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Nonlinear Feedback Systems Perturbed by Noise:
Steady-State Probability Distributions and Optimal
Control

Daniel Liberzon Member, IEEEand Roger W. Brocketfellow, IEEE

Abstract—in this paper we describe a class of nonlinear feed- wherez,b,¢ € R", w is a standardn-dimensional Wiener
back systems perturbed by white noise for which explicit formulas process, andt and G are matrices of appropriate dimensions.

for steady-state probability densities can be found. We show that g,cy systems arise naturally in control theory; they correspond
this class includes what has been called monotemperaturic systems, '

in earlier work and establish relationships with Lyapunov func- to feedback systems Of_ Lure type_ perturbed by Wh't_e noise.
tions for the corresponding deterministic systems. We also treat a Note that the system (1) is not restricted to be of a gradient type,
number of stochastic optimal control problems in the case of quan- so the available results on steady-state densities for gradient sys-
tized feedback, with performance criteria formulated in terms of tems are in general not applicable. Our main goal is to address
the steady-state probability density. the following three questions.

Index ~ Terms—Nonlinear ~feedback system, quantizer, 1 yUnder what conditions can the steady-state probability
steady-state probability density, stochastic optimal control, density for the system (1) be computed explicitly?
hite noise. . . . -
b I 2. Do there exist physically and mathematically meaningful
interpretations of these conditions?
I. INTRODUCTION 3. Provided that these conditions are satisfied, how do the

HE study of linear systems excited by white noise is steady-state properties change as the parameters of the

greatly facilitated by the fact that one can explicitly solve system vary? ) . . .
the Fokker-Planck equation which describes the time evolution!” the rest of this section we give a more precise formulation

of the probability density. For nonlinear systems the situatidy the problem and a detailed outline of the paper. Some of the
is quite different: not only the transient solutions but even tH§SUlts reported here have been announced previously in [8] and

steady-state ones are difficult to find. Various methods have

been used to prove the existence of steady-state probability "€ FOKker—
distributions for quite general classes of nonlinear systems, B formula

such results do not provide specific expressions for steady-state n T
probability densities (this work can be traced back to the Lp=— trA"‘Z bicif'(cmx) | p
1960’s—see the references in [18] and [26]). On the other =1

Planck operatoassociated with (1) is given by

hand, explicit formulas for steady-state densities have been " " -

obtained for certain special classes of systems, most notably - Z Aijrjpz; + Z bi f(¢” ) pa;
gradient systems and Hamiltonian systems with certain types of hy=l =1

dissipation [12], [14], [16], [27]. However, the gap between the L GGTY. :
category of systems for which steady-state densities are known +3 Z ( )ik P @

to exist and that of systems for which specific formulas are gik=1

available is still quite large, which justifies further investigatiomhe problem under consideration is that of finding an explicit

of the problem. formula for a steady-state probability density associated with

In this paper we study Itd stochastic systems of the form (1). This amounts to solving the steady-state version of the
Fokker-Planck equation

de = Ag dt + G dw + bf(c"x) dt (1) Lo(z) =0 (3)
plx) =
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Let us first recall what happens in the linear calse=( 0). Throughout the last five sections of the paper, some open
As is well known, under the above assumptions the (uniquadoblems for future work are also pointed out.
steady-state probability density is a Gaussian

1 _ Il. QUANTIZED FEEDBACK SYSTEMS
plz) = /22"

(27)" detQ Let us denote by) the solution of (4). Of course, it is not
the steady-state variance matrix anymore in the nonlinear case.
Fe will say that the system (1) sompatibleif the following

compatibility conditions satisfied:
AQ + QAT + GG =0. 4) b= AAQc for some) € R. (5)

In this paper we will be concerned with extending this result We will be particularly interested in the case when the nonlin-
to nonlinear feedback systems of the form (1). In Section Il wegrity is given by a piecewise constant function defined as fol-
study the case when the nonlinearity is given by a piecewise cddws. Given a positive integeée/ and a nonnegative real number
stant function of a certain type, calledjaantizer We formulate A, we define thejuantizerg: R — Z with sensitivityA andsat-

a condition on the parameters of the system which enableswiation valuel by the formula

to obtain an explicit formula for a steady-state probability den- M, if 2> (M+1/2)A

sity. This condition will be called theompatibility condition -M, if 2 < —(M+1/2)A

and systems for which it is satisfied will be calledmpatible 9\%) = z 1 )

Steady-state densities for compatible quantized feedback sys- {Z T §J , T—(M+1/2)A<z < (M+1/2)A

tems turn out to be piecewise Gaussian. In Section lll we shQw ..\ ocie onthe interval, := [(k—1/2)A, (k+1/2)A)
that the same condition leads to an explicit formulaforasteaqyp e 1. ¢ 7 and—M < k < M. the quéntizerq takes

state density in the general nonlinear feedback case,thereby@rp-the valuek, and for|] > (M + 1/2)A the quantizer
swering question 1 posed above. The steady-state densities g&%rates. Mo,re generally, suppose that we hawiantizers
we obtain can be viewed as being of the Maxwell-Boltzmann ’

i S | - in Section IV. q¢.: IR — Z with sensitivitiesA; and saturation values/;,
YPE. SOME examples are given in Section 1v. . ¢ = 1,---,n. We define a quantizey: R" — 7" by ¢(z) :=
We then turn to question 2. A physical interpretation of cor;g

where() is the positive definite symmetric steady-state varian
matrix satisfying the equation

G . . . q1(z1), -+, qn(zn)), where(zy,---,z,) are the coordinates
pat|p|l!ty IS givenin Sect|_on Vinterms of certain concepts fro f x relative to a fixed orthonormal basisiR”. If all ¢;'s have
statlstlgal .thermodynamlcs. Namely, systems that are'monot 2 same sensitivit, we will call ¢ auniformquantizer with
peraturic in the sense of [11] turn out to b.e compatible. Th&%nsitivityA. The above notation is similar to the one used by
shows more clearly the place that compatible systems Occwglchamps in [15].
among all systems of the form (1). In Section VI we single out Consider the system
a class of systems for which the compatibility condition takes
a particularly transparent form and show how the steady-state dr = Aw dt + G dw + by(c" ) dt (6)
probability densities are related to Lyapunov functions for detesith ¢ being a quantizer with sensitivith > 0 and satura-
ministic nonlinear feedback systems. This makes contact witbn value /. We will sometimes allow the possibility that
the Lur'e problem of absolute stability. has an infinite set of values, i.e}/ = oo, in which case we

Some extensions and related issues are discussed next. In iCfurther assume thak in (5) is positive. We will not embark
tion VII we address the question of convergence of the proben the issue of existence of solutions for stochastic differential
bility density associated with (1) to steady state and give a brigfjuations with discontinuous right-hand side such as (6). The
overview of available results on existence and uniquenesssitliation when instead of a piecewise constant functieme
steady-state probability distributions. In Section VIII we condses a suitable smooth approximation is covered by the existing
sider systems with unstable linear part. In Section IX we usigeory. The steady-state probability density associated with (6)
the work of Zakai on the existence of steady-state probabilityto be understood as a solution of the equation (3) almost ev-
distributions to obtain bounds on second moments for certainywhere and can be obtained in the limit as smooth approxi-
noncompatible systems. This provides a natural generalizatipations approach. The problem of obtaining solutions of the
of the results of Section V to a class of systems whose tempefFakker-Planck equation for the system (6) makes contact with
ture is not constant, but rather varies along a certain sufficienthe work reported in [20]; see [10] and the references therein
small interval. for a discussion of quantized feedback systems and their impor-

The last two sections are devoted to question 3. Namely, wce in applications.
study how the steady-state behavior in the case of quantizedt is not hard to show that the function defined by
feedback depepds on the parameters of a given comp_atlbg%) — Nexp[—(1/2) (x + A" 08T Q (& + A~0k) + dy]
system. In Section X we consider several performance critefi P
of the quadratic-gaussian type. Finally, in Section XI we if "o € Ji @)
consider another performance criterion, related to the numiwéth arbitrary constantsv and d,, satisfies the equation for a
of switching hyperplane crossings per unit time. This leads sbeady-state probability density associated with (6) almost ev-
an interesting optimal control problem, which can be inteerywhere. This function is piecewise Gaussian. Clearly, &
preted as minimization of the cost of implementing a feedbadk, we can always determine particular valuesigfso as to
control law, and involves a novel application of Rice’s formulanakep continuous. However, this is not necessarily true in the
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multidimensional case. As we now show, the compatibility con- Theorem 2:If the compatibility condition (5) is satisfied,
dition (5) is precisely what makes it possible to obtain a contithen the functiorp given by (13) is a steady-state probability
uous steady-state probability density. density for the process described by (1).

Theorem 1:If the compatibility condition (5) is satis- Proof: Let us evaluate the expression (2) for the Fokker-
fied, then the process described by the system (6) admit®lanck operator associated with (1) whets given by (13).
steady-state probability distribution with a continuous piec&ombining the terms and making use of (5), we obtain

wise Gaussian density. Lp=pl(—tr A— L tr GGTQ™Y) + (\H(f(F )
Proof: Define TN TL T
. Afi(ctx))e” (5 GG + AQ)c
p(z) = Nexp [—%xTQ_la: - )\/ q(v) dv] (8) +25 QA+ 3 QT'GGTQ Nz
0 +Af(r ) (A+GGT Q™ +QATQ ™ M.
whereN > 0is fixed by the requirement thd},.. p(x) dz = Now it is easy to see that all the terms equal zero because of
1. Such a normalization constai always exists. Indeed, we (4). O

have assumed that eithdf < oo, or M =ocoandthem > Al the exact steady-state solutions obtained to date that we
0. In each of these cases the function defined by the exponengigd aware of are closely related to the Maxwell-Boltzmann dis-
in (8) belongs taL'(IR™). In light of (5), the function (8) is & tribution (see, e.g., [16]). Not surprisingly, so is the steady-state
special case of (7) withly, = (k*/2)(b"(A"1)TQ™*A7b +  density (13). It would be interesting to have a complete picture
AA). The statement of the theorem follows. L of how systems that are compatible in the sense defined here
The above result actually holds in the case of an arbitragye related to systems for which explicit steady-state probability
piecewise constant function In the next section we will see densities have been obtained previously, e.g., Hamiltonian sys-
how it can be extended to the general nonlinear feedback systgis with dissipation studied in [27]. We will make some re-

(1) marks on this in Section VI. The usefulness of our result stems
Now suppose that we are given < n quantizersy, - -, ¢,  from the fact that it applies to systems of the form (1) which is

andm linearly independent vectors,, ---,¢,, € R". The natural from the control-theoretic point of view and is not tai-
statement of Theorem 1 can be generalized as follds: |ored to any special coordinates in which the system takes some
process described by the system canonical form.

m Remark 1: Suppose that we writ(c? z) = kc?z+g(cTz),

dr = Az dt + G dw+ Y bigi(c] z) dt (9) for some numbek: and a suitable functiog, and rewrite the

i=1 system (1) accordingly as

admits a piecewise Gaussian steady-state probability density if de = (A + kbeD)a dt + G dw + bg(F ). (14)

by = MAQe, A\, e R (i =1,---,m). Inthis case, the steady-

state density takes the form Assume that the matrid + kbc!' is stable (this will certainly

o . be true if% is sufficiently small). As is straightforward to verify,
_ 1 71 ~, 57 if the original system (1) is compatible, then so is (14). The

plz) = Nexp 2% Q w ;)\Z/o ¢(v) d”] ) guadratic term in the expression for the steady-state density as-
sociated with (14) will be-1 27(Q~* + Akcc® 2. We can thus
say that compatibility is preserved under linear feedback trans-
dz = Az dt + G dw + Bqg(z) dt (10) formations. This important property will be implicitly used sev-
eral times in the sequel.

We can switch to new coordinates in whi@h= 7’1 for some
BW = \;(AQ)) forsome); e R(i=1,---,n) (11) T > 0.The structure of compatible systems is then revealed by
the following statement.

Corollary 3: The system

Thus for the quantized state feedback system
wheregq is a uniform quantizer, we need

where the superscrigt) denotes théth column of a matrix.
The formula (11) can be rewritten as

1
B=AQD, D=diagh, -,\.). (12) dz = <Q— 5T GGT> zdt+ G dw

1 T T
[Il. GENERAL NONLINEAR FEEDBACK SYSTEMS AT <Q 2T GG ) cflc ) dt (15)

Consider the system (1) and assume that the compatibifgpere2 = —Q¥', is compatible.
condition (5) holds. Let us look for a steady-state probability
density taking the form V. EXAMPLES
p(x) = Nexp[—327 Q7w — AF(c" z)] (13) Itis insightful to see how known solutions to certain problems

N ) o are captured as special cases of Theorem 2.
whereF(z) := [ f(v)dvandN > 0 is a normalization con- Example 1: Consider the system

stant. Note that (13) includes (8) as a special case. We need to as- )

sume that the function defined by the above exponential belongs®*i = fi (@1, &) dt + g dwy, i=1--,n (16)

to L*(IR™). This will always be true if, for examplé, > 0and whereg is a constant ana;’s are independent scalar Wiener
zf(xz) > 0 for all z. processes. We will call such a systgmadientif there exists a
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function ¢(xy, - --, z,) such thatf;, = —(9¢/0x;). Itis well
known and straightforward to verify that a steady-state density
is then given by the formula

p(z) = Ne=29@)/9 v, % m v

whenever is such that we have=2¢(®)/¢° ¢ L1(R™).
In fact, (16) belongs to a general class of systems that take

the form 0 04 |
i = —V(z) + Q) v,

where the gradien¥ is computed with respect to the Rie-Fig. 1. Electrical circuit of Example 3.

mannian metric given byGG*)~1. A detailed study of such

systems, extended also to degenerate diffusions, is carried gigtor in the Nyquist-Johnson form (see, e.g., [11]). The Kirch-
in [6]. An arbitrary compatible system will possess, in additioRoff’s voltage law reads

to gradient terms, certain “skew-symmetric" terms which do Ve+ Ve + Ve =0.

not phange the steady-state prqbablhty Q|str|butlon (mor._eOr the inductor we have

precisely, these come from vector fields of divergence zero that

are everywhere tangential to the equiprobable surfaces). This Ve = LI
statement is made precise in [6]; see also Section VII. In fadthe Nyquist-Johnson resistor model gives
all compatible systems naturally fall into the framework of [6] Vg = RI + VR

for the case ofR™ with a constant metric. A special class of . _ L .
such systems ifR? has been described by Rueda in [23]. (this reflects the fluctuation—dissipation equality for an appro-

Example 2: Newton’s second law for a nonlinear spring i ratlg value of thte temEerature,IFamdl){lz). Fmalllyi,. for;.he fth
a viscous fluid in the presence of random external forces mr%?n Inear capacitorwe have a voftage-charge refationship ottne

be expressed, with some abuse of notation, by the second-o en
equation Ve = flqe).

I+ar+ f(z)=w (17)  Therefore, lettings; = ¢. (charge) and:, = I (current), we

. . . . obtain the system
wherew = (dw/dt) is white noise and, > 0. The total en-

ergy of the system i§:? + F(), and a steady-state probability 1 =12
density is ; R VR .1
$2=—Z$2—Tw—zf($1)- (20)
p(z, &) = Nlexp —2a(33* + F())]. (18)  The equation for a steady-state density is

This formula reflects the facts that the levels of equal energy £
are also the levels of equal probability in steady state and that2L2
the fluctuation introduced by the presence of white noise amthe energy of the inductor ig‘ot IV, dt = fot Lidl =
the energy dissipation due to the damping terineventually (y,/2) ;2. The energy of the capacitor 'ﬁ)t Ve dt =

balance each other. This example is also well known and can % f(z1)dzy = F(z1). One can verify that a steady-state
generalized to higher dimensions [12], [16]; see [5] for an app ensity is given by

cation of these ideas to function minimization using simulated

1 R
Pxoxzo + z (R.’L’Q + f(xl))pwz — X20x; + f p= 0.

annealing. p(z1,x2) = Nexp [_2 ((L/Z)x% + F(xl))]
To understand how the above example fits into our framésf. Example 2). Notice thatf automatically satis-
work, consider the following auxiliary system: fies the inequality zf(z) > 0 because it expresses
d [z —e 1 " 0\ . the voItane—charge relationship in the capacitor, hence
pr <y> = < 0 _a) <y> + <1) W e~ 2L/ Az 4 F (1)) ¢ LY(IR™). The system (20) is compatible

in the same limiting sense as (17).
+ < 0 ) flx), e > 0. (19) Alternatively, we could represent the nonlinear law for the
-1 capacitor as a linear one plus a perturbation, which amounts
One can check that the compatibility condition (5) holds fdo letting f(z) = (1/C)z + g(z) for some functiory and a
(19) with the proportionality constant = 2(a + ¢) — 2a as positive constant’. Further, we could switch to canonical co-
e — 0, which reveals the meaning of the constaatin the ordinates in which the equipartition of energy property holds
formula (18). If we compute the steady-state density for (193f. next section). Namely, if we scale the variables, —
using the formula (13), and then take the limitas+ 0, we (1/v/C)z1, x2 — VL z», then the steady-state variance ma-
arrive precisely at (18). trix @ becomes; 1, and compatibility can be easily verified
Example 3: As another physical example, consider the citsing Corollary 3. Moreovel, = 2 regardless of the numerical
cuit shown in Fig. 1. Suppose that its elements are a linear tharacteristics of the circuit elements. The same method would
ductor with inductancé., a nonlinear capacitor, and a noisy realso work for Example 2.



1120 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 6, JUNE 2000

V. COMPATIBILITY FROM THE STATISTICAL THERMODYNAMICS vV,
VIEWPOINT

S S8 W
We are now in position to give an interpretation of the com- m m m
I 2

patibility property on physical grounds. It involves systems that B 1
describe the behavior of electrical networks with noisy resis- v, == %

tors in Nyquist-Johnson form, as in Example 3 above. If all the \
resistors are of the same temperatiliethe system is called

monotemperaturicThis concept was mathematically defined in
[11], where the authors give a canonical representation for such J\/\/‘\
systems in the form v

Fig. 2. Electrical circuit of Example 4.

. 1 T .
T = <Q o GG ) z + Gw + Du

The closed-loop equations are

= —DVes — Fu+ V2T Fp. (21)
4 (" -1 0 1 1%
HereQ = —QT, F = T, andw andy are independent white ¢ Va | = 0 -1 -1 V2
noise processes. The steady-state variance for (21) upon setting ¢ -1 1= ¢
u = y becomes) = T'I, so we can say that in steady state 100 wy 1
all the modes possess equal energy. This property is sometimes +{0 1 0 we | + | =1 ] f(¢).
referred to as thequipartition of energyroperty; see [11] for 0 01 w3 -1

a more rigorous justification of this terminology.

In the present framework, certain types of circuits with non-
linear capacitors or inductors are described by equations of thgl'
form (1). We claim that by closing the feedback loop in (21) we Consider a system excited by a scalar white noise
can obtain a compatible system. Indeedlet y + f(y) (as-
suming single-input, single-output case, otherwise do it for each &= Aw + g+ bf(cF ).
pair (u;,;)). This yields

STEADY-STATE DENSITIES AND L YAPUNOV FUNCTIONS

Since by the assumptions made in Secti¢A lg) is a control-
lable pair, in the appropriate basis the linear part of the system

1 .
d <a:> . <Q - 37 GGT D ) <a:> takes the standaabntrollable companion forgso that we have
dt \y/ ST _ (]
o D 0 F D 1 0 1 0 cen 0 T
w d T2 0 0 1 ... 0 To
(5 vore) (0)+ (o) oo e g0 0 0 :
Tn —Po —P1 —P2 - —Pn-1 Thn
We have thus obtained a system that takes the form (15) de- 0
scribed in Corollary 3. Summarizing, we can say that compati-
bility can be thought of as a natural property of monotempera- +1 . |w+ bf(ctz).
turic systems with nonlinear reactances. Notice that (1) is more )
general than (22) since the noise matrix of (1) does not neces- 1
sarily take a block diagonal form. o Moreover, if the vector$ andg are proportional, then we can
Example 4: Consider the circuit shown in Fig. 2. multiply f by a scalar if necessary to arrive at
Let us assume for simplicity that all the resistance and capac-
itance values are equal to 1, and that the temperature of all the p(D)z + f(e(D)x) = w. (23)

resistors is 1/2. Suppose also that the inductor is nonlinear. Then

we canwrite:Vy + Vs + Vo — Vo = 0, Vi = I1, Vo = —I3, HereD := (d/dt), andp(D) = D" + p, 1D"™' + .- +
Vi=I—I +, Vo =13 — I + 1, Vi = I + 103, and p1D+poande(D) = ¢, 1 D"~ +---+c1D+co are polyno-

I, = ¢+ f(¢) wheregp is the flux in the inductor. The open-loopmials(D’z = (d'z/dt')). The class of systems thus constructed

equations are includes (17) and (20) as special cases, and is of considerable
interest despite the special form of (23) (see, e.g., [26]).
d [V, 1 0 Vi _ In this section we vyill be concerned vyith formulating con_di—
P <V2 ) = < 0 —1 ) <V2 ) tions on the polynomials andc under which the system (23) is

. compatible. We will adopt certain results from [3] regarding the
+ <1 0) <“fl> + < 1) I Lur'e problem of absolute stability for the deterministic coun-
w2 -1 terpart of (23)

: Vi :
p=(-1 1) <V2> — I + 1. p(D)z + f(c(D)z) = 0. (24)
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We will assume that:f(x) > 0 for all = exceptz = 0, wherep stands for the derivative gf(x) along the solutions of
and that either the equation D)z = 0 is asymptotically the deterministic system (24). Plugging into (29) the expression
stable orp(D) = Dh(D) with h(D)x = 0 asymptot- for p given by (28) and using (26), we obtain

ically stable. Denoting De(D) by m(D), assume also

that the functionm(s)/p(s) is positive real. Then we can 2a(r~(D)x)? =pn_1 — acn_2

apply the classicalfactorization lemmato conclude that +20%(cp_otp_y + -+ + cox1)?

there exists a unique polynomial(s) with real positive — 2(am(D)z)?

coefficients and no zeros in the right half-plane, such that
Evp(s)m(—s) = r(s)r(=s) = r(s)r~(s) (here "Ev"stands ;.4 the vajidity of this follows directly from the hypotheses.

for the even part of a polynomial). We construct a LyapunoVv 1ha case of odd is treated similarly; (29) is replaced by
function for (24) as follows:

@ . 1 (D) 1 9%p
V) = [ D) mD): - (D)) P = B o FAD))P+ 5 G

+ F(ce(D)x) (25) and we arrive at the equation

where(dF (¢(D)x)/0x™) = ¢; f(c(D)z) as before. Obtaining a(r=(D)z)? = (p(D)z + f(c(D)z) — am(D)x)?

this function is a matter of multiplying both sides of (24) by

m(D)x, integrating by parts, and completing a square if nece®-verify which it remains to use (24) again. O

sary [3]. In many situations (cf. Example 2) such a Lyapunov The formula (27) provides a more concrete interpretation of

function arises naturally as the total energy of the system. the compatibility condition (5) applied to systems of the form
In [3] the problem of absolute stability for (24) is investigate@23). From the results of Section Il it follows that if we want

with the aid of the function (25). It can be shown thats well  (23) to be compatible, the choice @fD) is unique up to a con-

defined (in particular, the integral in (25) is path-independengtant.

positive definite, and that its derivative along the solutions of We will now sketch how, in the case when (23) is even-di-

(24) is given by mensional ¢ = 2k), the above makes contact with the work
. reported in [27] on steady-state densities for stochastically ex-
V=—(r(D)x)* (26)  cited Hamiltonian systems with dissipation which take the form

Of course, this expression is in general merely negative semidef- . OH

inite. To conclude asymptotic stability, LaSalle’s principle must %= ap;

be applied, which is essentially what is done in [3]. ’ L m

Now, given a polynomiap(D), let us choose(D) by set- pi= — 9H _ Z azﬁ + Z by iy
ting ¢; = p;+1 for each even and¢; = 0 for each odd. No- dq; ! dp; =
tice thatm (D) is then simply the odd part gf(D); therefore i=1,-- k. (30)

Evp(D)m(—D) = m(D)m(—D), so we see that(s)/p(s) is
positive real and— (D) = m(—D). We can also takex(D) to  |n our previous notation, if (27) holds, thetis an even polyno-

be a constant multiple of OgdD) as in (17), which amounts to mjal and the system (23) can be written as
a simple modification of the nonlinearity. We will now use the

Lyapunov function (25) to arrive at a steady-state density for the Evp(D)x + aDe(D)x + f(c(D)x) = 1. (31)
stochastic system (23). Assume that®¥*) ¢ L1(R™).

Theorem 4: Suppose that either(D)z = 0 is asymptoti- We can think of (31) as the system obtained from
cally stable op( D) = Dh(D) with h(D)z = 0 asymptotically

stable and that Evp(D)z + f(e(D)x) =0 (32)
1 . . .
(D) = ) Oddp(D) (27) after adding the damping termDc(D)z and the noise. I
@ is stable, then the roots of kvare all simple and lie on the
with ¢ > 0. Then the function imaginary axis, and one has a partial fraction expansion
p(z) = NG—QaV(Jz) (28) k ;
(5) &= 2+

is a steady-state probability density associated with the system
(23). _ _ . . Thisimplies that there exist coordinates in which (32) takes the
Proof: Letus first consider the case wheis even. Using 4o miltonian form

our definition ofc(D), it is not difficult to check that the equa-

tion for a steady-state probability density can be written as G = oH
f Ip;
: 1 3% oOH
=Pn—1p+ 5 29 b, = — , i=1,---.k
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with H = Zle (Big? + p?) + F(Z;“:1 Varg). ltis not  we will now provide several examples and a partial reference
hard to see that in these coordinates the original system (30) ligt=
comes a special case of (31). In [27], applying techniques fromlf the function f is globally Lipschitz, then one can apply
statistical mechanics, Zhu and Yang obtained conditions undke results obtained by Zakai in [26]. Consider the system (1),
which a steady-state density for (30) can be found explicitly. Oand denote by.* the adjoint of the Fokker—Planck operator.
presentation here is restricted to the situation when the dampBgppose that we have a nonnegative, twice continuously differ-
and noise coefficients;; andb;; are constant and the noise isentiable functionV'(x) in R™, which is dominated by a poly-
scalar, but the above discussion can be extended to the muoenial. Reference [26, Th. 1] can now be formulated as fol-
general case treated in [27]. lows: If there exist numbers < ocandk > 0 such
The system (23) is a particular case of (1). To establish a cdghat L*V (z) < —k for all = satisfying||z|| > r, then the
nection between the steady-state probability densities and Lypascess defined by (1) admits a steady-state probability distri-
punov functions in a more general setting, consider the systéution. This Lyapunov-like criterion can be used to establish the

(1) together with the deterministic one existence of steady-state probability distributions in the absence
of constructive proofs and explicit formulas. This criterion ap-
i = Az +bf(Lx). (33) plies to a larger class of systems than that of compatible ones,

as will be further illustrated in Section IX.
If the compatibility condition (5) holds, then (33) is equivalent As for the system (23), in the case of a globally LipscHiiz
to satisfies the assumptions of [26, Th. 3]. According to that the-
orem we therefore conclude that the steady-state density (28) is
Q7 'AT e = Qe 4 Aef(cF ). (34) infact unigue (and so are its special cases considered in Exam-
ples 2 and 3). Regarding convergence to this steady-state den-
The above analysis and the formula (13) suggest considering 9, the same theorem of Zakai asserts thaflfor: ~o and all

function zo € IR™ we have
Viz) =1L a7Q 'a + AF (T T
(x) 3 Q 'x (¢ z) P % / glx(t)) dt — g(@)pde|z(0) =29 p =1
where(8F /8z;) = ¢; f(cTz). If A > 0 andxf(x) > 0 for all 0 e

z, then the functior?” is pOSitive definite. Its derivative along Wherep isthe Steady_state density agu* any real-valued func-
the solutions of (33) is tion integrable with respect to the measpréz.
When the diffusion matrixG is nondegenerate, the process
described by (1) can be shown to possess useful properties such
V= Z 835 = | D (@ Yz + A f(¢"x) | & asthe strong Feller property and, under additional assumptions
‘ g i formulated in [2], recurrence. These properties allow one to
- Z QYA iy apply various results on existence and uniqueness of steady-
state probability distributions [1], [14], [17], as well as on con-
- . i . vergence to steady state [24], [25]. Another useful concept for
=iT(AQ) i = -5 2T (AQ)T G ((AQ) ™) TE establishing uniqueness and convergence is that of a well-be-
haved solution [12], for which certain growth conditions are re-
by virtue of (34) and (4). The last expression is obviously neguired (these conditions will be quite mild, however, in view of
ative semidefinite, which means thitis a Lyapunov function the exponential nature of our solutions).
for (33). Thus we see that the steady-state probability densities\le now outline a constructive method for investigating
obtained in Section Il are closely related to Lyapunov fun@onvergence to steady state, based on the knowledge of the
tions for the corresponding nonrandom systems. As in the caseady-state probability density and on the spectral analysis of
of (24), to conclude asymptotic stability of (33) it is necessame Fokker-Planck operator. df, g1, go, - - - are the eigenfunc-
to investigate whether one can apply LaSalle’s principle, a queiens of the Fokker-Planck operatbrcorresponding to distinct

tion not pursued here. eigenvalues\y, A1, A, ---, then the time-varying solution of
the Fokker-Planck equation
VII. EXISTENCE, UNIQUENESS AND CONVERGENCE ap
Our goal has been to obtain explicit solutions of (3) under 9t Lp (39)

minimal assumptions. In particular, no Lipschitz or other growth
requirements have been placed on the funcfiodoreover, the
diffusion matrix@ was not assumed to be nondegenerate—the

weaker controllability condition was imposed instead. In this p(0,z) = Z aigi(x), a € R
sense, the work reported in this paper serveotaplementhe ‘

results available in the literature which allow one to establigsikes the form

existence and uniqueness of steady state and convergence to

steady state under additional assumptions. Although for reasons Z e
of space we cannot give a complete review of prior work here,

with initial condition

7

=0
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Thus, eigenvalues of provide information about the conver- 1 " T ool 41 T
gence of the stochastic process to steady state. For a discussion + /Rn 2 Z ARATQA™ = D)ijb; f(e" )]
along these lines, see [4]. In the paper [19], and more recently in nI=t

-2
[5] and [6], Fokker-Planck operators and their spectral proper- " c %wf dx
ties were studied with the view toward applications to function + / 02 Laewe 2% da. (36)
minimization. The analysis given below is based on the tech- »

qiques employgd in those reft_'-:r_ences (the subsequent Calc%‘ﬁﬁ:e bothL andL.q annihilate the steady-state density?®,
tions are given in greater de,t"’_“,l In [22]),', it follows that Lg...c~2? = 0 and so the last integral in the
Suppose that the compatibility condition (5) holds. Consideg, i, i4 (36) is zero. Using integration by parts, we can rewrite

the function the first two integrals in (36) as

1 n
B /]R” 2 i%:zlp

n

_/ ; Z Paa [(QATQ AT - I);;

Ly

—1,TH-1 1 T
¢ =320 Q  w+ AL (c" x) (QATQ™' — A)ijzje~2p] du

g
. Oz,
(cf. Example 1). Define the vectdr¢ by

(V)i = > (GG )ijba,-
i=1 - b f(Tx)e ] da

In view of (4) and (5) we have which implies that

o _l T _1 . . . .
Vd) N 2(A - QA TCJ zx 1 T / p-LskeWpe_Qq5 dr = _/ p-Lskewpe_&;5 dr =0.
- %(I+QA Q7 ATHbf(c" 2). " "
_ . Putting all the above calculations together, we conclude that
The Fokker-Planck operator associated with the system (1) can

be written as / pLpe™2* dz < 0.

L = Lgraa + Liokew Therefore, all eigenvalues @fwith eigenfunctions in the space

{p: e=¢p € L*(R™)} are nonpositive. This implies that all

where _ e : i
eigenvalues of. with eigenfunctions in the spadg: ¢?p €
"9 1 <& T L?(IR™)} are nonpositive. Thus it follows that if the initial prob-
Lgraap = Z ox; ((Ve)ip) + 2 Z (GG )ijpeia ability densityp(0, «) is a linear combination of such eigenfunc-
=t . =l tions, therp(¢, ) approaches steady state. It remains to be seen
_ 1 Z GGty a o2 ie% whether more concrete conclusions can be reached.
) 52 " Oy Ox; P Using the above ideas, one can try to obtain specific informa-

tion about the speed of convergence to steady state, which does
and not seem possible with the methods described in the references

Lo cited earlier. Given the system (1), let us defineshectral gap

_ - Y Tl _ AV .p. to be
Lskewp - 2 Zz;l 83:7 [(QA Q A)”x]p] i
ij_ g Ay = min { <—/ pLpe™ 2 da:) : / pre 2 de =1,
_ _ P RrR" RrR™
+5 Y o [(QATQTT AT — D)ijbi f(c"x)pl.
2 £~ Jux; —2¢ _
i,5=1 pe der =03 .
—~ Rﬂ'
Define a gauge transform L of an operator L by The problem of estimating the spectral gap plays a role in the
Lp = ¢**L(e™*?p). We have theory of simulated annealing [19]. In view of the results ob-
} tained in [21] which lead to an explicit characterization of the
/ pLgmdpe_2q5 dz spectral gap for linear systems, it might be useful to relgte
" N to the value of the spectral gap in the case wfiemlinear. We
_ 1 GGTYs:pe o =2 dz < 0. now show that_th|s can be_ _done, at least in some cases. As an
/]Rn 2 Z ( iiPai ;€ = example, consider the familiar spring equation (17) and the cor-

W= responding steady-state density (18). The spectral gap is

In the above calculation we used integration by parts. Now coiin, {3 [p- (py)2e~v"=2F@) dz dy} subject to the conditions

sider - p2e=Y 2@ g gy = 1 and [, pe—y2—2F(x) dr dy =
. 0. Note that if a functiorp is such that the last condition is sat-
/ pLsyewpe™>? du isfied, and if we define)(z, y) := p(z, y)e™® —2F @) for a cer-
8 n taina € R, thenfRZ z/)e_yZ_‘”Z dx dy = 0. Now, assume that
= / L Z P[(QAT Q™Y — A)isz;)e™ps, da there exist positive numbersande such thatvz? < 2F(x) <
m = ax? + ¢ for all z (geometrically, this means that the graphs of
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f(x) andax must be close enough to each other so that the area Y
between them is finite). Then it is not hard to see that A

/ (z/)y)Qe_yz_‘”Z dz dy
Lis I~
; W,
< ’(/)2673/27‘””2 dr dy> / \—\
R2
/RZ (py)Qeawz—QF(a;)e—yz—2F(a}) dr dy /

2
</ eramZ_QF(m)e—yz—QF(w) dzx dy)
R2

2 — Fig. 3. A steady-state probability density for the system (38).
< 626/ (py)Qe—y 2F (x) dr dy < 626)\f 9 y p ty y Yy (38)
2

Y

find a symmetric matrix) that satisfies the equation (4). In gen-

which implies tha’tz2€)\f > Aoz, Whered,,, is the spectral gap ; L . .
for the casef (z) = ar. The ease with which we could make theeral, this@@ need not be positive definite. In view of (12), one

above estimate for this example is due to the fact that Mmust then restrict the search faf to matrices such thaBK
dlguad . . . .
there is no differentiation with respecttgthe argument of the takes the formdQD) with D diagonal. This would then yield a

. ) o . system of the form (38) that possesses a steady-state probability
nonlinearity. Similar estimates hold for any system (1) such th Stribution (cf. Remark 1 in Section I1I).

theith row of &7 is zero wheneve; # 0. The above “compatible stabilization" problem is also mean-
ingful for quantized output feedback systems of the form (9).
The simplest example (single-input, single-output case) is pro-
Consider the system vided by the familiamth order equation

dx = Az dt + G dw — BKAq(z) dt (37) p(Dx+uw=w (40)

VIIl. C OMPATIBLE STABILIZATION

whereq is a uniform quantizer with sensitivith and an infi- where the control has to take the form = kq(c(D)z). We

nite set of values in each direction. In this section we drop th@ow that a necessary and sufficient condition for this system to
stability assumption a) of Section | and suppose instead thatfg compatible is given by (27). Our choice of the outgu?)z
eigenvalues ofA — BK have negative real parts. Rewrite (37)eing thus fixed up to a constant, we can rewrite (40) as

as p(D)x + ke(D)x — ks(c(D)x) = w.

de=(A—-BK)zdt+Gdw+BKs(z)dt  (38) Note that compatibility is preserved becausie even. There-
fore, all we need to do now is choosdhat makes the system
p(D)x + ke(D)x = 0 asymptotically stable. All such values
lls(x)]joc < A/2. (39) of k can be determined by a straighforward application of the

. . Nyquist criterion.
Now, assume that the system (38) is compatible in the sense

specified at the end of Section II, namely, tHaK = (A —

BK)QxD,whereD = diag A1, - - -, An) andQ x is a positive _ o

definite symmetric matrix satisfyingd — BK)Qx +Qx(A—  As we have already mentioned, compatibility is not a nec-

BEK)T + GGT = 0. Since (38) satisfies the assumption a), weSsary condition for the existence of a steady-state probability

can apply Theorem 2 to obtain a steady-state probability densqiﬁtrlbgtmn. In .th.e previous sections we have dlscus.s.ed systgms

Note that the exponential in (13) will automatically belong t&" Which explicit formulas for steady-state probability densi-

LY(IR™) by virtue of (39). A possible graph of such a density iies can be found. It would be interesting to try to develop a

sketched in Fig. 3. perturbation theory that would allow us to obtain specific in-
An interesting question that arises in this context is the folormation about steady-state probability distributions for some

lowing: given the matricesi, G, and B, is it possible to find SYystems that are not _compatlble. We now describe some prelim-

a matrix K that makes (38) compatible with asymptoticallyn@ry results in this direction. _

stable nonrandom part? We are not aware of a general answeiS is Well known, if assumption &) of Section | holgs, then

to this question. What stands in the way of a simultaneous treBI€re exists a positive definite quadratic func_tIé@v)T: a* Px

ment of asymptotic stability and compatibility is the fact thaf/hose derivative along the solutionsiot= Axis —x” Rx, with

the steady-state variance matéd associated with the system?? symmetric positive deﬂn_lte. For the system (1) this implies

dx = (A— BK)z dt+G dw depends on the choice &f and is  that outside the ball of radius

at the same time_negd_ed to verify C(_)mpatibility of (38). In order L*'V(z) = —2T Rz + 22T Phf (%) + tr(PGGT)

to circumvent this difficulty, one might try to develop a pro- < (B2

cedure which deals with the issues of asymptotic stability and — e - S )

compatibility separately. For instance, even if not all the eigen- + max(0, BAmax(Pbc” + b P7)||z[]%)

values ofA have negative real parts, one might still be able to +tr(PGG™)

wheres(x) := & — Ag(z). For allz we have

IX. NON-COMPATIBLE SYSTEMS AND TEMPERATUREBOUNDS
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provided that and
d

az? < 2f(z) < 22 forall|z| > r y

and some? > o >0 (42)

(Q-TI) = (- GGH(Q-TI)
+(Q -1 (-Q - GGT)
(to arrive at the second term on the right-hand side in the + FFT — 21 GG*.
above formula, consider the two caseSPbf(clz) < 0
andzTPbf(ctz) > 0). Here Ay and Ay, stand for
the minimal and the maximal eigenvalue, respectively. If

assume thaf is globally Lipschitz, then we see that f@rsmall
enough there exists a steady-state probability distribution

WFrom this it follows that if737 < Q(0) < T,I, then both
ﬁ] — @Q and@ — 7131 are nonnegative definite matrices, i.e.,
g’yf < Q(t) < 11 for all ¢, as one may have expected.
virtue of [26, Th. 1] cited in Section VII. Observe that the same We now smgl_e out a class O.f nor_1I|r_1ear feedback systems
erturbed by white noise for which similar bounds can be ob-

conclusion holds if3 — « is small enough, as long as suitable_; . .
" - L . -fained for certain second moments in steady state. These are
stability conditions are satisfied. Namely, we just have to writé

F(T2) = (a — cTx + g(cTx) with a smalle > 0 and single-input, single-output systems of the form

require that all eigenvalues of + (a — ¢)bc” have negative i =Qx — bf(b ) + b (44)
real parts.
Example 5:Consider the (noncompatible) second-orderhereQ = —Q* (€2 is now time-independent). Let us assume
system that the condition (41) holds with > 0. In this case it may
be interpreted as saying that the temperature of the system (44)
Z4 f(@) 4z =w. (42) is betweerl /(23) and1/(2«). Rewriting (44) as
Assuming that (41) holds withk > 0, we can recast (42) as &= (Q— 00z — bg(bTz) + by

i+ei+g(@)+z=wwith0 < € < «.Inthe above

notation. takeP — (a, 1) wherea > 0. This gives one easily verifies that it is not compatible unléds= 0. Now,
’ — \1 a/? :

notice that the variance satisfies

4 Extx = 2667 f(b z) + b0

Pbct 4+ b PT = < 0 _1>
-1 —a

dt
With Aax (Pbc? + T PT) = \/aZ + 1 — a, and (here€& stands for the expectation). Assume for simplicity that
||b|] = 1. Provided that the steady-state probability distribution
R— <2 € ) exists, we deduce that in steady stété'z f(b7x) = 1/2 and
€ 2(ac—1))" therefore
Now, lete — 0 anda — oo in such a way as to have: — cc. R £V ) < 1
Then obvioushin(R) — 2 andAyax(Pbct + bt PT) — 0, 23 ~ ~ 2

\[I)VStIg; ?(r)(r)\;elzlsﬁthe existence of a steady-state probability dls%l)_/ virtue of (41). These are natural bounds imposed by the tem-

In certain cases it is possible to obtain explicit bounds f(glrerature. Equation (42) may serve as a simple example.

the steady-state variance. The corresponding class of systems
serves as a natural generalization of monotemperaturic ones.
The following observation regarding linear systems provides Consider the quantized output feedback system (6), wihere

X. VARIANCE COST AND CONTROL COST

some motivation for such analysis. Consider the system is the quantizer with sensitivih > 0 and saturation value 1
i = () — GG (t))x + F(t)w (43) 1, ifz>A/2
g(z)=<0, If-A/2<2 < A/2
with Q(¢) skew-symmetric, and assume that there exist two pos- —-1, ifz < —A/2.
itive numbersl’; and7; (which may be viewed as temperature o N )
bounds) such that Let us assume that the compatibility condition (5) holds with
A > 0. In the last two sections of the paper we study sev-
2NGH)GHT < FOF)Y < 2DhGH)GHT eral steady-state optimal control problems associated with the
_ ) ) _ ) system (6), with performance criteria formulated in terms of the
for all #. The variance equation associated with (43) is steady-state probability density. In view of the remarks made in

Section VII, solutions to such problems provide a starting point

) =(Q-GGT —-Q—GGY)+ FFT
@=( GGTR+ GGT)+ for studying the behavior of the process described by (6) for

which implies large timest.
Throughout the rest of the paper, wedadenote the expecta-
4 (Tl — Q) = (Q— GGT) (ToI — Q) tion with respect to the steady-state probability density. The two
dt hyperplanegz: ¢z = £A/2} will be referred to aswitching
+ (Tl - Q) (- - GGT) hyperplanesWe denote byv the gradient computed with re-

+20,GGT — FFT spect to the standard Euclidean metriclRf.
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Let us define thevariance costby V' := &(cf'z)? =

cTEzxT c. Note thatV is invariant under coordinate transfor-
mations. We will be interested in the behaviorléfconsidered
as a function of the sensitiviti. In light of (8) one would
expect that for smaller values of the quantized feedback term

forcesc?z to become smaller. This idea is formalized in the
following statement. /

Proposition 5: The variance cosV is a strictly increasing
function of the sensitivityA.

Proof: The proof is geometrical and uses the explicit for-
mula for the steady-state probability density. If we pick two
numbersA, > A; > 0, theninthe regioqz: A1/2 < - X
'z < Ay/2} the steady-state densities corresponding to
A = A; andA = A, take the form Fig. 4. Relative position op(z) andpz ().

p@) = Ny 07 e ) (&
o IR O YR
and |cTz| > A/2

palz) = N2C_(1/2)acTQ—1x (46) — ( / (pr(z) — p2(z)) dz =0
respectively, whereN; and N, are normalization con- by (49) 0

Zti?;(;[;;)rl;e(t)fu?hgoyepcﬂ(tﬁf—]?bdeélgzg\e/eirg iﬂ?sp ?/elgt(;[reis Proposition 5 shows that the optimal control problem that
o : . o cansists of choosing the value Afthat minimizesV is trivial:

transversal to the switching hyperplanes since (5) implies tt}ﬁte optimal performance is achieved whan= 0. Fig. 4 il-

A7 = AP Qc > 0. Forp; we have g

lustrates the previous proof (the cross-section with horizontal

—_

\
="

.

(Vi) A78) = (~(Q 'a+ Ae), A Hh)pu(a) coordinatec”z is shown). | )
= (@TQ AT+ AT A ) () C.)ne. cpuld _also consider thetal variance cosV = Sa:Ta:.
T o which is invariant under orthogonal coordinate transformations.
= —(Acz + A7 Qo)p (). (47) It turns out tha®” has the same property of being an increasing
For p, we have function of the sensitivity\. This fact can be verified with little
work, by choosing one of the coordinate vectors to be parallel to
(Vpa(w), A7) = (—Q 7 &, A7) pa(w) ¢, using Proposition 5, and integrating by parts in the remaining
= —2TQ A bpy() variables. In fact, the varian&d*'z)? is not affected by the
= — A aps(a). (48) feedback ifd L c. o _ _ _
Another performance criterion that we will consider in
Similar formulas can be obtained far € {z: — A,/2 < this section is theontrol costU := P(|cf'z| > A/2) =

'z < —A1/2}. Now, p1(x) andps(x) are proportional in the £(q(cTz))?2. It may be viewed as the proportion of time during
stripe{x: |cT'z| < A;/2}. If we assume that; () < pa(z) which we actively control the system. This results in certain
there, we arrive at a contradiction. Indeed, (47) and (48) aeslpenses which we would like to keep low. Clearly, the optimal
the fact thap; (z) andp-(z) are also proportional in the regionquantized feedback control strategy consists of moving the
{z: |cF'x| > Az/2} would then imply thap;(xz) < p2(z) switching hyperplanes off to infinityA = oo givesU = 0. In

for |c¥z| > A;/2, and so the requirement fact, the following is true.
Proposition 6: The control cost/ is a strictly decreasing
/ p1(z) dz = / pa(z) dx =1 (49) function of the sensitivity\. A

The proof is similar to that of Proposition 5; see [22] for
would be violated. The only remaining possibilityds(z) > details. A nontrivial stochastic optimal control problem con-
p2(x) for |¢"z| < A;/2. From the above analysis it followssists of determining, for example, the value Afthat mini-
that3A € (A1, Ag) such thap, (z) = pao(z) if "z = +A/2, mizes a quadratic cost functional of the foim:= oV (A) +
pi(x) > pa(z)if |Fz| < A/2,andpi(x) < pa(z)if  /1—a2U(A), where0 < « < 1. Although this problem
|c¥z| > A/2.Infact, (45) and (46) imply thah = 2(In N; —  does not seem to lend itself to an analytic solution, some numer-
In N2)/A. Now it is not difficult to conclude that’(A;) < ical results can be obtained.

V(A2) Example 6: Consider the equatiods = —z dt + dw —
V(AL — V(A q(z) dt, wherex € IR andq is a quantizer with saturation value
L z 1 as before. The diagrams in Figs. 5 and 6 display, respectively,
= / (cTa:)2(p1(a:) — pa(z)) dz the optimal sensitivity\,,,; as a function oty, and the optimal
R~ costL,,: as a function ofr (compared withl, = «/2 for the un-
(A)? . / (1 (2) — po(a) da controlled systemz = —x dt + dw). Naturally, the quantized
4 |eTa| < /2 . P2 feedback control strategy proves most effective when the weight

A
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number of such crossings per unit time. Making use of the fact
that the steady-state probability density is an even functian of
let us define thattention costo beC := 26C /»(c! ), where
EC, (&) stands for the mean number of crossings of a leyer
unit time by a scalar stochastic proc€ss).

Since the expectation is computed with respect to the steady-
state probability distribution, we may treat the proceSs(t)
as stationary, assuming that it “has reached steady state.” There-
fore, we may use the celebrated Rice’s formula for the mean
number of crossings [13]

s f

N W b N N o W
P P S

Fig. 5. Optimal sensitivity.
=0 —u?/2r(0)
e

0.5

wherer(r) = E£(t)&(t + 7) is the autocorrelation function
associated with a stationary stochastic progéss In our case
(1) = limy oo E Ex(B)zT (t + 7)e.

Let us first study the following question: when is
ECA2(ct'z) finite? We will need the following easy statement.
Lemma 7: Assumethalim, o+ d?r(7)/dr? exists and is fi-

nite. Then£Cy jo(c' ) < oo if and only iflim. o+ dr(7)/dr
exists and equals zero. O
Proof. Sincer is an even function, it is easy to see that in

0.41

0.3

0.21

0'16,2 0.4 0.6 0.8 1 order for its second derivative to exist at the origin it is neces-
sary and sufficient for the first derivative to approach zere as
Fig. 6. Optimal cost. approaches zero from the right. O

Example 7: Consider the equation
attached to the control cost is small compared to the weight at-

tached to the variance cost:df = 1, choosingA = 0 gives de = —x dt + dw, z € R.
L = 0.18 as opposed to 0.5 for the uncontrolled system.
Since explicit formulas for the steady-state probability densive havelim, g+ (dr(7)/d7) = —Ex(#)x(t + 7)|r=0 =

ties are available, a number of other optimization problems carfz?(¢) < 0, so the condition of Lemma 7 is not satisfied.

be investigated similarly. For example, one couldfand take  Let us see whether a control term might help. For the equation
the proportionality constant that appears in the compatibility

condition (5) to be the varying parameter (this is meaningful if dx = —x dt + dw — bg(x) dt, b >0 (50)

we can adjust the norm of the vectir Then it is not hard to

show that both the variance cdstand the control cost/ de- e havelim, o+ (dr(r)/dr) = Ex(t) (—a(t) — bg(z(t))) <

crease agb|| becomes large. _ 0. Thus we see that it is in fact a nontrivial task to construct a
In all of the optimal control problems considered above, thntrol system with a finite attention cost. The following suf-
vector ¢ has been fixed. However, the following problem apficient condition is a direct consequence of the above develop-

pears interesting: given the system (6) and a fixed sensitVjty ments.
choose so as to minimize the variance cdst subject to the  proposition 8: If the compatibility condition (5) holds and

constraints|c|| = 1 andA = 1 (b will then be fixed by (5)). if we havelim, o+ (dr(r)/dr) = 0, then the attention cost
Using the formula (8) and an argument similar to the one givesociated with the system (6) is well defined and finite.

in the Proof of Proposition 5, one can show that the optimial  consider a general linear stochastic system

the eigenvector of) with the smallest eigenvalue.

de = Az dt + G dw

XI. ATTENTION COST T
y=cz

In this section we look at another criterion for evaluating the
performance of the system (6). Every time the solution trajeghere x € R"™ andw € R™. For > 0 we have
tory crosses one of the switching hyperplaces = +A/2,we  lim,_,__ EyMy(t + 1) = limy_o FEx(B)x(t + T)c =
need to communicate to the controller a request to change thg).4" 7. where( is the steady-state variance matrix satis-
control value. This reflects the amount of “attention” needed f@jing the equation (4). Therefore
implementing the given control law (a similar idea is exploited
in [7] in the context of deterministic systems with smooth con- dr(T)

trol functions). One might thus be interested in minimizing the Th_%h dr

=cT'QAY e = (¢, AQc). (51)
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Fig. 7. Attention cost.

Premultiplying (4) byc™ and postmultiplying by:, we obtain  for (54) would be finite too, although its value may be different.
This is indeed true as we now show. The linear theory applied

2(c, AQc) = —(GT e, GT ). (52) to (53) yields the steady-state probability density
Thus the condition of Lemma 7 is satisfied if and onlgif ¢ = [ 2
=N —(B+1 2086+1
0. This means that the attention cost will be finite if all the di- Pl y) P L (B+La”+ 2B+ Ly
rections in which the noise can propagate are parallel to the (B+1)?% ,
switching hyperplanes, i.e., if the noise “does not contribute - 3 Y
directly to the switching hyperplane crossings.” On the other r B+1
hand, ifG is a nonsingulan. x » matrix, the attention cost will =Nexp |—(f+1)(z—2)* - e 2}
always be infinite. -
The above discussion suggests modifying the equations\}i}(fa have
Example 7 in the following way: replacgx) by ¢(y), where v
the noise does not enter the equation godirectly. Namely, d
consider the following pair of equations: Tli_{n+ . Eyt)yt+ 1)
e e it = BE(a(t) — y(B))u(t)
dy = Bz di — Py dt (53) =pN / / (z -y
]R2
where/ is a positive constant (so that the nonrandom part of ) (B D) (r—)? — p+1, de d
the system is asymptotically stable). Since the veeter(;) is exp | ~(F+ (@ —v) Jé; e
orthogonal to the noise vectgr= (;), we haveC,(y) < oo _ AN
by virtue of (51), (52), and Lemma 7. =/ 2y
Now, let us replace (50) by the system R?
- exp {—([3 +1)2% — ﬁjyﬂ dz dy

de = —x dt + dw — bg(y) dt B

dy = B dt — By dt. (54) — BN / = (B g,
Itis interesting to observe that (54) is automatically compatible: . /Oo ue*(("’“)/"’)yz dy =0
g L cimpliesc L AQec by (52). Thereforeg || AQc since oo .

the state space of (54) B2. Thus the compatibility condition

(5) is satisfied whenever || b, which is indeed the case herewhere we have used the substitution= =z — y. As we have

Notice that we did not have to compute the magpixo establish seen in Section Il, in the presence of quantized output feedback

compatibility. q(y) we will have an additional term in the exponent, but that
We have shown that the mean number of crossings per ueitm will only depend ory and not ore. Thus the first integral

time associated with (53) is finite. Sinegc’x) is piecewise in the last formula will still be zero, and therefore the attention

constant, one might expect that the mean number of crossimgst for (54) will still be finite.
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It is not very difficult to compute this attention cost directly
using our knowledge of the steady-state dengfty, v) associ-
ated with (54). We have

& pb

Ev = " +V*P(ly] > A/2) - T

v =3Gsn T (fyl /2) 11

) B+ 1)A? b
P 43 311 [1]
wherep = p(0,0). The attention cost is given by 2]
s 3]
o VB 284D, ases) "
7 Ey?

Fig. 7 shows the graph of the attention c6sis a function ofA [5]

andb (with 3 taken to be 1). The corresponding axes are labeled
d andb, respectively.

We conclude the paper with an informal discussion of the
properties ofC revealed by this picture. Suppose that we fix 7]
A and look at the behavior af' asb varies. We see that
is small for small values of, because the solution trajectories [8]
stay outside the inner strige’ x| < A/2 for long periods
of time. Asb increases, the trajectories return to the inner stripeg;
faster, which results in increasing attention cost. However, as
we increase the gain further, the attention cost becomes smalléf!
again and keeps decreasing for bigger valuds bfterestingly, |11
a justification of this latter phenomenon is less obvious. Solving
the deterministic counterpart of (53)

(6]

(12]

T =—-x

. 13
i =P — By 13

(14]

we have
[15]
B, » _ 5
)= 4 g1 & TR0+ y(0), TS £L
te 'x(0) + ¢ 'y(0), if 8= 1. [17]
(55)

(18]
Each of the functions given by the first terms on the right—hanjlgl
side of both formulas in (55) has a global maximum for a certai
t > 0, the maximal value being proportional4¢0). Therefore,
a solution trajectory which enters the inner stripe far from thg20l
y-axis, especially in the | and Il quadrants, is likely to leave it
again at a later time. However, if we incredseolution trajec-
tories in those quadrants tend to enter the inner stripe at pointt]
closer to they-axis, so that they are less likely to leave again,
hence the decrease in the cost. The smaller the valddgfthe
bigger value ob is required to achieve the maximal value(®f
and the bigger this maximal value is. The reason for this is als%]
seen from the above analysis. On the other hand, if widind
increase)\, the attention cost becomes smaller, by virtue of the[24]
fact that the trajectories spend more time in the inner stripe.

One can employ numerical techniques similar to the onegs]
used above to treat stochastic optimal control problems that arise
when the cost functional is taken to be a linear combination 0?6]
the variance codt, the control cost/, and the attention cost.

[22]

1129

ACKNOWLEDGMENT

The authors would like to thank P. S. Krishnaprasad, D.
Ocone, and L. Socha for pointing out useful references and the
anonymous reviewers for many helpful comments.

REFERENCES

S. Albeverio, V. Bogachev, and M. Rdckner, “On uniqueness of invariant
measures for finite- and infinite-dimensional diffusion€8mm. Pure
Appl. Math, vol. 52, pp. 325-362, 1999.

R. N. Bhattacharya, “Criteria for recurrence and existence of invariant
measures for multidimensional diffusions&nn. Prob, vol. 6, pp.
541-553, 1978.

R. W. Brockett, “On the stability of nonlinear feedback systenfiEEE
Trans. Appl. Ind.vol. 83, pp. 443-449, 1964.

——, “Lie algebras and Lie groups in control theory,” iBeo-
metric Methods in System Thep. Q. Mayne and R. W. Brockett,
Eds. Dordrecht, The Netherlands: Reidel , 1973, pp. 43-82.

——, “Oscillatory descent for function minimization,” itCurrent

and Future Directions in Applied Mathematjc$1. Alber et al,

Eds. Boston, MA: Birkhduser, 1997, pp. 65-82.

——, “Notes on stochastic processes on manifolds,Systems and
Control in the Twenty-First Century. Byrnesetal, Eds. Boston, MA:
Birkhauser, 1997, pp. 75-100.

——, “Minimum attention control,” inProc. 36th Conf. Decision and
Control, San Diego, CA, 1997, pp. 2628—-2632.

R. W. Brockett and D. Liberzon, “On explicit steady-state solutions of
Fokker-Planck equations for a class of nonlinear feedback systems,” in
Proc. American Control ConfPhiladelphia, PA, 1998, pp. 264-268.
—, “Quantized feedback systems perturbed by white noisePtat.
37th Conf. Decision and Controlampa, FL, 1998, pp. 1327-1328.
—, “Quantized feedback stabilization of linear systems,” IEEE Trans.
Automat. Contr, to be published.

R. W. Brockettand J. C. Willems, “Stochastic control and the second law
of thermodynamics,” ifProc. 1978 IEEE Conf. Decision and Control
New York, 1978, pp. 1007-1011.

T. K. Caughey and F. Ma, “The steady-state response of a class of dy-
namical systems to stochastic excitatioRSME J. Appl. Mechvol. 49,

pp. 629-632, 1982.

H. Cramér and M. R. Leadbett&tationary and Related Stochastic Pro-
cesses New York: Wiley, 1967.

G. Da Prato and J. Zabczykrgodicity for Infinite Dimensional Sys-
tems Cambridge, U.K.: Cambridge Univ. Press, 1996.

D. F. Delchamps, “Stabilizing a linear system with quantized state feed-
back,”|EEE Trans. Automat. Contwol. 35, pp. 916-924, 1990.

A. T. Fuller, “Analysis of nonlinear stochastic systems by means of the
Fokker-Planck equationjht. J. Contr, vol. 9, pp. 603—655, 1969.

R. Z. Has'minskii, “Ergodic properties of recurrent diffusion processes
and stabilization of the solution to the Cauchy problem for parabolic
equations, Theory Prob. Appl.vol. 5, pp. 179-196, 1960.

——, Stochastic Stability of Differential EquationsAlphen aan den
Rijn, The Netherlands: Sijthoff & Noordhoff, 1980.

R. A. Holley, S. Kusuoka, and D. W. Stroock, “Asymptotics of the spec-
tral gap with applications to the theory of simulated annealidgrunct.
Anal, vol. 83, pp. 333-347, 1989.

A. S. Khadr and K. A. Loparo, “Variable structure stochastic sys-
tems, conservation laws, and the method of characteristictan.
Berkeley-Ames Conf. Nonlinear Problems in Control and Fluid Dy-
namics 1983, pp. 315-333.

D. Liberzon and R. W. Brockett, “Spectral analysis of Fokker-Planck and
related operators arising from linear stochastic differential equations,”
SIAM J. Contr, to be published.

D. Liberzon, “Asymptotic properties of nonlinear feedback control sys-
tems,” Ph.D. dissertation, Dept. Math., Brandeis Univ., Waltham, MA,
Feb. 1998.

A. D. Rueda, “A class of two dimensional vector fields which are
Fokker-Planck integrable Ann. Univ. Sci. Budapest Sect. Mattol.

36, pp. 133-137, 1993.

J. Seidler, “Ergodic behavior of stochastic parabolic equations,”
Czechoslovak Math. ,vol. 47, pp. 277-316, 1997.

L. Stettner, “Remarks on ergodic conditions for Markov processes on
Polish spacespull. Polish Acad. Sci. Mathvol. 42, pp. 103-114, 1994.

M. Zakai, “A Liapunov criterion for the existence of stationary proba-
bility distributions for systems perturbed by nois8JAM J. Contr. vol.

7, pp. 390-397, 1969.



1130 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 6, JUNE 2000

[27] W. Z. Zhu and Y. Q. Yang, “Exact stationary solutions of stochasticalliRoger W. Brockett (S'62-M'63—-SM73-F'74) received the B.S., M.S., and
excited and dissipated integrable Hamiltonian systehSME J. Appl. Ph.D. degrees from Case Western Reserve University, Cleveland, OH.
Mech, vol. 63, pp. 493-500, 1996. He joined the Department of Electrical Engineering at the Massachusetts In-
stitute of Technology, Cambridge, in 1963 as an Assistant Professor and Ford
Foundation Fellow, working in automatic control. In 1969, he was appointed the
Gordon McKay Professor of Applied Mathematics in the Division of Applied
Sciences at Harvard University, Cambridge, MA. His present position is the An
Wang Professor of Electrical Engineering and Computer Sciences at Harvard.
His research interests include experimental and theoretical aspects of robotics,
including aspects of manipulation, computer control, and sensor data fusion.
Daniel Liberzon (M'98) was born in Kishinev, former Soviet Union, on April In addition to being the Associate Director of the Brown-Harvard-MIT Center
22, 1973. He received the Ph.D. degree in mathematics from Brandeis Univfer-Intelligent Control Systems, he also collaborates with colleagues at the Uni-
sity, Waltham, MA, in 1998 (under the supervision of Prof. Roger W. Brockettyersity of Maryland through the Maryland-Harvard NSF Engineering Research
He is currently a postdoctoral associate in the Department of Electrical Ebenter on Systems Engineering.
gineering at Yale University, New Haven, CT. His research interests includeDr. Brockett has been involved in the professional activities of the IEEE,
nonlinear control theory, analysis and synthesis of hybrid systems, switchiBtAM, and AMS, having served on the advisory committees and editorial boards
control methods for systems with imprecise measurements and modeling far-several groups in these societies. In 1989 he received the American Auto-
certainties, and stochastic differential equations and control. matic Control Council's Richard E. Bellman Award, and in 1991, he received
Dr. Liberzon serves as an Associate Editor on the IEEE Control Systems $e IEEE Control Systems and Engineering Field Award. He is a member of the
ciety Conference Editorial Board and is a member of SIAM. National Academy of Engineering.



