frank C. Park and Roger W. Brockett
Division of Applied Sciences
Harvard University
Cambridge, MA 02138

September 22, 1989

Abstract

In this paper we address certain problems in the de-
sign and analysis of kinematic chains using the theory
of harmonic maps. We show that this theory provides
interesting results on the treatment of optimal geome-
tries for both the redundant and non-redundant cases
and provides a reliable numerical criterion for dexterity.

1 Introduction

Until recently much of the kinematic design and performance
evaluation of robot manipulators has been based largely on
experience and intuition, with varying notions on what con-
stitutes an optimal design. Although it is clear that no single
design exists which is optimal for all tasks, it is still possible
to associate with mechanisms a certain sense of coordination
or dexterity, physical qualities which are normally ascribed to
humans. What is often lacking is a formal, mathematically pre-
cise way of characterizing these qualitative observations. The
benefits of such a tool for kinematic analysis are, of course,
apparent and numerous. It is generally agreed, for example,
that extra degrees of freedom will enhance the performance of
a manipulator, yet methods for exploiting this redundancy re-
main largely an art. This paper provides an analytic tool for
treating such problems in a precise manner.

One of the first kinematic performance criteria proposed the
concept of maximal dextrous workspace volume (Roth 1976).
This criterion measures the volume of the set of points in the
workspace which can be reached with arbitrary orientation o1
the end-effector. Several variations and applications of the
workspace volume criterion have been proposed and investi-
gated by others (Gupta 1986, Vijaykumar 1986). Such criteria
are appropriate for manipulators whose task descriptions in-
volve large movements relative to the size of the mechanism.
However, just as for human coordination, we can argue that
a mechanism’s ability to perform complex, fine motions in a
smooth and accurate manner is in fact more critical than its
workspace volume. This is especially true for general assembly
robots which are being asked to perform increasingly complex
tasks. Several criteria measuring this dexterity in a local sense
have been proposed. Yoshikawa (1985) defines the mansipulabil-

ity measure as the scalar quantity \/det J(6) JT(0}, where J(6)

is the Jacobian of the forward kinematic map. Klein (1987)
investigates this and other related dexterity measures with re-
spect to optimal postures, working points and link lengths for
redundant planar mechanisms. These measures all share the
common theme of penalizing configurations which are close to
singularities. However, the distance from a singular configu-
ration does not necessarily correspond to our intuitive notion
of dexterity, and furthermore it is not possible to extend these

CH2642-7/89/0000-0206$1.00© 1989 IEEE

206

measures globally over the entire domain, precisely because
these measures become degenerate at the singularities. What
is desired, it seems, is a means of measuring dexterity “uni-
formly” over the entire domain including the singularities.

We show here that the theory of harmonic maps, which is
generally traced to the fundamental paper of Eells and Samp-
son (Eells 1964), provides an interesting analytical tool for in-
vestigating the kinematic dexterity of mechanisms. Harmonic
maps are the critical points of an integral distortion measure
which we claim is a natural measure of our intuitive notion
of dexterity. Considering mechanisms to be smooth maps be-
tween the Riemannian manifolds of the joint space M and the
end-effector space N, the functional measures the inherent dis-
tortion involved in the mapping of spaces of different curvatures
onto one another. The functional used measures the distortion
of a map in some uniform average sense by integrating over the
entire domain M .

Several different interpretations of this distortion measure
are possible. A rough physical interpretation is that if M were
made of rubber and N of marble, we then wish to map this
elastic domain M onto a rigid range N . We can therefore as-
sociate with each point of M an elastic tension; harmonic maps
are ones which result in an elastic equilibrium of minimum
average tension (Eells 1978). An alternative interpretation in-
volves probability. As is well known, if the Jacobian defines the
velocity gain in going from joint space to end-effector space,
then its inverse transpose defines the force-torque gain; a large
velocity gain results in a small force-torque gain. Therefore
by controlling the size of the velocity gains we can control the
force-torque gain. Specifically, if we let the velocity vector in
joint space be randomly distributed according to a zero mean,
unity variance gaussian, and if we define the average velocity
gain to be the expected value of the length of the velocity vector
vector in end-effector space, then the harmonic map minimizes
the velocity gains, averaged over the entire set of joint values.
In this case the average is computed relative to the natural
volume measures in both the range and domain; this idea may
be compared with the notion of dispersion introduced by Eells
(1964).

In section 2 we introduce the distortion measure and intro-
duce the theory of harmonic maps; we need to assume that the
reader is familiar with the basic concepts of Riemannian geom-
etry. To gain familiarity with the concepts we consider several
examples of simple manipulators in section 3, computing the
distortion and optimal link lengths for various cases. These
examples illuminate the key features of our distortion measure
and suggest ways to address other issues arising in the design
and analysis of mechanisms.



2 Harmonic Maps

We begin with some geometric preliminaries. Let M and N be
Riemannian manifolds of dimension m and n, respectively, en-
dowed with the metrics g;;dz’dz? and h,edf*df?, in local co-
ordinate charts £ = (z'...z") and f = (f!...f™) on M and
N, respectively. Define the metric tensor (h*#) to be (k) ~".
If we consider a mechanism to be a smoothmap f : M - N,
then we can define its distortion density in local coordinates as

aft afi

dz* 3zP

where we use the standard summation convention of repeated
indices being summed over their entire range. If we denote the
Jacobian matrix of the map fby J, and the metric tensors
(9i;) and (hag) by G and H, respectively, then an alternative
representation for the distortion density is ! tr{JTHJG 1}.
The total distortion of the map f is then deﬁned to be

d(f) = 2 h*()gi (£(x)

where dM is the volume element on M . If f is of class C?, the
distortion D(f ) is finite, and f is a critical point of D(f ), then
the map f is called harmonic. As with finding critical points
of other functionals, we can derive a set of Euler equations for
harmonic maps. Let 1";'-,‘ denote the Christoffel symbols of the
second kind on N . Then the Euler equations are of the form

1 a2 a,,af afri afiafk _
i 3= VIR 5 00) + M ik e 5 =
for 1 =1,2,...,m, where once again Hdenotes the metric ten-

sor (hap) and |H| its determinant. We thus obtain a nonlinear
elliptic system of m partial differential equations, where the
principal part on the left is the Laplace-Beltrami operator on
M, and the second term is quadratic in the gradient of the
solution. For our purposes this is unnecessarily abstract. It
is easier for our applications to derive these equations on a
problem-by-problem basis using variational principles for mul-
tiple integrals, rather than computing the Christoffel symbols
on N .

Suppose we wish to find the critical points of a functional
of the form

D(f) :fM L(z,f (), V] (z))dz

where aft o afm afm

VIE) = (35 555 3T Bam)

Assuming M has fixed boundaries, the Euler equations then
are

n

Z

dz? a(_!..)

forti =1,...,m. These equations are an alternative version
of the Euler equations discussed in the previous paragraph.
Some familiar examples of harmonic maps are the solutions of
Laplace’s equation for the equilibrium temperature distribu-
tion in a plate, and the geodesics on a manifold.

It is instructive to consider simple one-dimensional exam-
ples to see that harmonic maps are indeed distortion mini-
mizing maps. For the case M = N = [0,1], the distortion
criterion is simply D(f ) = [y f? dt, where f : [0,1] — [0,1] is
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constrained to be onto the interval [0,1]. The solution is the
linear function f = ¢, which inarguably is a minimum distor-
tion map. Another possible choice of distortion measure of a
map is its “proximity” to an isometry; recall that f : M — N
is an isometry if JTHJ = G, where G and Hare, once again,
the metric tensors on M and N, and J is the jacobian of
I . We can therefore consider ||[JTHJ — G||, for some suitably
defined norm, to be a distortion density. The standard metric

|97HI - G|| = tr {(JTHJ - G)(JTHJ - G)T}

leads to Euler equations which are fourth-order, however, and
just the question of existence of solutions becomes an extremely
difficult problem. For practical purposes this measure seems
too complicated and unsuitable. However it is interesting to
note that for our one-dimensional example above, both distor-
tion measures lead to the same solution, and it is plausible that
this may occur for other cases as well. To fix ideas we will now
consider a simple but interesting example.

Example 1 — Harmonic Maps from T* to §?

Suppose we wish to find a harmonic map from the flat torus
T to the unit two-sphere §? embedded in R2. Denote local co-
ordinates on T? by (z,y) and polar coordinates (0,4) on §?,
where 8 is the longitudinal coordinate, and ¢ = 0 corresponds
to the z-axis. Endow the two spaces with their usual Rleman-
nian metrics: ds® = dz?+dy® on T? , and ds? = d¢? +sin® ¢ d6?

on §*. The distortion is then given by
_1 2 2 2
D(£) =5 [ fpu VA +sint 41V 6P dz dy
where V denotes the gradient operator and ||-|| is the standard

Euclidean norm. The Euler equations are
V230 +2cotdp < VO, V> =0

V?¢ —singcos¢||VE||* =0

If we fix the dimensions of the torus to be 2r by 27, then for a
double covering of §* by T we require the boundary conditions
6(0) = 0, 8(27) = 2w, ¢(0) = 0, #(27) = 27. There is in fact
a theorem which states that no single covering harmonic maps
exist from T* to S* (Eells 1988); we must therefore cover the
sphere twice with a “degree two” map. Suppose 8 is the linear

function 8(y) = y. The Euler equations will then be satisfied
if ¢ satisfies the pendulum equation

2¢

Fr) —sindcosg =0
with boundary conditions ¢(0) = 0, ¢(27) = 27. The distor-
tion reduces to

D(f) = w/o"(g_f)’ +sin’ ¢ dz

By symmetry, the latter boundary condition to the pendulum
equation can be replaced by ¢(§) = , and the total distortion
is four times the density integrated over this interval.

Note that we were able to reduce the Euler equation to
a single pendulum equation. Baird (1984) provides a more
general “reduction” theorem describing circumstances under
which the Euler equations for a harmonic map between mani-
folds of constant curvature can be reduced to a single nonlinear
equation of the pendulum type.

Similarly, we can look for harmonic maps from S? to T’
The distortion in this case becomes




_ 1 . 0z,, ,0y,,
by = //s= snat(ag) + (56"
oz oy
+ (a_¢7)z + (5‘)-5)2 df d¢
and the corresponding Euler equations are
1 0
sin? ¢ 90? '~ 92
1 9% od%
sntgo0r g =0

Note that the linear solution z = 8, y = ¢ satisfies the equa-
tions. This is the standard topography problem, and our solu-
tion confirms that the familiar polar coordinates are in fact a
distortion minimizing map.

3 Applications to Robot Kinematics

Example 2 — T? to §? Revisited

Any mechanism with two rotary joints has the torus T2 as
its joint space. Some of the typical mechanisms of this class
have the annulus, the disk and the two-sphere as the range
space. We therefore reconsider the 7'? to §* problem from the
mechanism perspective. Since there is nothing sacred about
the square torus, we leave the dimensions of the torus to be
arbitrary for now, requiring only that its area be 47. Denoting
the width of the torus edges by zm.; and Ymaz, and once again
assuming the linear solution #(y) = (-2%)y for the longitudinal

res

coordinate, we are left with the pem{a]um equation
4

92 2
B—J:q: - (ﬁ) singcos¢ =0

with boundary conditions $¢(0) = 0 and ¢(yma:) = 27. We
determine the distortion D(f) numerically as a function of the
aspect ratio r = (I22), We see from figure 1 that as r ap-
proaches 0, the distortion decreases to the minimum value of
8x. This is in accordance with a theorem which states that the
infimum of the distortion in the class of maps of degree k from
T*to §is |k| Vol(S*), where k = 2 for our double-covering
map (Eells 1988).

Now suppose that ¢ is the linear function ¢ = (GZ-)y,
so that the map now corresponds to a conventional P y§cal
mechanism. The distortion in this case can be reduced to
D(f) = 7*(2r + ). We see from figure 1 that contrary to
the harmonic map case, there is an optimal aspect ratio of 71;
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Figure 1: A plot of distortion vs. aspect ratio Ymaz/Tmaez for

the map from T? to S%: the solid line represents the harmonic
map, while the dashed line represents the linear map
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Figure 2: A plot of distortion vs. joint range of ¢ for the T?
to S? problem: the solid line is the harmonic map, while the
dashed line represents the linear map

for which the distortion attains a minimum. This optimal as-
pect ratio, in fact, can be interpreted as the optimal ratio of the
maximum velocities for the joint motors of the physical mecha-
nism. Since the mechanism is also a double-covering, the motor
controlling the § coordinate should have a maximum velocity
V2 times larger than the maximum velocity of the ¢ coordi-
nate motor in order to achieve maximum dexterity. Finally, in
figure 2 we plot the difference in the distortion between the
harmonic map and the linear mechanism as a function of the
joint-range of ¢. As we restrict ¢ to lie in the range [A, 71— 4],
for A — I we expect the difference in the distortion for the
two cases to go to zero.

Example 3 — Computing Optimal Link Lengths for
Planar Mechanisms

One of the strengths of our distortion measure is that it
is not limited to the case of equal dimensions of the joint and
end-effector spaces; in fact, it is defined for any arbitrary di-
mensions of M and N . Redundancy problems can therefore be
treated by our measure without encountering any major addi-
tional difficulties. As a demonstration of this we compute the
optimal link-lengths for an n-link planar manipulator based on
our distortion criterion. This mechanism can be thought of as
a map from the flat n-torus T™ to a disk of fixed radius L. The
kinematic equations are given by

z = iL;cos (Z.: aj)

=1 i=1

y =23 Lisin (3 o)
i=1 i=1

where the L; are the link-lengths of the planar manipulator,
and a; are the toroidal angles. We parametrize the disk by
polar coordinates (r,8) and the flat torus by local coordinates
a = (@;+*-a,). The Riemannian metrics for the flat torus and
the disk are then given by ds* = da} + dal + ... + do? and
ds? = dr?+r?d@? respectively. The total distortion for the map
is then

— l 2 2 2
D(r,0) = 5 fpn VPl + 7 [ VO] der
Note that since r* = 2% + y* and 6 = tan~(£), we have

a1
aai

oz dy
-5 T Yaa;)



9 1, dy oz
Ba 73 Y3,
The distortion is therefore simplified to

1 o Oz ., Ay .,
D(ri8) = 3 fpn 250" + (o)

L]

A straightforward calculation reduces the distortion further
to

D(r,0) =Y kL}
k=1

The optimal link-lengths (L} - - - L) which minimize the distor-
tion subject to the constraint that the sum of the link lengths
be L, can then be derived by solving the linear system

31 1 L, L
1 4 1
1 =
: n 1
11 - 1 n+1 L, L
By rewriting the matrix as
0

1 0 3 .
1 IERL
1 H . 0

0« 0 n

and applying the well known formula for the inverse of a rank
1 perturbation we immediately get
L

Li= e

P

Hence, in terms of proportional lengths we get for the n-
links the ratio (1, 1,...,1), where the proximal link L, is of
length 1. In particular, for the 3-link case we get link lengths 6,
3 and 2 respectively for Ly, L, and Ls. This is to be compared
with another link length result indicating that for maximum
dexterity adjacent limbs are in a ratio of v/2 to 1, the link
lengths decreasing as we move away from the base.

We have thus far assumed the flat torus 7" to have fixed
widths 27. If we restrict our attention to 2-link planar mech-
anisms and leave the torus dimensions arbitrary, then we can
once again compute the distortion as a function of the aspect
ratio r and the link lengths L, and L,. The distortion D(f)
can be reduced to

D(f)=LI+Li(r+ })

for which the optimal aspect ratio

L+

Fixing the total link length L, + L; to be 1, the optimal link
lengths and aspect ratio are found to be L; = 0.561, L, =
0.469, r = 0.641.

Example 4 ~ Computing Optimal Link Lengths for a
Shoulder and Elbow Joint

We now compute the optimal lengths for a 2-link shoulder
and elbow joint. The standard shoulder and elbow joint can be

considered as a map f :S?x S! — B3, where B® € ®% is the unit
ball in 3 dimensions. Choose local coordinates (z y z) on B®
and (8 ¢ ) on S*x S!, where(# ¢) represent standard spherical

coordinates, and ¢ is the angle which link 2 forms with respect
to the radial extension of link 1. Let 0 < 6, ¢ < 2r and
A < ¢ < 7 — A for some parameter A. The map f can then
be expressed in coordinates as

z = L(y)cosfsina
y = L(¢Y)sinfsina
z = L(¢)cose
where
L*¢) = L1+ L2+ 2LiLycosy
_ 1 Lysiny
o) = e T con )

The distortion density associated with the map f is given by
df) = %{(%%)’+(§%)’+ (%)
+ 29)" + (35) + (33)?
+ w5+ G+ G
Noting that the volume formon §?xS'isdV = sin¢ df d¢ dy,
the distortion can be written as

o s 5, COSA 272 [T cos’P

D(f) =8r*{1 + L3+ 22} + 2n L,/A s
Note that because of the singularities at ¢ = 0 and ¢ = x, the
last term is not integrable for A = 0. In fact, the distortion
is infinity at these points. If we limit the joint range of ¢ to
exclude the singularities, however, the distortion is finite, and
it is then possible to compute optimal link lengths. Fixing the
total link length L; + L, to be 1, figure 3 plots the optimal
length of link 1 as a function of the joint range of ¢. Note
that link 1 will always be longer than link 2 for useful joint
ranges of ¢. In particular, for optimal link lengths in the ratio
L, : Ly = /2, we see that the corresponding joint range for ¢
is roughly 165°.

Link1 Length

0 40 80 120 160

Joint Range

Figure 3: A plot of optimal length of link 1 versus joint range
of ¢ for the standard shoulder and elbow joint
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