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Nonlinear Feedback Systems Perturbed by Noise:
Steady-State Probability Distributions and Optimal

Control
Daniel Liberzon, Member, IEEEand Roger W. Brockett, Fellow, IEEE

Abstract—In this paper we describe a class of nonlinear feed-
back systems perturbed by white noise for which explicit formulas
for steady-state probability densities can be found. We show that
this class includes what has been called monotemperaturic systems
in earlier work and establish relationships with Lyapunov func-
tions for the corresponding deterministic systems. We also treat a
number of stochastic optimal control problems in the case of quan-
tized feedback, with performance criteria formulated in terms of
the steady-state probability density.

Index Terms—Nonlinear feedback system, quantizer,
steady-state probability density, stochastic optimal control,
white noise.

I. INTRODUCTION

T HE study of linear systems excited by white noise is
greatly facilitated by the fact that one can explicitly solve

the Fokker-Planck equation which describes the time evolution
of the probability density. For nonlinear systems the situation
is quite different: not only the transient solutions but even the
steady-state ones are difficult to find. Various methods have
been used to prove the existence of steady-state probability
distributions for quite general classes of nonlinear systems, but
such results do not provide specific expressions for steady-state
probability densities (this work can be traced back to the
1960’s—see the references in [18] and [26]). On the other
hand, explicit formulas for steady-state densities have been
obtained for certain special classes of systems, most notably
gradient systems and Hamiltonian systems with certain types of
dissipation [12], [14], [16], [27]. However, the gap between the
category of systems for which steady-state densities are known
to exist and that of systems for which specific formulas are
available is still quite large, which justifies further investigation
of the problem.

In this paper we study Itô stochastic systems of the form

(1)
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where , is a standard -dimensional Wiener
process, and and are matrices of appropriate dimensions.
Such systems arise naturally in control theory; they correspond
to feedback systems of Lur’e type perturbed by white noise.
Note that the system (1) is not restricted to be of a gradient type,
so the available results on steady-state densities for gradient sys-
tems are in general not applicable. Our main goal is to address
the following three questions.

1. Under what conditions can the steady-state probability
density for the system (1) be computed explicitly?

2. Do there exist physically and mathematically meaningful
interpretations of these conditions?

3. Provided that these conditions are satisfied, how do the
steady-state properties change as the parameters of the
system vary?

In the rest of this section we give a more precise formulation
of the problem and a detailed outline of the paper. Some of the
results reported here have been announced previously in [8] and
[9].

TheFokker–Planck operatorassociated with (1) is given by
the formula

tr

(2)

The problem under consideration is that of finding an explicit
formula for a steady-state probability density associated with
(1). This amounts to solving the steady-state version of the
Fokker-Planck equation

(3)

subject to the constraints and .
It is reasonable to assume that the functionis sufficiently reg-
ular (e.g., continuously differentiable) so that the solutions of (1)
and the Fokker-Planck operator (2) are well defined. However,
if the results to follow are to be interpreted in a formal sense,
this requirement may be relaxed (cf. Section II). Unless explic-
itly stated otherwise, we make the following two assumptions.

a) All eigenvalues of have negative real parts.
b) is a controllable pair.

0018–9286/00$10.00 © 2000 IEEE
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Let us first recall what happens in the linear case ( ).
As is well known, under the above assumptions the (unique)
steady-state probability density is a Gaussian

det

where is the positive definite symmetric steady-state variance
matrix satisfying the equation

(4)

In this paper we will be concerned with extending this result
to nonlinear feedback systems of the form (1). In Section II we
study the case when the nonlinearity is given by a piecewise con-
stant function of a certain type, called aquantizer. We formulate
a condition on the parameters of the system which enables us
to obtain an explicit formula for a steady-state probability den-
sity. This condition will be called thecompatibility condition,
and systems for which it is satisfied will be calledcompatible.
Steady-state densities for compatible quantized feedback sys-
tems turn out to be piecewise Gaussian. In Section III we show
that the same condition leads to an explicit formula for a steady-
state density in the general nonlinear feedback case, thereby an-
swering question 1 posed above. The steady-state densities that
we obtain can be viewed as being of the Maxwell-Boltzmann
type. Some examples are given in Section IV.

We then turn to question 2. A physical interpretation of com-
patibility is given in Section V in terms of certain concepts from
statistical thermodynamics. Namely, systems that are monotem-
peraturic in the sense of [11] turn out to be compatible. This
shows more clearly the place that compatible systems occupy
among all systems of the form (1). In Section VI we single out
a class of systems for which the compatibility condition takes
a particularly transparent form and show how the steady-state
probability densities are related to Lyapunov functions for deter-
ministic nonlinear feedback systems. This makes contact with
the Lur’e problem of absolute stability.

Some extensions and related issues are discussed next. In Sec-
tion VII we address the question of convergence of the proba-
bility density associated with (1) to steady state and give a brief
overview of available results on existence and uniqueness of
steady-state probability distributions. In Section VIII we con-
sider systems with unstable linear part. In Section IX we use
the work of Zakai on the existence of steady-state probability
distributions to obtain bounds on second moments for certain
noncompatible systems. This provides a natural generalization
of the results of Section V to a class of systems whose tempera-
ture is not constant, but rather varies along a certain sufficiently
small interval.

The last two sections are devoted to question 3. Namely, we
study how the steady-state behavior in the case of quantized
feedback depends on the parameters of a given compatible
system. In Section X we consider several performance criteria
of the quadratic-gaussian type. Finally, in Section XI we
consider another performance criterion, related to the number
of switching hyperplane crossings per unit time. This leads to
an interesting optimal control problem, which can be inter-
preted as minimization of the cost of implementing a feedback
control law, and involves a novel application of Rice’s formula.

Throughout the last five sections of the paper, some open
problems for future work are also pointed out.

II. QUANTIZED FEEDBACK SYSTEMS

Let us denote by the solution of (4). Of course, it is not
the steady-state variance matrix anymore in the nonlinear case.
We will say that the system (1) iscompatibleif the following
compatibility conditionis satisfied:

for some (5)

We will be particularly interested in the case when the nonlin-
earity is given by a piecewise constant function defined as fol-
lows. Given a positive integer and a nonnegative real number

, we define thequantizer with sensitivity andsat-
uration value by the formula

if
if

if

In other words, on the interval ,
where and , the quantizer takes
on the value , and for the quantizer
saturates. More generally, suppose that we havequantizers

with sensitivities and saturation values ,
. We define a quantizer by

, where are the coordinates
of relative to a fixed orthonormal basis in . If all ’s have
the same sensitivity , we will call a uniformquantizer with
sensitivity . The above notation is similar to the one used by
Delchamps in [15].

Consider the system

(6)

with being a quantizer with sensitivity and satura-
tion value . We will sometimes allow the possibility that
has an infinite set of values, i.e., , in which case we
will further assume that in (5) is positive. We will not embark
on the issue of existence of solutions for stochastic differential
equations with discontinuous right-hand side such as (6). The
situation when instead of a piecewise constant functionone
uses a suitable smooth approximation is covered by the existing
theory. The steady-state probability density associated with (6)
is to be understood as a solution of the equation (3) almost ev-
erywhere and can be obtained in the limit as smooth approxi-
mations approach. The problem of obtaining solutions of the
Fokker-Planck equation for the system (6) makes contact with
the work reported in [20]; see [10] and the references therein
for a discussion of quantized feedback systems and their impor-
tance in applications.

It is not hard to show that the function defined by

if (7)

with arbitrary constants and satisfies the equation for a
steady-state probability density associated with (6) almost ev-
erywhere. This function is piecewise Gaussian. Clearly, if

, we can always determine particular values ofso as to
make continuous. However, this is not necessarily true in the
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multidimensional case. As we now show, the compatibility con-
dition (5) is precisely what makes it possible to obtain a contin-
uous steady-state probability density.

Theorem 1: If the compatibility condition (5) is satis-
fied, then the process described by the system (6) admits a
steady-state probability distribution with a continuous piece-
wise Gaussian density.

Proof: Define

(8)

where is fixed by the requirement that
. Such a normalization constant always exists. Indeed, we

have assumed that either , or and then
. In each of these cases the function defined by the exponential

in (8) belongs to . In light of (5), the function (8) is a
special case of (7) with

. The statement of the theorem follows.
The above result actually holds in the case of an arbitrary

piecewise constant function. In the next section we will see
how it can be extended to the general nonlinear feedback system
(1).

Now suppose that we are given quantizers
and linearly independent vectors . The
statement of Theorem 1 can be generalized as follows:the
process described by the system

(9)

admits a piecewise Gaussian steady-state probability density if
, . In this case, the steady-

state density takes the form

Thus for the quantized state feedback system

(10)

where is a uniform quantizer, we need

for some (11)

where the superscript denotes theth column of a matrix.
The formula (11) can be rewritten as

diag (12)

III. GENERAL NONLINEAR FEEDBACK SYSTEMS

Consider the system (1) and assume that the compatibility
condition (5) holds. Let us look for a steady-state probability
density taking the form

(13)

where and is a normalization con-
stant. Note that (13) includes (8) as a special case. We need to as-
sume that the function defined by the above exponential belongs
to . This will always be true if, for example, and

for all .

Theorem 2: If the compatibility condition (5) is satisfied,
then the function given by (13) is a steady-state probability
density for the process described by (1).

Proof: Let us evaluate the expression (2) for the Fokker-
Planck operator associated with (1) whenis given by (13).
Combining the terms and making use of (5), we obtain

tr tr

Now it is easy to see that all the terms equal zero because of
(4).

All the exact steady-state solutions obtained to date that we
are aware of are closely related to the Maxwell-Boltzmann dis-
tribution (see, e.g., [16]). Not surprisingly, so is the steady-state
density (13). It would be interesting to have a complete picture
of how systems that are compatible in the sense defined here
are related to systems for which explicit steady-state probability
densities have been obtained previously, e.g., Hamiltonian sys-
tems with dissipation studied in [27]. We will make some re-
marks on this in Section VI. The usefulness of our result stems
from the fact that it applies to systems of the form (1) which is
natural from the control-theoretic point of view and is not tai-
lored to any special coordinates in which the system takes some
canonical form.

Remark 1: Suppose that we write ,
for some number and a suitable function, and rewrite the
system (1) accordingly as

(14)

Assume that the matrix is stable (this will certainly
be true if is sufficiently small). As is straightforward to verify,
if the original system (1) is compatible, then so is (14). The
quadratic term in the expression for the steady-state density as-
sociated with (14) will be . We can thus
say that compatibility is preserved under linear feedback trans-
formations. This important property will be implicitly used sev-
eral times in the sequel.

We can switch to new coordinates in which for some
. The structure of compatible systems is then revealed by

the following statement.
Corollary 3: The system

(15)

where , is compatible.

IV. EXAMPLES

It is insightful to see how known solutions to certain problems
are captured as special cases of Theorem 2.

Example 1: Consider the system

(16)

where is a constant and ’s are independent scalar Wiener
processes. We will call such a systemgradientif there exists a
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function such that . It is well
known and straightforward to verify that a steady-state density
is then given by the formula

whenever is such that we have .
In fact, (16) belongs to a general class of systems that take

the form

where the gradient is computed with respect to the Rie-
mannian metric given by . A detailed study of such
systems, extended also to degenerate diffusions, is carried out
in [6]. An arbitrary compatible system will possess, in addition
to gradient terms, certain “skew-symmetric" terms which do
not change the steady-state probability distribution (more
precisely, these come from vector fields of divergence zero that
are everywhere tangential to the equiprobable surfaces). This
statement is made precise in [6]; see also Section VII. In fact,
all compatible systems naturally fall into the framework of [6]
for the case of with a constant metric. A special class of
such systems in has been described by Rueda in [23].

Example 2: Newton’s second law for a nonlinear spring in
a viscous fluid in the presence of random external forces may
be expressed, with some abuse of notation, by the second-order
equation

(17)

where is white noise and . The total en-
ergy of the system is , and a steady-state probability
density is

(18)

This formula reflects the facts that the levels of equal energy
are also the levels of equal probability in steady state and that
the fluctuation introduced by the presence of white noise and
the energy dissipation due to the damping termeventually
balance each other. This example is also well known and can be
generalized to higher dimensions [12], [16]; see [5] for an appli-
cation of these ideas to function minimization using simulated
annealing.

To understand how the above example fits into our frame-
work, consider the following auxiliary system:

(19)

One can check that the compatibility condition (5) holds for
(19) with the proportionality constant as

, which reveals the meaning of the constantin the
formula (18). If we compute the steady-state density for (19)
using the formula (13), and then take the limit as , we
arrive precisely at (18).

Example 3: As another physical example, consider the cir-
cuit shown in Fig. 1. Suppose that its elements are a linear in-
ductor with inductance , a nonlinear capacitor, and a noisy re-

Fig. 1. Electrical circuit of Example 3.

sistor in the Nyquist-Johnson form (see, e.g., [11]). The Kirch-
hoff’s voltage law reads

For the inductor we have

The Nyquist-Johnson resistor model gives

(this reflects the fluctuation–dissipation equality for an appro-
prate value of the temperature, namely, ). Finally, for the
nonlinear capacitor we have a voltage–charge relationship of the
form

Therefore, letting (charge) and (current), we
obtain the system

(20)

The equation for a steady-state density is

The energy of the inductor is
. The energy of the capacitor is

. One can verify that a steady-state
density is given by

(cf. Example 2). Notice that automatically satis-
fies the inequality because it expresses
the voltage–charge relationship in the capacitor, hence

. The system (20) is compatible
in the same limiting sense as (17).

Alternatively, we could represent the nonlinear law for the
capacitor as a linear one plus a perturbation, which amounts
to letting for some function and a
positive constant . Further, we could switch to canonical co-
ordinates in which the equipartition of energy property holds
(cf. next section). Namely, if we scale the variables,

, then the steady-state variance ma-
trix becomes , and compatibility can be easily verified
using Corollary 3. Moreover, regardless of the numerical
characteristics of the circuit elements. The same method would
also work for Example 2.
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V. COMPATIBILITY FROM THE STATISTICAL THERMODYNAMICS

VIEWPOINT

We are now in position to give an interpretation of the com-
patibility property on physical grounds. It involves systems that
describe the behavior of electrical networks with noisy resis-
tors in Nyquist-Johnson form, as in Example 3 above. If all the
resistors are of the same temperature, the system is called
monotemperaturic. This concept was mathematically defined in
[11], where the authors give a canonical representation for such
systems in the form

(21)

Here , , and and are independent white
noise processes. The steady-state variance for (21) upon setting

becomes , so we can say that in steady state
all the modes possess equal energy. This property is sometimes
referred to as theequipartition of energyproperty; see [11] for
a more rigorous justification of this terminology.

In the present framework, certain types of circuits with non-
linear capacitors or inductors are described by equations of the
form (1). We claim that by closing the feedback loop in (21) we
can obtain a compatible system. Indeed, let (as-
suming single-input, single-output case, otherwise do it for each
pair ). This yields

(22)

We have thus obtained a system that takes the form (15) de-
scribed in Corollary 3. Summarizing, we can say that compati-
bility can be thought of as a natural property of monotempera-
turic systems with nonlinear reactances. Notice that (1) is more
general than (22) since the noise matrix of (1) does not neces-
sarily take a block diagonal form.

Example 4: Consider the circuit shown in Fig. 2.
Let us assume for simplicity that all the resistance and capac-

itance values are equal to 1, and that the temperature of all the
resistors is 1/2. Suppose also that the inductor is nonlinear. Then
we can write: , , ,

, , , and
where is the flux in the inductor. The open-loop

equations are

Fig. 2. Electrical circuit of Example 4.

The closed-loop equations are

VI. STEADY-STATE DENSITIES ANDLYAPUNOV FUNCTIONS

Consider a system excited by a scalar white noise

Since by the assumptions made in Section I is a control-
lable pair, in the appropriate basis the linear part of the system
takes the standardcontrollable companion form, so that we have

...
...

...

Moreover, if the vectors and are proportional, then we can
multiply by a scalar if necessary to arrive at

(23)

Here , and
and are polyno-

mials . The class of systems thus constructed
includes (17) and (20) as special cases, and is of considerable
interest despite the special form of (23) (see, e.g., [26]).

In this section we will be concerned with formulating condi-
tions on the polynomials and under which the system (23) is
compatible. We will adopt certain results from [3] regarding the
Lur’e problem of absolute stability for the deterministic coun-
terpart of (23)

(24)
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We will assume that for all except ,
and that either the equation is asymptotically
stable or with asymptot-
ically stable. Denoting by , assume also
that the function is positive real. Then we can
apply the classicalfactorization lemmato conclude that
there exists a unique polynomial with real positive
coefficients and no zeros in the right half-plane, such that
Ev (here “Ev” stands
for the even part of a polynomial). We construct a Lyapunov
function for (24) as follows:

(25)

where as before. Obtaining
this function is a matter of multiplying both sides of (24) by

, integrating by parts, and completing a square if neces-
sary [3]. In many situations (cf. Example 2) such a Lyapunov
function arises naturally as the total energy of the system.

In [3] the problem of absolute stability for (24) is investigated
with the aid of the function (25). It can be shown thatis well
defined (in particular, the integral in (25) is path-independent),
positive definite, and that its derivative along the solutions of
(24) is given by

(26)

Of course, this expression is in general merely negative semidef-
inite. To conclude asymptotic stability, LaSalle’s principle must
be applied, which is essentially what is done in [3].

Now, given a polynomial , let us choose by set-
ting for each even and for each odd . No-
tice that is then simply the odd part of ; therefore
Ev , so we see that is
positive real and . We can also take to
be a constant multiple of Odd as in (17), which amounts to
a simple modification of the nonlinearity. We will now use the
Lyapunov function (25) to arrive at a steady-state density for the
stochastic system (23). Assume that .

Theorem 4: Suppose that either is asymptoti-
cally stable or with asymptotically
stable and that

Odd (27)

with . Then the function

(28)

is a steady-state probability density associated with the system
(23).

Proof: Let us first consider the case whenis even. Using
our definition of , it is not difficult to check that the equa-
tion for a steady-state probability density can be written as

(29)

where stands for the derivative of along the solutions of
the deterministic system (24). Plugging into (29) the expression
for given by (28) and using (26), we obtain

and the validity of this follows directly from the hypotheses.
The case of odd is treated similarly; (29) is replaced by

and we arrive at the equation

to verify which it remains to use (24) again.
The formula (27) provides a more concrete interpretation of

the compatibility condition (5) applied to systems of the form
(23). From the results of Section III it follows that if we want
(23) to be compatible, the choice of is unique up to a con-
stant.

We will now sketch how, in the case when (23) is even-di-
mensional ( ), the above makes contact with the work
reported in [27] on steady-state densities for stochastically ex-
cited Hamiltonian systems with dissipation which take the form

(30)

In our previous notation, if (27) holds, thenis an even polyno-
mial and the system (23) can be written as

Ev (31)

We can think of (31) as the system obtained from

Ev (32)

after adding the damping term and the noise. If
is stable, then the roots of Evare all simple and lie on the
imaginary axis, and one has a partial fraction expansion

This implies that there exist coordinates in which (32) takes the
Hamiltonian form
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with . It is not
hard to see that in these coordinates the original system (30) be-
comes a special case of (31). In [27], applying techniques from
statistical mechanics, Zhu and Yang obtained conditions under
which a steady-state density for (30) can be found explicitly. Our
presentation here is restricted to the situation when the damping
and noise coefficients and are constant and the noise is
scalar, but the above discussion can be extended to the more
general case treated in [27].

The system (23) is a particular case of (1). To establish a con-
nection between the steady-state probability densities and Lya-
punov functions in a more general setting, consider the system
(1) together with the deterministic one

(33)

If the compatibility condition (5) holds, then (33) is equivalent
to

(34)

The above analysis and the formula (13) suggest considering the
function

where . If and for all
, then the function is positive definite. Its derivative along

the solutions of (33) is

by virtue of (34) and (4). The last expression is obviously neg-
ative semidefinite, which means thatis a Lyapunov function
for (33). Thus we see that the steady-state probability densities
obtained in Section III are closely related to Lyapunov func-
tions for the corresponding nonrandom systems. As in the case
of (24), to conclude asymptotic stability of (33) it is necessary
to investigate whether one can apply LaSalle’s principle, a ques-
tion not pursued here.

VII. EXISTENCE, UNIQUENESS, AND CONVERGENCE

Our goal has been to obtain explicit solutions of (3) under
minimal assumptions. In particular, no Lipschitz or other growth
requirements have been placed on the function. Moreover, the
diffusion matrix was not assumed to be nondegenerate—the
weaker controllability condition was imposed instead. In this
sense, the work reported in this paper serves tocomplementthe
results available in the literature which allow one to establish
existence and uniqueness of steady state and convergence to
steady state under additional assumptions. Although for reasons
of space we cannot give a complete review of prior work here,

we will now provide several examples and a partial reference
list.

If the function is globally Lipschitz, then one can apply
the results obtained by Zakai in [26]. Consider the system (1),
and denote by the adjoint of the Fokker–Planck operator.
Suppose that we have a nonnegative, twice continuously differ-
entiable function in , which is dominated by a poly-
nomial. Reference [26, Th. 1] can now be formulated as fol-
lows: If there exist numbers and such
that for all satisfying , then the
process defined by (1) admits a steady-state probability distri-
bution.This Lyapunov-like criterion can be used to establish the
existence of steady-state probability distributions in the absence
of constructive proofs and explicit formulas. This criterion ap-
plies to a larger class of systems than that of compatible ones,
as will be further illustrated in Section IX.

As for the system (23), in the case of a globally Lipschitzit
satisfies the assumptions of [26, Th. 3]. According to that the-
orem we therefore conclude that the steady-state density (28) is
in fact unique (and so are its special cases considered in Exam-
ples 2 and 3). Regarding convergence to this steady-state den-
sity, the same theorem of Zakai asserts that for and all

we have

where is the steady-state density andis any real-valued func-
tion integrable with respect to the measure .

When the diffusion matrix is nondegenerate, the process
described by (1) can be shown to possess useful properties such
as the strong Feller property and, under additional assumptions
formulated in [2], recurrence. These properties allow one to
apply various results on existence and uniqueness of steady-
state probability distributions [1], [14], [17], as well as on con-
vergence to steady state [24], [25]. Another useful concept for
establishing uniqueness and convergence is that of a well-be-
haved solution [12], for which certain growth conditions are re-
quired (these conditions will be quite mild, however, in view of
the exponential nature of our solutions).

We now outline a constructive method for investigating
convergence to steady state, based on the knowledge of the
steady-state probability density and on the spectral analysis of
the Fokker-Planck operator. If , , , are the eigenfunc-
tions of the Fokker-Planck operatorcorresponding to distinct
eigenvalues , , , , then the time-varying solution of
the Fokker-Planck equation

(35)

with initial condition

takes the form
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Thus, eigenvalues of provide information about the conver-
gence of the stochastic process to steady state. For a discussion
along these lines, see [4]. In the paper [19], and more recently in
[5] and [6], Fokker-Planck operators and their spectral proper-
ties were studied with the view toward applications to function
minimization. The analysis given below is based on the tech-
niques employed in those references (the subsequent calcula-
tions are given in greater detail in [22]).

Suppose that the compatibility condition (5) holds. Consider
the function

(cf. Example 1). Define the vector by

In view of (4) and (5) we have

The Fokker-Planck operator associated with the system (1) can
be written as

where

and

Define a gauge transform of an operator by
. We have

In the above calculation we used integration by parts. Now con-
sider

(36)

Since both and annihilate the steady-state density ,
it follows that and so the last integral in the
formula (36) is zero. Using integration by parts, we can rewrite
the first two integrals in (36) as

which implies that

Putting all the above calculations together, we conclude that

Therefore, all eigenvalues ofwith eigenfunctions in the space
are nonpositive. This implies that all

eigenvalues of with eigenfunctions in the space
are nonpositive. Thus it follows that if the initial prob-

ability density is a linear combination of such eigenfunc-
tions, then approaches steady state. It remains to be seen
whether more concrete conclusions can be reached.

Using the above ideas, one can try to obtain specific informa-
tion about the speed of convergence to steady state, which does
not seem possible with the methods described in the references
cited earlier. Given the system (1), let us define thespectral gap
to be

The problem of estimating the spectral gap plays a role in the
theory of simulated annealing [19]. In view of the results ob-
tained in [21] which lead to an explicit characterization of the
spectral gap for linear systems, it might be useful to relate
to the value of the spectral gap in the case whenis linear. We
now show that this can be done, at least in some cases. As an
example, consider the familiar spring equation (17) and the cor-
responding steady-state density (18). The spectral gap is

subject to the conditions
and

. Note that if a function is such that the last condition is sat-
isfied, and if we define for a cer-
tain , then . Now, assume that
there exist positive numbersand such that

for all (geometrically, this means that the graphs of
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and must be close enough to each other so that the area
between them is finite). Then it is not hard to see that

which implies that , where is the spectral gap
for the case . The ease with which we could make the
above estimate for this example is due to the fact that in
there is no differentiation with respect to, the argument of the
nonlinearity. Similar estimates hold for any system (1) such that
the th row of is zero whenever .

VIII. C OMPATIBLE STABILIZATION

Consider the system

(37)

where is a uniform quantizer with sensitivity and an infi-
nite set of values in each direction. In this section we drop the
stability assumption a) of Section I and suppose instead that all
eigenvalues of have negative real parts. Rewrite (37)
as

(38)

where . For all we have

(39)

Now, assume that the system (38) is compatible in the sense
specified at the end of Section II, namely, that

, where diag and is a positive
definite symmetric matrix satisfying

. Since (38) satisfies the assumption a), we
can apply Theorem 2 to obtain a steady-state probability density.
Note that the exponential in (13) will automatically belong to

by virtue of (39). A possible graph of such a density is
sketched in Fig. 3.

An interesting question that arises in this context is the fol-
lowing: given the matrices , , and , is it possible to find
a matrix that makes (38) compatible with asymptotically
stable nonrandom part? We are not aware of a general answer
to this question. What stands in the way of a simultaneous treat-
ment of asymptotic stability and compatibility is the fact that
the steady-state variance matrix associated with the system

depends on the choice of and is
at the same time needed to verify compatibility of (38). In order
to circumvent this difficulty, one might try to develop a pro-
cedure which deals with the issues of asymptotic stability and
compatibility separately. For instance, even if not all the eigen-
values of have negative real parts, one might still be able to

Fig. 3. A steady-state probability density for the system (38).

find a symmetric matrix that satisfies the equation (4). In gen-
eral, this need not be positive definite. In view of (12), one
must then restrict the search for to matrices such that
takes the form with diagonal. This would then yield a
system of the form (38) that possesses a steady-state probability
distribution (cf. Remark 1 in Section III).

The above “compatible stabilization" problem is also mean-
ingful for quantized output feedback systems of the form (9).
The simplest example (single-input, single-output case) is pro-
vided by the familiar th order equation

(40)

where the control has to take the form . We
know that a necessary and sufficient condition for this system to
be compatible is given by (27). Our choice of the output
being thus fixed up to a constant, we can rewrite (40) as

Note that compatibility is preserved becauseis even. There-
fore, all we need to do now is choosethat makes the system

asymptotically stable. All such values
of can be determined by a straighforward application of the
Nyquist criterion.

IX. NON-COMPATIBLE SYSTEMS AND TEMPERATUREBOUNDS

As we have already mentioned, compatibility is not a nec-
essary condition for the existence of a steady-state probability
distribution. In the previous sections we have discussed systems
for which explicit formulas for steady-state probability densi-
ties can be found. It would be interesting to try to develop a
perturbation theory that would allow us to obtain specific in-
formation about steady-state probability distributions for some
systems that are not compatible. We now describe some prelim-
inary results in this direction.

As is well known, if assumption a) of Section I holds, then
there exists a positive definite quadratic function
whose derivative along the solutions of is , with

symmetric positive definite. For the system (1) this implies
that outside the ball of radius

tr

tr
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provided that

for all

and some (41)

(to arrive at the second term on the right-hand side in the
above formula, consider the two cases
and ). Here and stand for
the minimal and the maximal eigenvalue, respectively. If we
assume that is globally Lipschitz, then we see that forsmall
enough there exists a steady-state probability distribution by
virtue of [26, Th. 1] cited in Section VII. Observe that the same
conclusion holds if is small enough, as long as suitable
stability conditions are satisfied. Namely, we just have to write

with a small and
require that all eigenvalues of have negative
real parts.

Example 5: Consider the (noncompatible) second-order
system

(42)

Assuming that (41) holds with , we can recast (42) as
with . In the above

notation, take , where . This gives

with , and

Now, let and in such a way as to have .
Then obviously and ,
which proves the existence of a steady-state probability distri-
bution for all .

In certain cases it is possible to obtain explicit bounds for
the steady-state variance. The corresponding class of systems
serves as a natural generalization of monotemperaturic ones.
The following observation regarding linear systems provides
some motivation for such analysis. Consider the system

(43)

with skew-symmetric, and assume that there exist two pos-
itive numbers and (which may be viewed as temperature
bounds) such that

for all . The variance equation associated with (43) is

which implies

and

From this it follows that if , then both
and are nonnegative definite matrices, i.e.,

for all , as one may have expected.
We now single out a class of nonlinear feedback systems

perturbed by white noise for which similar bounds can be ob-
tained for certain second moments in steady state. These are
single-input, single-output systems of the form

(44)

where ( is now time-independent). Let us assume
that the condition (41) holds with . In this case it may
be interpreted as saying that the temperature of the system (44)
is between and . Rewriting (44) as

one easily verifies that it is not compatible unless . Now,
notice that the variance satisfies

(here stands for the expectation). Assume for simplicity that
. Provided that the steady-state probability distribution

exists, we deduce that in steady state and
therefore

by virtue of (41). These are natural bounds imposed by the tem-
perature. Equation (42) may serve as a simple example.

X. VARIANCE COST AND CONTROL COST

Consider the quantized output feedback system (6), where
is the quantizer with sensitivity and saturation value 1

if
if
if

Let us assume that the compatibility condition (5) holds with
. In the last two sections of the paper we study sev-

eral steady-state optimal control problems associated with the
system (6), with performance criteria formulated in terms of the
steady-state probability density. In view of the remarks made in
Section VII, solutions to such problems provide a starting point
for studying the behavior of the process described by (6) for
large times .

Throughout the rest of the paper, we letdenote the expecta-
tion with respect to the steady-state probability density. The two
hyperplanes will be referred to asswitching
hyperplanes. We denote by the gradient computed with re-
spect to the standard Euclidean metric on.
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Let us define thevariance costby
. Note that is invariant under coordinate transfor-

mations. We will be interested in the behavior ofconsidered
as a function of the sensitivity . In light of (8) one would
expect that for smaller values of the quantized feedback term
forces to become smaller. This idea is formalized in the
following statement.

Proposition 5: The variance cost is a strictly increasing
function of the sensitivity .

Proof: The proof is geometrical and uses the explicit for-
mula for the steady-state probability density. If we pick two
numbers , then in the region

the steady-state densities corresponding to
and take the form

(45)

and

(46)

respectively, where and are normalization con-
stants. Let us compute the derivatives of and in the
direction of the vector . Notice that this vector is
transversal to the switching hyperplanes since (5) implies that

. For we have

(47)

For we have

(48)

Similar formulas can be obtained for
. Now, and are proportional in the

stripe . If we assume that
there, we arrive at a contradiction. Indeed, (47) and (48) and
the fact that and are also proportional in the region

would then imply that
for , and so the requirement

(49)

would be violated. The only remaining possibility is
for . From the above analysis it follows

that such that if ,
if , and if

. In fact, (45) and (46) imply that
. Now it is not difficult to conclude that

Fig. 4. Relative position of� (x) and� (x).

by (49).
Proposition 5 shows that the optimal control problem that

consists of choosing the value of that minimizes is trivial:
the optimal performance is achieved when . Fig. 4 il-
lustrates the previous proof (the cross-section with horizontal
coordinate is shown).

One could also consider thetotal variance cost
which is invariant under orthogonal coordinate transformations.
It turns out that has the same property of being an increasing
function of the sensitivity . This fact can be verified with little
work, by choosing one of the coordinate vectors to be parallel to
, using Proposition 5, and integrating by parts in the remaining

variables. In fact, the variance is not affected by the
feedback if .

Another performance criterion that we will consider in
this section is thecontrol cost

. It may be viewed as the proportion of time during
which we actively control the system. This results in certain
expenses which we would like to keep low. Clearly, the optimal
quantized feedback control strategy consists of moving the
switching hyperplanes off to infinity: gives . In
fact, the following is true.

Proposition 6: The control cost is a strictly decreasing
function of the sensitivity .

The proof is similar to that of Proposition 5; see [22] for
details. A nontrivial stochastic optimal control problem con-
sists of determining, for example, the value of that mini-
mizes a quadratic cost functional of the form

, where . Although this problem
does not seem to lend itself to an analytic solution, some numer-
ical results can be obtained.

Example 6: Consider the equation
, where and is a quantizer with saturation value

1 as before. The diagrams in Figs. 5 and 6 display, respectively,
the optimal sensitivity as a function of , and the optimal
cost as a function of (compared with for the un-
controlled system ). Naturally, the quantized
feedback control strategy proves most effective when the weight
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Fig. 5. Optimal sensitivity.

Fig. 6. Optimal cost.

attached to the control cost is small compared to the weight at-
tached to the variance cost: if , choosing gives

as opposed to 0.5 for the uncontrolled system.
Since explicit formulas for the steady-state probability densi-

ties are available, a number of other optimization problems can
be investigated similarly. For example, one could fixand take
the proportionality constant that appears in the compatibility
condition (5) to be the varying parameter (this is meaningful if
we can adjust the norm of the vector). Then it is not hard to
show that both the variance costand the control cost de-
crease as becomes large.

In all of the optimal control problems considered above, the
vector has been fixed. However, the following problem ap-
pears interesting: given the system (6) and a fixed sensitivity,
choose so as to minimize the variance cost, subject to the
constraints and ( will then be fixed by (5)).
Using the formula (8) and an argument similar to the one given
in the Proof of Proposition 5, one can show that the optimalis
the eigenvector of with the smallest eigenvalue.

XI. A TTENTION COST

In this section we look at another criterion for evaluating the
performance of the system (6). Every time the solution trajec-
tory crosses one of the switching hyperplanes , we
need to communicate to the controller a request to change the
control value. This reflects the amount of “attention” needed for
implementing the given control law (a similar idea is exploited
in [7] in the context of deterministic systems with smooth con-
trol functions). One might thus be interested in minimizing the

number of such crossings per unit time. Making use of the fact
that the steady-state probability density is an even function of,
let us define theattention costto be , where

stands for the mean number of crossings of a levelper
unit time by a scalar stochastic process .

Since the expectation is computed with respect to the steady-
state probability distribution, we may treat the process
as stationary, assuming that it “has reached steady state.” There-
fore, we may use the celebrated Rice’s formula for the mean
number of crossings [13]

where is the autocorrelation function
associated with a stationary stochastic process. In our case

.
Let us first study the following question: when is

finite? We will need the following easy statement.
Lemma 7: Assume that exists and is fi-

nite. Then if and only if
exists and equals zero.

Proof: Since is an even function, it is easy to see that in
order for its second derivative to exist at the origin it is neces-
sary and sufficient for the first derivative to approach zero as
approaches zero from the right.

Example 7: Consider the equation

We have
, so the condition of Lemma 7 is not satisfied.

Let us see whether a control term might help. For the equation

(50)

we have
. Thus we see that it is in fact a nontrivial task to construct a

control system with a finite attention cost. The following suf-
ficient condition is a direct consequence of the above develop-
ments.

Proposition 8: If the compatibility condition (5) holds and
if we have , then the attention cost
associated with the system (6) is well defined and finite.

Consider a general linear stochastic system

where and . For we have

, where is the steady-state variance matrix satis-
fying the equation (4). Therefore

(51)
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Fig. 7. Attention cost.

Premultiplying (4) by and postmultiplying by , we obtain

(52)

Thus the condition of Lemma 7 is satisfied if and only if
. This means that the attention cost will be finite if all the di-

rections in which the noise can propagate are parallel to the
switching hyperplanes, i.e., if the noise “does not contribute
directly to the switching hyperplane crossings.” On the other
hand, if is a nonsingular matrix, the attention cost will
always be infinite.

The above discussion suggests modifying the equations of
Example 7 in the following way: replace by , where
the noise does not enter the equation fordirectly. Namely,
consider the following pair of equations:

(53)

where is a positive constant (so that the nonrandom part of
the system is asymptotically stable). Since the vector is
orthogonal to the noise vector , we have
by virtue of (51), (52), and Lemma 7.

Now, let us replace (50) by the system

(54)

It is interesting to observe that (54) is automatically compatible:
implies by (52). Therefore, since

the state space of (54) is . Thus the compatibility condition
(5) is satisfied whenever , which is indeed the case here.
Notice that we did not have to compute the matrixto establish
compatibility.

We have shown that the mean number of crossings per unit
time associated with (53) is finite. Since is piecewise
constant, one might expect that the mean number of crossings

for (54) would be finite too, although its value may be different.
This is indeed true as we now show. The linear theory applied
to (53) yields the steady-state probability density

We have

where we have used the substitution . As we have
seen in Section II, in the presence of quantized output feedback

we will have an additional term in the exponent, but that
term will only depend on and not on . Thus the first integral
in the last formula will still be zero, and therefore the attention
cost for (54) will still be finite.
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It is not very difficult to compute this attention cost directly
using our knowledge of the steady-state density associ-
ated with (54). We have

where . The attention cost is given by

Fig. 7 shows the graph of the attention costas a function of
and (with taken to be 1). The corresponding axes are labeled

and , respectively.
We conclude the paper with an informal discussion of the

properties of revealed by this picture. Suppose that we fix
and look at the behavior of as varies. We see that

is small for small values of, because the solution trajectories
stay outside the inner stripe for long periods
of time. As increases, the trajectories return to the inner stripe
faster, which results in increasing attention cost. However, as
we increase the gain further, the attention cost becomes smaller
again and keeps decreasing for bigger values of. Interestingly,
a justification of this latter phenomenon is less obvious. Solving
the deterministic counterpart of (53)

we have

if

if
(55)

Each of the functions given by the first terms on the right-hand
side of both formulas in (55) has a global maximum for a certain

, the maximal value being proportional to . Therefore,
a solution trajectory which enters the inner stripe far from the
-axis, especially in the I and III quadrants, is likely to leave it

again at a later time. However, if we increase, solution trajec-
tories in those quadrants tend to enter the inner stripe at points
closer to the -axis, so that they are less likely to leave again,
hence the decrease in the cost. The smaller the value ofis, the
bigger value of is required to achieve the maximal value of,
and the bigger this maximal value is. The reason for this is also
seen from the above analysis. On the other hand, if we fixand
increase , the attention cost becomes smaller, by virtue of the
fact that the trajectories spend more time in the inner stripe.

One can employ numerical techniques similar to the ones
used above to treat stochastic optimal control problems that arise
when the cost functional is taken to be a linear combination of
the variance cost , the control cost , and the attention cost.
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