Choreographing Dynamical Systems

A thesis presented
by
Hongyi Li
to

The Division of Engineering and Applied Sciences
in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the subject of

Engineering Sciences

Harvard University
Cambridge, Massachusetts

May 2004



Copyright (©) 2004 by Hongyi Li. All rights reserved.



Hongyi Li

Professor Roger W. Brockett

Choreographing dynamical systems

Abstract

In this thesis, we address problems relating to the control of motion of dynamical sys-
tems from a language point of view. We extend previous works on motion description
languages to incorporate systems with momentum. We provide a mathematical foundation
for designing control systems that are able to generate motions according choreographic
scripts. A useful class of language elements is constructed using phase space specifications
of the input space suitable for a second order single pendulum system. We build an ex-
perimental apparatus, the HRL single and double pendulum, to test our ideas. A wireless
communication module is used to connect the angular position sensors with the host com-
puter such that the pendulum rotates unconstrained. Taking the physical bounds of the
control signals into account, a swing-up control of the single pendulum is designed and
tested with the experimental apparatus. We compute the region of attraction for unstable,
linear control systems with bounded inputs. We formalize the low gain control as an opti-
mization problem and then provide a gradient algorithm searching for local minimal. We
presents the linearization problem as an optimization problem for which a linear system
and a nonlinear feedback control are selected simultaneously so as to minimize the distance
between the nonlinear system with nonlinear feedback and the linear system in a given
neighborhood of an equilibrium. Applying this linearization method to the HRL double

pendulum, we successfully stabilize it at its up-up position.

iii



To my parents, Shufang Liu and Sheng Li.

iv



Acknowledgments

First, I would like to express my sincere thanks to my thesis adviser, Professor Roger W.
Brockett. His passion for research, broad interests, rigorous approaches have guided me
through my five-year graduate study at the Harvard Robotics Laboratory. Without his
push I would not have finished this thesis. I would also like to thank my thesis committee:
Professors Aleksandar Kavcic and Navin Khaneja not only for their evaluation of this thesis,
but also the intellectual qualities they and their students brought to the Harvard Robotics
Laboratory.

I must also acknowledge the help and support of fellow students and friends. The fellow
and former members of the Harvard Robotics Lab have created an environment that was
friendly and inspiring. Discussions with colleagues in the office were very helpful in bringing
fresh ideas to this work. I would specially like to acknowledge the friendship and support
of Manuela Vasconcelos, friendship and collaboration of Magnus Egerstedt and members of
the HRL pendulum team: Sam Pfister, Stan Jurga, Drew Carlson, and Richard Hopkirk.
I would like to thank Benjamin Pierce and Jason Adaska for their friendship and proof
reading my thesis draft. There are of course many more names, too many to distinguish
individually. So I thank all of them for five great years: Dimitrios Hristu, Kristi Morgansen,
Mark Hoefer, Michael Brody, Aleksandr Rabiner, Michael McElroy, Jian Zou, Su Ying
Quek, Mohamed Ali Belabbas, Abdol-Reza Mansouri, and Mark Byrd. I would also thank
my friends in the division and in town: Ce Wang, Hanming Rao, Shaohua Yang, Wei Zeng,
Guangli Liu, Tong Liu, Yu Sheng, Chen Xin, and Haitong Yang. Special thanks to Ruxiang
Chuan and Shengde Lung for making me feel at home in Boston. Thanks Kathleen Lafrance
for all help from you.

Finally, I would like to thank my family and relatives, whose love and support have
accompanied me throughout my life. Support from my nephews and niece, cousins, aunt
and uncles is tremendous. My grandmother’s wisdom has benefited me a lot. Brothers and
sisters, glad to be with you all while growing up. My father, who is an example of hard
working and perseverance through intense adversity. My mother, who shows me caring and
patience. Mom and dad, thanks for feeding me up with cookies and love in hungry and
dark days, this thesis is dedicated to you.



Contents

1 Introduction

2 DMDL for choreography
2.1 Introduction. . . . . . . . . . . . e
2.2 Definition of DMDL . . . . .. ... . o e
2.3 Useful descriptions of language elements . . . . . . ... ... ... .....

3 Experimental apparatus — HRL single/double pendulum
3.1 Vision-based single pendulum . . . . ... ... ..o o 0oL o L
3.2 Electrostatic resolver based double pendulum . . . . . ... ... ... ...
3.3 Mathematical model for the double pendulum . . . . . . ... ... ... ..
3.4 Specialization to single pendulum case . . . . . . . .. .. ...

4 Swing-up control of the single pendulum
4.1 Lemon theorem for the region of attraction . ... ... ... ... ... ..
4.2 Swing-up control . . . . . ... Lo
4.3 Experimentalresults . . . . . . .. ... Lo Lo

5 Results on stabilization
5.1 Introduction. . . . . . . . . . . . L
5.2 A hierarchy of mechanical systems . . . ... ... ... ... ... .....
5.3 Feedback linear approximation . . . .. ... ... ... ... L.
54 Low gaincontrol . . . . . ... ... L
5.5 Application to the double pendulum . . . . . ... ... ... ... ... ..

6 Implementation of the DMDL on the double pendulum
6.1 Stabilization. . . . . . . .. L e
6.2 Generate circling orbits . . . . . ... L o Lo
6.3 Transition between equilibria and circling orbits . . . . . . . . ... ... ..

7 Conclusions

Bibliography

38
39
47
53

55
55
57
63
70
75

77
7
83
85

89

92

vi



List of Figures

21
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.1

4.2

4.3

4.4
4.5

A typical control system . . . . . . . . ...
Alphabetson atorus . . . . . . . . . ...
Example of the syntax of DMDL . . . . . ... ... ... ..........

Left: Dumbbell phase space. Right: A pulse from the dumbbell phase space.

Vector field . . . . . . . . oL
Left: Bean phase space. Right: A pulse from the bean phase space. . . . . .

The Harvard Robotics Lab single inverted pendulum.. . . . . . .. ... ..
A schematic overview of the experimental setup. . . . . ... ... ... ..
Diagram of the vision based single inverted pendulum. . . . . . .. ... ..
The circular disk used for encoding the position of the vertical link.. . . . .
A frame of the camera reading. . . . . . . . ... ... ... .. ...,
A typical sample plot of the vision sensor. . . . . . ... ... ... ... ..
HRL double inverted pendulum. . . . .. ... .. ... ... ........
Diagram of the electrostatic resolver based double inverted pendulum. . . .
Sketch of the level base . . . . . . . .. . ... o oL
Rotary electrostatic resolver and radio link. . . . . ... ... ... ... ..
Diagram of the position sensoring circuit . . . . . . . .. ... ... ...
A typical sample plot of the electrostatic resolvers. . . . . .. ... ... ..
Rotational double pendulum. . . . . . .. ... ..o oL
A typical sample plot of double pendulum at around down-down position. .

The thick, solid line is the set of stationary points achievable for constant
inputs of available magnitudes, X', while each ellipsoid, £(K,v), corresponds
to a particular choiceof v e V. . . . ... oo
Schematic intended to suggest the need for a transition between stable or
unstable equilibria and unsustainable transient needed to make a particular
transition. . . . . . . . L oL e e
A switching example is shown where v = sat(—b’ Kx). This naive approach
still results in a satisfactory behavior, and 0L from Figure 4.1 is intersected
by the trajectory. . . . . . . ...
The control sequence and the corresponding trajectories in Lemma 4.2.1.

Swing-Up and Stabilization. The top figure shows the vertical link angle,
while the horizontal link angle is depicted in the bottom figure. The mode
transition from Swing-Up to Stabilization occurs after 3.8 seconds. . . . . .

20
20
20
21
22
22
24
24
25
26
27
28
30
33

46

47

48
50

53

vii



4.6

5.1
5.2

6.1

6.2

6.3

6.4

6.5
6.6

6.7

6.8

6.9

6.10

An example when the vertical link is perturbed at its inverted position is

Ball, Beam, Cart . . . . . ... ... ..
The double pendulumon acart . . . . ... . ... ... ... ........

Top: Photograph of down-down stabilizing control. Bottom: Plot of experi-
mental data of down-down stabilizing control. . . . . . . ... ... ... ..
Top: Photograph of down-up stabilizing control. Bottom: Plot of experi-
mental data of down-up stabilizing control. . . . ... ... ... ... ...
Top: Photograph of up-down stabilizing control. Bottom: Plot of experi-
mental data of up-down stabilizing control. . . . . .. ... ... ... ...
Top: Photograph of up-up stabilizing control. Bottom: Plot of experimental
data of up-up stabilizing control. . . . . . ... ..o 0 oL
Plot of top link circling other links oscillating. . . . . . . ... ... ... ..
From left to right and top to bottom are a series of photographs of top link
circling other links oscillating. . . . . . . . .. ... ... L.
Plot of the transition from up-down state to top link circling other links
oscillating. . . . . . . .. L
From left to right and top to bottom are a series of photographs of the
transition from up-down state to top link circling other links oscillating (Part
D).
From left to right and top to bottom are a series of photographs of the
transition from up-down state to top link circling other links oscillating (Part

From left to right and top to bottom are a series of photographs of the
transition from up-down state to top link circling other links oscillating (Part
III). . o e

viii



Chapter 1

Introduction

The long range goal of the research initiated here is to develop a methodology for symbolic
control of dynamical systems that would be appropriate for both animal motion control
and robotics. This lofty statement hides many details and, in fact, seems to be highly
problem dependent. If we are to have a sound basis for generalization, it is necessary to
dig deeply into significant special cases involving nontrivial dynamical effects, limits on
the controls, sensor inaccuracies, etc., if we are to have a sound basis for generalization.
Although in this thesis we limit ourselves to a detailed description of a specific family of
mechanical systems, we will show how a hybrid control strategy provides a natural solution
to a class of bounded input control problems. We apply our results to control a pendulum
to an upright, inverted position by injecting energy into the system. Once at the inverted
position, a locally stabilizing controller is used for stabilizing the system around the inverted
position in the presence of control bounds.

This represents a radically new area of theoretical control, the possibilities of which
have only recently begun to emerge from the application of high-speed computer control to
dynamically unstable systems. The importance of such work can be gauged by examining
the large number of examples found in biology and mechanics. Human beings walk by shift-
ing from one unstable state to another. Forward swept wing airplanes, such as Grumman
X-29 and Sukhoi S-37, are dynamically unstable and would crash without computerized
flight control system. The lowest energy trajectories for lunar exploration and the more
general “fly by” trajectories for space exploration also have this flavor. Our goals here are
somewhat more ambitious. We investigate the design of a control system that makes it
possible to follow trajectories that visit, in sequence, oscillations, stable or unstable equi-

libria so as to accomplish a task. Our system facilitates the choreography of such systems.
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In perusing this research, our mode of operation involves theory, experiment, and software
architecture. This thesis describes both the type of theory and the type of experimentation
we have done. The development of the software architecture is not discussed here.

The inverted pendulum control has been widely used in control laboratories to demon-
strate the effectiveness of control theory and algorithms. The dynamics of the inverted
pendulums are complex enough to yield a rich source of nonlinear control problems, yet
simple enough to permit considerable mathematical analysis. In the literature of control
of inverted pendulums, Furuta’s group has a long list of experimental results, see e.g. Fu-
ruta et al. (1978, 1980); Yamakita et al. (1993, 1995); Astrom and Furuta (1996). Furuta
et al. (1978) successfully stabilize a double inverted pendulum at the upright position by
using computer control. The controller consists of state feedback and an observer based on
its linearized model. Furuta et al. (1980) stabilize a double inverted pendulum on a cart
where the cart is placed on an inclined rail. Furuta et al. (1984) stabilize a triple inverted
pendulum by introducing redundant controls. One motor is mounted on each of the two
upper joints respectively. Yamakita et al. (1993, 1995) swing up a double pendulum by
means of a combination of feedforward and feedback controls. The control strategy from
the down-down position to the up-up one is a feedforward input until the pendulum reaches
the upright position at which point the control is switched to a linear feedback control law
around the upright position. Astrom and Furuta (1996) and Astrém (1999) introduce an
energy based swing up strategy. The idea is to define a general energy function for the
vertical link of the pendulum, then pick the sign of the control so as to increase the general
energy of the pendulum. When the energy is in a certain range, the system evolution will
bring the vertical link to the up position.

There is a large literature on the control of pendulums, but we can only mention a
few examples here. The pendulum system is not exact feedback linearizable, see Brockett
(1978)’s condition for exact feedback linearization. Spong (1995) uses partial feedback
linearization and analysis of zero dynamics to swing up an acrobot. He chooses a feedback
and state transformation procedure to move all the nonlinear terms to one of the system
equations. Wei et al. (1995) stabilize a pendulum using a controller with arbitrarily small
horizontal travel. Chung and Hauser (1995) design a swing-up controller by regulating the
swing energy while providing internal stability. Angeli (2001) presents a continuous state
feedback law for almost global stabilization of an inverted pendulum on a cart. Zhao and
Spong (2001) give a hybrid control for global stabilization of the cart-pendulum system.

The problem of stabilizing a triple inverted pendulum in experiments has been studied
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by Furuta et al. (1984); Meier (1990). They simplify the problem by using two motors
to provide the control inputs. Eltohamy and Kuo (1997, 1998) stabilize a triple inverted
pendulum with single control input. They use a nonlinear optimal controller design to find
a linear feedback law.

Brockett’s Motion Description Language (MDL) provides a formal basis for robot pro-
gramming using behavior, and, at the same time, permits incorporation of kinematic mod-
els of robots given in the form of driftless differential equations, Brockett (1988a,b, 1990,
1994b). Behaviors for robots are formalized in term of a kinematic state machine with
real-time information from sensors. This formalization allows us to create a mathematical
basis for the study of such systems. At its highest level of abstraction, motion control
can be viewed as the generation of symbolic inputs to a control system based on sensory
information about its current state, desired state, and the state of the environment. These
symbolic inputs can be commands such as “move forward”, “turn left”, “stop”. Along with
sensor information, these inputs can then be used to generate more complex behaviors such
as “go to the refrigerator and get a cup of milk”.

Manikonda et al. (1998) extend Brockett’s MDL to MDLe (e for extension). The struc-
ture of the language MDLe allows descriptions of triggers (generated by sensors) in the
language. Feedback and feedforward control laws are selected and executed by the trigger-
ing events. These triggers can be viewed as interrupts in CPUs. MDLe is particularly well
suited to the demands nonholonomic path planning with limited range sensors. The atoms
in MDLe are of the form (u,&,T) where the trigger £ : Y — {0, 1} is a Boolean function.

Murray et al. (1992) define robot control primitives. It provides a graph theoretic for-
malism (tree structure) that codifies the description and control of hierarchically organized
robots in contact with their environments. Three primitives are “define”, “attach” and
“control”. Robots are dynamical systems that are recursively “defined” in terms of the
properties of their daughter robot nodes. The “attach” primitive reflects geometrical con-
straints among variables and yields another robot object which accomplishes coordinate
transformations. The “control” primitive seeks to direct a robot object to follow a spec-
ified desired position/force trajectory using some control algorithm. This approach has a
structure which is similar to object oriented programming languages, such as C++.

Neurobiological control systems make computations and exercise control over the motion
of animals using methods that are still largely unknown. The available methods for treating
nonlinear systems often fail for the type of pulse-like signals that play a dominant role

in neurobiological systems. Some aspects of pulse driven systems can be studied by a
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topological method, see Brockett (1992, 1994a, 1995). Pulse space is defined as a subset
of phase space. Systems driven by pulses respond discretely to pulse-like continuous input.
For example, consider the system & = — sin(z) 4+ u. By appropriate selection of the pulse
space, the state z will increase by 27 after each pulse input.

This thesis arose from the study of Motion Description Language (MDL) and pulse
driven dynamical systems as described by Brockett (1988a,b, 1990, 1992, 1994a,b, 1995),
as well as the study of pendulum control by Furuta et al. (1978, 1980); Yamakita et al.
(1993, 1995); Astrom and Furuta (1996); Astrom (1999). Language based control deals
with systems which are mostly quasi-static. This thesis is an attempt to go beyond the
quasi-static domain. We adapt MDL to dynamical systems to facilitate choreography ap-
plications. We refer to this adaption as Dynamical Motion Description Language (DMDL).
DMDL is a context sensitive language while MDL is context free. A single/double pendu-
lum is built to demonstrate the theory we developed. A radio link connection is used to
transfer sensor data to the host computer. We developed a new type of linearization to
deal with local stabilization in a lightweight structure having limited control torque.

The following contributions are contained in this thesis. In Chapter 2 a dynamical
motion description language (DMDL) is devised. The study of the control of unstable
mechanical systems is quite challenging, involving difficult problems caused by limited
communication rates, quantization errors, and parasitic dynamics. Trajectories following
problems addressed here in a novel way, are particularly difficult and had heretofore not
been investigated in a language context. We contrast kinematics with dynamics, MDL with
DMDL, and Aristotle mv = F with Newton m© = F. We define the language atoms of
DMDL based on the partition of trajectory space (function space) generated by the state
space. Useful descriptions of language elements are defined in the phase space instead of
the time domain.

Chapter 3 is about the experimental apparatus and its mathematical model. We built
the pendulum system to test our ideas. The integration of electrical and mechanical devices
itself is a very productive area of research. At Harvard Robotics Lab (HRL), we developed
a vision-based circular single pendulum driven by a servomotor. A digital video camera
is used as position sensor for the vertical link. We also built an electrostatic resolver-
based circular double pendulum driven by a servomotor. In order to measure the angular
positions of the two vertical links, a rotary electrostatic resolver is mounted on each of
the joints of the vertical links. The resolvers measure the absolute angular positions and

output analog signals. The analog signals are then converted into binary digital data. The
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digital data is sent to the host computer through a RS232 radio link. Interesting problems
arise concerning ways to increase data rate without increasing delay time. A small packet
radio link protocol is used for this purpose. Power consumption, size and weight are also
reduced.

In Chapter 4 we discover that good local stabilization is very important in the case
where the state space contains unstable equilibria. We show that a hybrid or multi-modal
control strategy provides a natural framework for the control of unstable systems. Here
we study a single pendulum that we bring to an upright, inverted position by a carefully
designed control sequence. The control sequence repeats a four-pulse pattern. It is shown
that the energy of the vertical link is increased at the end of each four-pulse pattern while
the horizontal link remains at the original position. Once at the inverted position, a locally
stabilizing controller that consists of both a closed-loop and an open-loop component is
used for stabilizing the system around the inverted position. Experimental results show
that our method is practically as well as theoretically sound.

In Chapter 5 a new theory is derived to make stabilization work in a lightweight structure
having limited control torque. Stabilization is one of the most important problems in the
control of dynamical systems. In most cases, a global stabilization control law is hard to
find or does not exist at all (e.g. inverted pendulum). However, in some cases, a local
stabilization control law can be constructed. In this case we want the region of attraction
to be as large as possible. A new type of linearization method, which we call feedback
linear approximation, is derived in studying local stabilization. Here feedback is used
to reduce nonlinearities of the original system. The average difference in a given region
between the original system and its linear counterpart is minimized. Then a low gain
controller design is used to enlarge the domain of attraction. The family of candidate
controllers is parameterized. The desired controller is found through a gradient algorithm
in the parameter set of candidate controllers. The results are successfully demonstrated in
stabilizing the HRL double inverted pendulum.

Chapter 6 applies the theory developed in Chapter 2 to the experimental apparatus
described in Chapter 3. It includes stabilization of the HRL double pendulum at its four
equilibrium points, generation of periodic orbits, and a transfer from an equilibrium point

to a periodic orbit.



Chapter 2

DMDL for choreography

In this Chapter, we describe the mathematical foundation for designing a control system
that processes choreographic scripts. The interaction of discrete and continuous objects is
one of the fundamental difficulties encountered in application digital computing to under-
standing or control of physical systems, Brockett (1992). To illustrate, consider controlling
a vehicle on Mars from a base station on Earth. It is not a good idea to send a detailed
analog command specifying the motor torque or velocity at each time spot, due to the time
delay and the limited channel capacity. It is better to send high-level discrete commands

such as *

‘move”, “turn”, “stop”, or composite commands such as “avoid the rock”. Along
this line Brockett defined a language for Kinematic machines, called Motion Description
Language (MDL), Brockett (1988a, 1990). Later, Krishnaprasad’s group at University of
Maryland extended MDL to incorporate interrupts from sensors, which they refered to as
MDLe, Manikonda et al. (1998). Sastry’s group at UC Berkeley took a graph theoretic ap-
proach to the motion control of robots, which they called control primitives. Its structure
is similar to object oriented programming languages, such as C++, Murray et al. (1992).
It is of equal importance to investigate the inverse problem. Namely, how does one use
analog inputs to generate a discrete motion (an element of a cluster of trajectories sharing
a number of common properties)? For example, when we speak the word “hello”, we pro-
duce an acoustic trajectory with time index. If it is close in some metric to the ‘normal’
acoustic trajectory of “hello” we can recognize the word correctly. Brockett’s pulse driven
dynamical systems captures this property. A pulse space is defined as a subset of the phase
space. The corresponding dynamical system changes discretely under pulse inputs. An

analog counter is defined as a pulse driven dynamical system, Brockett (1992).
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2.1 Introduction
Kinematic machines are models of the form
i = G(z)u; y=h(z)

where u, z, and y are functions of time. The input w is subject to some regularity condition,
say u belongs to the set of m-dimensional bounded piecewise continuous functions U. z
has its range in n-dimensional state coordinate space X. y has its range in p-dimensional
output space Y. G is a n Xm matrix that depends only on z. h: X — Y is an actuator-to-
output coordinate map. The symbolic inputs are called atoms. The atoms of the MDL are
triples of the form (u,k,T'). If at time ¢y the machine receives an input string (uq, k1,71),

-+, (ug, ki, T;) , the state x evolves according to

= G(z)(u1 + ki1(y)); v=h(z); to<t<ty+T

T=G(z)(u; + ki(y)); y=h(z); to+Th+---Tio1 <t<to+T1+--+T;

where £ : Y — X is a feedback function belonging to a function space K, Brockett
(1988a).

The theorem of the completeness of MDL is called expressiveness of Affine Modal Seg-
ments in Brockett (1988b). In order to be able to implement a system, which interprets
a family of atoms, it is necessary to index the possible atoms in a finite way. A natural

choice is to take an affine linear form. By an affine atom we understand that (u,k,T’) is of

the form
U1 U1 kii ki -0 ki y1 — dp
v Ug ko1 koo -+ kop y2 — do
= A )
Um Um kmi kmo - kmp Yp — dp

with the u;, k;j, d;, and T all being real numbers.

Theorem 2.1.1 (Brockett). If G is continuous functions of x whose components satisfy
a Lipschitz continuity condition, then affine atoms can be used to generate an arbitrarily
good approzimation to any curve, which the mechanism is capable of generating.

Proof. Let z(t) be any solution of

& = G(2)5(2).
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The standard Euler approximation to this solution, obtained by solving the difference equa-
tion

z(nh + h) = z(nh) + hG(z(nh))v(nh),

converges to the true solution Z(t), as step size h goes to zero. Let u; = 9(ih), k; = 0,
and T; = h we get a system which approximates the original system just like the Euler
approximation. As h goes to zero, the solution of the system driven by the (u,k,T)’s

approaches the original solution Z(t). n

Pulse space and pulse driven systems are studied in Brockett (1992). It appears that
in many cases neurobiological systems communicate by means of pulses rather than bilevel
signals. One can attempt to define a pulse by imposing specifications directly on the
functions of time. However, because of the character of pulse trains and the processes that
generate them, it seems to be more efficient to characterize pulses in term of differential
inclusions. This means, we put constraints on u and % and possible higher order derivatives.
In this paper an example of a double annulus model of pulse space is constructed. The
dynamical system

& = —sin(2rz) +u; z(0) =0

can count the number of pulses defined by the above pulse space.

2.2 Definition of DMDL

The MDL deals with kinematic systems. The differential equations for a kinematic system
have no drift term (i.e. no inertia). However, most physical systems have inertia. They are
described by differential equations with drift terms, called dynamical systems. A dynamical
system can be approximated by a kinematic system only when its moment of inertia is
small and its velocity is low. The language, which deals with dynamical systems, is called
Dynamical Motion Description Language (DMDL).
Let’s define a control system in the following way. Let X be a n-dimensional differen-
tiable manifold. Let
&= f(z,u), ze€X (2.1)

be a control system on X. By saying a control system can be choreographed, we mean
that the system can accept a language as input, and outputs a trajectory choreographed as
dictated by the language. In its most narrow sense, the language is a collection of strings

of atoms. Each atom describes a cluster of trajectory segments.
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Computer| «—— | sensors | (——
Language —> D ~——> Choreography

—> | Motors | />

Figure 2.1: A typical control system

A typical diagram of such control system is shown as Figure 2.1. In order to interpret
a language, we need to define equivalence classes of trajectories using a certain equivalence
relation. These equivalence classes will be our atoms. One can define such equivalence

relation based on homotopy.

Definition 2.2.1 . A feasible trajectory is a trajectory, which can be generated using a
feasible control function. An equivalence class of trajectories is a collection of feasible
trajectories, which can be deformed from one to another continuously. An atom is a symbol,
which defines an equivalence class of trajectories.

Given a control system with k isolated equilibrium points p1,p2, - - -, px. Possible atoms
include:
e Stay at equilibrium p; for time ¢;,
e Moving around submanifold p; of type /;,
e Change from p; to p; of type I;,

e circling around p;, or a cluster of equilibrium points p;; — p;, — -+ - pi, — Di; -

We can also consider discretization of a function space instead of the state space. The
discretization should be fine enough to capture any interesting topology on the function

space. First, let’s define the trajectory space as
S ={z([0,T])|z = f(z,u) for some z(0) = z¢ and some u(t) € Q for ¢t € [0,T]}.

Thus an element z([0,7]) € S can be identified by pair (zo,u([0,T])) with u(t) € Q for
t € [0,7]. It maybe happen that two different u([0,7])’s result in same trajectory z([0,7])
Thus S is a subset of X x Q[0,7]. In general, S is a function space of infinite dimension.
The motion control problem is then to find an appropriate u([0,7]) € © and/or initial state
zo € X to generate the desired trajectory z([0,¢]) € S. In choreography, we do not need to
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Figure 2.2: Alphabets on a torus

generate a trajectory z([0,7]) precisely. We want to reduce the problem to a problem in a

finite dimensional space or finite state space. Thus we need to define alphabets on set S.

Definition 2.2.2 . An atom [ is a subset of trajectory space S. An Alphabet A =
{l|l C 8} is a collection of atoms which partitions S. We can also say, alphabet A is a

quotient space of trajectory space S/ ~ where ‘~’ is the equivalence relation defined by the

atoms l’s. A language L is subset of A* containing empty set ®, where A* is the free
monoid over A. We say alphabet A’ is coarser than A (or A is finer than A') if there is
an equivalence relation ~ such that A" = A/ ~.

Thus we can have a hierarchy structure of alphabets based on coarseness (<),
A <Ay <--- < S.
An example. Consider a first order system on a torus 72 = §' x S!
{ b1 =u
92 = uz,
with (61,62) € T?. We can define atoms

1 = make a big circle in time T = {(61,62)([0,T))] fOT do, = 2, fOT dfy = 0},
lo = make a small circle in time T = {(61,602)([0,T])] fOT do; =0, fOT dfy = 27},

They are illustrated in Figure 2.2. More generally, we can define an atom

T T
(o, B,T) = {(61,62)([0.T)) | /0 do; = a, /0 a8, = B}.
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Under the atom [(«, 3,T"), the initial and final states are related by

(61,02)(T) = (61,602)(0) + (a, B).

With a sequence of I(a, 8,T)’s, we can describe almost all the trajectories. Thus we can
define an alphabet
A:{l(a,ﬁ,T)‘O[,ﬁER; TER-I—}

and a language & = A*. Such § is a finite dimensional language in the sense that A is
homeomorphic to R®. We can also define a coarse alphabet and languages on the coarse

alphabet. For example, define atom

kAT kAT
16, 3, k) = {(01, 62) ([0, kAT])| /0 i, — iAo, /0 d8, = jAB).

It captures the properties of state quantization and time discretization.

Consider a simple 2nd order system
0 =u. (2.2)

We want to command (2.2) to turn a full circle. Assuming (0) = 0, we can integrate (2.2)

to get the constraint on u to be z(7T") — z(0) = fOT fg u(o)dodt = 2n. Then
o(T) = 2(0) = Jy Jyulo)dodt = [ [ u(o)dtdo

= [T u(o)(T - 0)do = [ u(o)g(o)do

where g(0) = (T — o). By putting a metric g(¢) on the input space U, making a full circle

(2.3)

in @ space can be down by selecting u such that fOT u(t)g(t)dt = 2r. O(T) is still arbitrary.
If we want §(T) = 0, then we have another integral constraint, fOT u(t)dt = 0. So we need

to find candidate solutions from these two constraints.
[T u(t)g(t)dt = 2x
(2.4)
[T ut)dt =0

Equation (2.4) has at least one solution when g is not a constant. One such u could
be a function that has positive value around t,,,, = argmax g(t), negative value around

tmin = argmin g(t), and zero elsewhere. For example,

(g (tmaz ) —ﬂg (tmm ) ) At’

B (g(tmaa:) —Wg(tmm ))At ?

0, otherwise.

for t € [tmaz — At, tmaz + Al

for t € [tmin — At tyin + At],
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Y

Y

(u,0,T) (Up,k,T)

Figure 2.3: Example of the syntax of DMDL

MDL applied to a kinematic machine is a context free language, i.e., any arbitrary
string of atoms is in the language. But DMDL is a context sensitive language. We cannot
cascade atoms arbitrarily to form a valid string. That is because we need to take the
state of the dynamical system into account. One type of syntaz to form a valid string
is to cascade atoms, which share a common stationary point. For example, (u,0,7) —
(up, k,T) — (u,0,T) — -+, where (u,0,T) changes the dynamical system from one
equilibrium point/periodic orbit to another equilibrium point/periodic orbit and (uy, k,T)
stabilizes the system at one . It changes from one equilibrium point/periodic orbit to
another one equilibrium point/periodic orbit (u, = 0 for equilibrium points), shown in

Figure 2.3.

2.3 Useful descriptions of language elements
Given a single pendulum, 2nd order system,
Z+ & +sinz = u, (2.5)

we want to generate motion by selecting the torque u of the driving motor. The pendulum
has two type of isolated equilibria, (z, ) = (2kw,0) and (z,z) = ((2k + 1)7,0), k € Z. The
reason to put a damping term in (2.5) is that we want attractive equilibria at (2k7,0) for
k € Z. One type of motion we are interested in is to turn a full circle, i.e., change from
x = 2km to (2k+2)7. We are interested in the description of (u, %) to generate such motion.
Suppose the initial state of the system (2.5) is in a neighborhood of (z,%) = (2k~,0,), we
can use pulse u to reset the initial velocity . With the new % in a certain range, system will
turn a full circle and approach ((2k + 2)m, ) In order to rest around the new equilibrium
(2k + 2)7,0), we need to send a negative pulse to bring & close to 0. The state z will then
rest at the new equilibrium because of its damping term. Figure 2.4 is the sketch of such

a u in phase space. It looks like a dumbbell. The following lemma will describe properties
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u u

~
\J

G

Figure 2.4: Left: Dumbbell phase space. Right: A pulse from the dumbbell phase space.

of pulse generated from the dumbbell phase plot. Let

S = (—ag — aze, a1) x (—pig, Por)

. 0, foru<oOor (u,a) €S
dl(U,U) = .
1, otherwise,
. 0, foru> —ageor (u,u) €S
d2(ua u) =
1, otherwise.
Definition 2.3.1 We say that u : [0,00) — R is a dumbbell-pulse train if
i. w?a2(1 —¢e)? <4? + w?(u— a1)?, and w?ad(1 —¢)? < 4?2 + w?(u — s — aze)?,
and (u,%) ¢ [~az — aze, a1] x [~Pi(e — €%), Ba(e — €7)]
ii. 42 + w?(u — a1)? <w?a?, or 4% + w?(u — as — a3e)? < w?a?,

or (u,u) € (—az — ase, a1) X (—Pig, fog)
iii. |+ w?u — a1w?|dy (u, 1) + |i + w?u + (a2 + aze)w?|do(u, ) < €.

Lemma 2.3.1 (Dumbbell) If u(-) is a dumbbell-pulse train, then:

i. The period between successive pulses, Ty, approaches %T + % + % as € goes to zero.

il. If dg(u(t1)) = di(u(te)) = 0 then the integral
t2
Tt 1) = /t w(t)dy (u(t) ) dt

approaches (—1)’“_12”#, k = 1,2, times the number of positive and negative pulses

in [t1,t2] respectively as € goes to zero.
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iii. If u(t) begins and ends around 0, the time integral

1 /. 1 [i(t)u(t) — a>(t)
2 / 0 =5 | “w + @)

is the number of positive (or negative) pulses.

We omit the proof, because it is almost identical to the proof of Lemma 3 in Brockett
(1994a). In the region of di(u,%) = 1, u approaches one period of positive pulse a;(1 —
cos(wt)) as € goes to zero. In the region of do(u,%) = 1, u approaches negative pulse
ag(cos(wt) — 1). The two strips in between give the separation time between positive and
negative pulses. The 2nd order constraint for the pulse train prevents u from making tiny
circles when || is small. We will find use of this pulses generator in the following theorem

and determine those parameters.
Theorem 2.3.1 Given a 2nd order system
Z+z+sinz=u, z(0)=0, £(0)=0, (2.6)

there exist parameters (w,a, 8,€) such that any dumbbell-pulse train u will increase z by
2w at the end of each period Ty. More precisely, if u(0) = u(t1) = 0 and u(0) = u(t1) > 0,
then

bogt)u(t) — u?
(@, #)(t1) = (% /0 Sg ( t()t)+ y (t()t) dt, 0) + O(e).

Proof. We break this problem into four steps. First, we need to reset the initial velocity
Z to a large enough value using a big positive pulse in the region of d;(u,%) = 1. Second,
We let the system flow by itself, i.e., u is zero or very small which corresponds to the thin
strip below u-axis. Third, when z(t) is close to 27 we need to reset & to around zero which
is done by the small negative pulse in the region of do(u,u) = 1. Last, we let the system
flow by itself again corresponding the thick strip above u-axis. See Fig2.5 for the vector
field of (2.6) with v = 0. The damping term will bring the state to the new equilibrium.
The next cycle then starts.

Now we will compute parameters (w,a,f,e) so that the system (2.6) will evolve as
expected. Since we don’t have the analytic solution to (2.6), we will use an approximation.

When £ is large, we can approximate (2.6) with u = 0 by
Z+z=0 (2.7)

We can integrate it to get £ + x = const. In order to reach point (z, %) = (27,0), we have

%+ z = 27. Thus we need £(0) = 2m. We need the large positive pulse u to reset £(0). We
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can pick a large w so that the duration of the pulse is very short. Then we can approximate
(2.6) by

z=u. (2.8)
Let t; = %T From lemma 2.3.1.ii we then have
. . t 2Ty
2 = %(t1) — £(0) = u(t)dt = + h.o.t.
0 w

Thus @; = w. Now we need to estimate the time ¢, to reach z(t2) = 27 to get 1. We can

use (2.7) for z € [0, 3271] and the linearization of (2.6) for z € [3271, %71], ie.,
it+i+tz—2r=0 (2.9)

With initial (z(¢1),2(¢1)) = (0,2n), the solution to (2.7) takes the form of z(t) = 2x(1 —
e~ U=ty At z(tg) = 327_f, we get to1 = t1 + In(4) and @(tz1) = 21 — z(t21) = §. With
initial (z(t21), Z(t21)), the solution to (2.9) takes the form of

_tmta V3 T V3
z(t)—2r=e¢ 2 [—5 cos(5- (¢ — 1)) + Wi sin( - (t — t21))]-
From z(t2) = 27, we get tan(@(tg —t91)) = +/3. Thus
2m 2r 2r
ty =ty + — = T 4 In(4) + .
N R AN

Then we need 1 = tQafP’tl = a3/(In(4) + 32—7T3) At to, we have z(ty) = -72[6_3L\/§. We
need to use the small negative pulse u to bring Z(¢2) to zero. Combine equation (2.8) and
lemma 2.3.1.ii, we have 0 — z(t2) = —27&)&. Thus ap = ‘—Zre_SL\/ﬁ. Then we can select a
small enough B2 so that = will rest at the new equilibrium. Thus, one set of appropriate
parameters for the dumbbell-pulse train is

(w, a1, a9, a3, 81, 02,¢) = (w,w, %e_%\/g,ag,ag/(ln(ll) + 2—7T3),ﬁ2,6)

3V3

where w is large and as, B2, € are small. n

The dumbbell pulse space has a thin belt below, as shown in Figure 2.4 left. This means

dumbbell-pulses are not robust, i.e., they are sensitive to perturbations. To improve on this
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Figure 2.6: Left: Bean phase space. Right: A pulse from the bean phase space.
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we construct a bean pulse space that overcomes this shortcoming. Let

) 0, foru<Ooru<O0or (uu)e€S
bl (ua u) =
1, otherwise,
) 0, foru>0oru<0or(u,a)€S
b2(ua u) =
1, otherwise.
) 0, foru>0orwu>0or(uu) €S
b3(uau) =

1, otherwise.
Definition 2.3.2 We say that u : [0,00) — R is a bean-pulse train if

i wia? <4? +wi(u—a1)? and wiad < 4? + W (u+ s + 2a3¢)? for 4 >0,
wi(on + g+ aze)? < 4%+ wi(u — a1 + as + aze)? or 42 + wi(u+ asze)? < wiaie? for

u <0

ii. 42 + wi(u —a1)? <wla?(1+¢€)? or 4?2 + w?(u+ ag + 203¢)? < w?a3 (1 + ¢)?
or 42 + wi(u — a1 + g + aze)? < wi(ar + ao + (31 + 2o + as)e)?,

or U < fe for u € (—ag — ase, aq)

iii. |1+ w?u — wlaq|by (v, 0) + |ii + w?u + w? (s + 2a3¢) |be (u, 1) + i + wiu — w3 (a; — ag —

aze)|bs(u, ) < e.
Where a1, ag, a3, 8,wi,ws, € > 0, 2a3 — a1 —ag > 0, wy > w.

Lemma 2.3.2 (Bean) If u(-) is a bean-pulse train, then:

i. The minimal time Ty, for a complete pulse approaches 21—7{ + wlz + %‘3 as € goes to zero.

i, If by (u(t1),0(t1)) = br(u(te), u(t2)) = 0 then the integral

t2
Le(ty, ts) = / w(t) g (u(t), (1)) dt

t1

k—1TCk

approaches (—1) T

k = 1,2, times the number of positive and negative pulses

in [t1,t2] respectively as € goes to zero.

iii. If u(t) begins and ends around 0, the time integral

% /9-(t)dt: % /a(t)(u(t)—al)—#(t)dt

(u — a1)?(t) +a*(1)

is the number of positive (or negative) pulses.
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We omit the proof for the same reason as in Lemma 2.3.1.
Theorem 2.3.2 Given a 2nd order system
Z+z+sinz=u, z(0)=0, #(0)=0, (2.10)

there exist parameters (w, o, B,¢€) such that any bean-pulse train u will increase x by 27 at

the end of each period Ty,. More precisely, if u(0) = u(t1) = 0 and 4(0) = 4(t1) > 0, then

8 = o [ GO0 0)+ 0

The proof is similar to that of Theorem 2.3.1 and is left to reader.




Chapter 3

Experimental apparatus — HRL
single /double pendulum

In this chapter, we describe the experimental apparatus used in this thesis. There is
a long-standing interest in the control of inverted pendulums, see, e.g., Spong (1995);
Astrom and Furuta (1996); Astrém (1999). The dynamics of the inverted pendulums are
complex enough to yield a rich source of nonlinear control problems, yet simple enough
to permit a considerable mathematical analysis. In the Harvard Robotics Laboratory, we
have built a vision based rotational single pendulum. We then implemented a hybrid swing-
up control on the single pendulum, see chapter 4. Later on, we upgraded it to a double
inverted pendulum. The vision sensor was replaced by a pair of electrostatic resolvers, which
communicate with the computer through a packet based radio link. In chapter 5, feedback
linear approximation is used to stabilize the double pendulum at its up-up position. In

chapter 6, we describe the implementation of DMDL on the double pendulum.

3.1 Vision-based single pendulum

The experimental apparatus that we use for the experiments consists of a horizontal link,
driven by a servo motor, and a vertical link that moves freely in the plane perpendicular to
the horizontal link, as shown in Figure 3.1 ~ 3.3. The motor system used is an integrated
motion control system with the motion trajectory controller, motor driver electronics, po-
sition encoder and motor all contained on one unit. It communicates with the computer
using RS-485 at a sample rate 8.3KHz. A 10 : 1 ratio gearbox is mounted on top of the

motor to increase the torque output. The natural frequency of the free-swinging vertical

19
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Figure 3.1: The Harvard Robotics Lab single inverted pendulum.

P L1 Gray code
- Camera l1 plate

Figure 3.2: A schematic overview of the experimental setup.

Computer | .—| Video | —| Digita —__|Gray Code| | Single
P = Grabber <= Video Camera — Plate {—|penduium
> | RS485 |——)> | Motor |———) | Gearbox | ———>

Figure 3.3: Diagram of the vision based single inverted pendulum.
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Figure 3.4: The circular disk used for encoding the position of the vertical link.

link is 0.88Hz, and the horizontal link can be controlled at a sample frequency of 60Hz.
This is due to the sample rate, 60 frames/sec, of the video camera which is used as a po-
sition sensor for the vertical link. The system thus provides us with enough bandwidth for
controlling the pendulum.
The Gray code plate

In order to measure the position of the vertical link, a video camera is mounted at the
base of the horizontal link, where it grabs images of a circular plate fixed on the vertical
link. The camera captures a frame that is 60 x 80 pixels at a rate of 60 frames/sec. Using
black and white blocks, this plate encodes the position of the vertical link which allows
readings at 0.28deg angular resolution, as shown in Figure 3.4. There are 8 rings of black
and white blocks on the plate. Figure 3.5 shows a typical frame of the camera reading.
The image in the top left corner is the grabbed image, which is thresholded into a binary
image. The 8 cross points of the thin lines on the image (one horizontal line per ring) form
8bits of angle information. The angle information is encoded using “Gray code”. In the
binary form, the Gray code changes only one bit for adjacent numbers, e.g., the 4bit Gray
code for 0,1,2,3,4,5,6,7,8,--- is 0000,0001,0011,0010,0110,0100,0101,0111, ---. Thus it
is robust to noise. The 8bit Gray code gives us 360/2% = 1.4deg resolution. Each block is
of 5 pixel width. We can count the pixel distance from the cross points of the thin lines to
the boundary of the block. Thus the resolution is refined to 1.4/5 = 0.28deg, see Figure

3.6 for a typical sample plot. In the plot, the jumps between neighboring time instances is



§3.1 VISION-BASED SINGLE PENDULUM

angle(deg)

Figure 3.5: A frame of the camera reading.

pendulum position

20 21 22 23 24 25
time(sec)

Figure 3.6: A typical sample plot of the vision sensor.
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less than 0.3deg.
Control loop

The camera grabs a frame of image of the Gray code plate. Then that frame is sent to
the computer through the frame grabber board. The software consists of three modules: the
vision module, the control module, and the motor module. The vision module decodes the
image to get the current angular position and sends it to the control module. The control
module decides the next motor velocity and acceleration, then sends them to the motor
module. The motor module packages up the motor control commands and sends them
to the motor through RS-485 board. That closes the loop, as shown in Figure 3.2. The
motor does not send back its position information. Because it lowers the overall sample rate
significantly, from 60Hz to 30Hz. Instead we built a second order motor position estimator
inside the control module.
Computing environment

The computer used in this project is a 200MHz dual Pentium processor system with
Microsoft Windows NT as its operating system. The software that runs on the computer

is written in Microsoft Visual C++ 5.0.

3.2 Electrostatic resolver based double pendulum

The platform that we use for the experiments consists of a horizontal link, driven by a
servo motor, and two vertical links that move freely in the plane perpendicular to the
horizontal link, as shown in Figure 3.7 and 3.8. In order to measure the position of the
vertical links, a rotary electrostatic resolver is mounted on each of the joints of the vertical
links. The encoders measure the absolute angular positions (instead of incremental) and
outputs analog signals. Then each analog signal is converted into a 12bits binary digital
data. The digital data is sent to the host computer through a RS232 radio link, as shown
in Figure 3.10. The radio link can send 50 readings of both the encoders per second in real
time which limits the sample frequency of the whole system to 50Hz. The sample rate of
the motor is 8.3KHz. Each encoder has accuracy of .06deg. The base of the pendulum is
leveled with an error of .05deg.
Level the base

The angular position readings of the two vertical links are relative to the horizontal link
(the motor link). In order to get accurate readings relative to the ground frame, we need

either a leveled horizontal link or a known tilting angle of the horizontal link. We pick the
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Figure 3.7: HRL double inverted pendulum.

— ——| Radio | /— —— | Electrostatic| ~——| Double
Computer <7 RS232 <7 Link <7 ADC <7 Resolvers <7 Pendulum

—>|RM85| ———>| Motor | ————>| Gearbox | ——»

Figure 3.8: Diagram of the electrostatic resolver based double inverted pendulum.

former in these experiments. An adjustable unit is inserted between the motor and the
heavy concrete base, as shown in Figure 3.9. We can adjust the level by turning the screws
at each of the four corners between two square aluminum plates. The levelness of the base
is measured by reading the encoder attached to the first vertical link s when it points
downward (multiple readings to cancel the reading errors), as shown in Table 3.1. Where
0, is the motor position and 5 is the position of the first vertical link at rest. The maximal
error of the levelness of the base is 0.05deg which is good enough for our experiments. Note
that the accuracy of the electrostatic resolver is 0.06deg.

Electrostatic resolver and radio module

In order to measure the positions of the two vertical links we need a pair of angular
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Figure 3.9: Sketch of the level base

0: (deg) 0 90 180 270
0 (deg) | 180.00 180.03 180.05 180.04

Table 3.1: Test data for levelness of the base

position encoders. At the same time we do not want loose wires hanging from the vertical
links, because that restricts the range of reachable positions. So we use a radio transceiver
to send the data to the host computer wirelessly. The design criteria for the encoders and
the radio are: small in size, light in weight, ‘high’ data rate, real time (very small delay),
low power consumption. The encoders should have high resolution. The radio should be
transparent in the network. The encoder and radio module is shown in Figure 3.10 with its
diagram in Figure 3.11. It consists of two electrostatic resolvers, a power amplifier circuit,
a 12bits analog to digital converter (ADC), a RS232 radio link, and a power circuit. The
electrostatic resolver we used is comprised of an electric field generator, a field receiver, and
a dielectric rotor that interacts with the received field. The current collected by the field
receiver is processed to provide DC output signals proportional to the sine and cosine of
the rotation angle. It provides 15bit absolute reading with 12bit ADC. It consumes 10mA
current at 5V. The ADC outputs 12bit data at 19.2kpbs with RS232 interface. It consumes
approximately 50mA at 9V. The output range of the encoder is 0 ~ 1V, while the input
range of the ADC is 0 ~ 5V. So we built a x5 voltage amplifier in between. The radio
works at 19.2kbps with RS232 interface. It has a roughly 10ms time delay. It consumes
60mA at 9V. All together, a 9V and 150mAh battery lasts for 1 hour. It is of a palm size
and around 150g. A typical sample plot of each encoder is shown in Figure 3.12.
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Figure 3.10: Rotary electrostatic resolver and radio link.

Radio transceiver operation

The radio used in the pendulum apparatus is a passive RS232 radio link. The radio
works on a fixed frequency, and can only pass data in one direction at a time. The way in
which they pass data is controlled by 5 parameters: ‘Packet Size’, ‘CTS De-Assert’, ‘CTS
Asset’, ‘Preamble Bytes’, and ‘TX Holdoff Time’.

Using an example on our system, if the computer (connected to radio 1) transmits a
message to the ADC (connected to radio 2), radio 1 takes in the message into its buffer.

Once radio 1 has received ‘Packet Size’ bytes it starts the transmission process as follows.

e First it sends ‘Preamble Bytes’ of blank information. The purpose of this is to allow
the receiving radio to lock onto the signal. It is recommended by the designer that

this be set to at least 16 bytes.

e Then it encodes and sends all the data that is in its buffer, in the order that the data
was received (the buffer is a FIFO queue).

This means that each transmission packet is larger than ‘Packet Size’ bytes. The buffer
size of the buffer in the radio is 180 bytes. Its level is controlled using the Clear To Send
(CTS) protocol. When the buffer contains more than ‘CTS De-Assert’ bytes, the radio
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Figure 3.11: Diagram of the position sensoring circuit
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position of the 1st vertical link
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0.1
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Figure 3.12: A typical sample plot of the electrostatic resolvers.

lowers one of the lines on the RS232 bus, the CTS line. The unit at the other end of the
bus is supposed to be monitoring that line, and is meant to cease transmission when CTS
is lowered. Once the buffer has dropped back below the level specified in ‘CTS Asset’, the
radio raises the CTS line and the sending unit can recommence sending data. That way
the buffer never overflows. Finally, once the receiving radio has finished receiving the data
stream, it cannot commence sending data for a fixed period called the ‘TX Holdoff Time’.
This cannot be set lower than 5ms.

The main problem from our perspective is that our ADC doesn’t listen to the CTS line.

Thus when the radio transmission cannot keep up with the ADC’s data stream (say when
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the baud rate is at 56kbps), the ADC just keeps pumping data to the radio even after the
CTS line is raised. Instead of ignoring this data, the radio keeps accepting it into its buffer,
until the buffer is full. At this point the radio then has to drop bytes. In addition to that,
the data that is going over the lines is 180 bytes old anyway, which is 25ms at 56kpbs.
We estimate that the radio would successfully transmit the stream at 19.2kbps without
dropping any data at all. When the ADC was set at 19.2kbps it was only transmitting
14kbps of data. This allowed for the packet size to be 40 bytes. It appears from analyzing
the data input from the radio into the computer that its actual single transmission size is
14 bytes of data. The total delay time is close to 10ms. It accounts for the sum of the time
between the receiving data and the beginning transmission (2ms), the time of transmission
the preamble bytes, and /or the “Tx Holdoff Time’ (5ms). The preamble bytes are the empty
data that the radio puts on the front of each transmission.
Control loop

The electrostatic resolvers read the pair of angular positions of the vertical links and
output them in analog signals. The onboard ADC converts the analog signals into digital
data. The onboard radio transceiver sends the digital data to the transceiver on the host
computer wirelessly. The radio transceiver on the host computer receives the data and
sends it to the computer through the RS232 board. The software used here is similiar to
that in the single pendulum experiemts in Section 3.1. The control loop is shown in Figure
3.8.
Computing environment

The computer used in this project is an 800MHz Pentium III processor system with
Microsoft Windows 2000 as its operating system. The whole project is built with Microsoft
Visual C++ 6.0.

3.3 Mathematical model for the double pendulum

We start with the mathematical model for double pendulum. The single pendulum model
is a subsystem of the double pendulum model, which is addressed in the next section.
For background on the Lagrangian description of dynamical systems see Arnold (1978);
Marsden (1992). All the symbols related to the pendulum are shown in Figure 3.13. The

pendulum can be described by the Lagrangian

L(6,6) =K — U, (3.1)
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Figure 3.13: Rotational double pendulum.

where 6 = (01,62,603)7 is a vector containing the horizontal and vertical link angles and
K and U are the total kinetic and potential energies respectively. K is given by K =
Ki + Ko + K3, where the kinetic energy of each link is given by the contributions from one
linear translation, one rotation component, and one cross product component of translation
and rotation:

1 1 72 .
K; = §miUZ~TUZ' + §wiTIiw,~ + mi’l'iT(’Ui X wi), 1=1,2,3. (32)

Here v; is the linear velocity of the link at its joint p;, w; is its angular velocity with respect
to its joint space (notice that it is the angular velocity with respect to the non-rotating
frame attached on the joint p;), 7; = pe; — p; is the vector from the joint to the center of
mass of the link, m; is its mass, and I; is the inertia tensor of the link with respect to its
joint. For the first link, the kinetic energy is

1_ .
K = 5119%. (3-3)

We pick a non-rotational body-fixed frame at the joint po with z pointing to the center p;
(shown in Fig 3.13). Then vy = (—Llél,O,O)T, I, = diag{I cos? 0o, Iysin 0y, I}, wo =
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(0, 91, ég)T, and 79 = (—las8infy,ly cosfa,0)T. Ky takes the form of

1 . 1 . . . .
K2 = E’ij(Llel)Q + 512(93 + 0% Sil’l2 02) + m21202L101 COS 92. (34)

If we pick the same frame at ps, then in the inertial frame at pq,

p3 = L1(cos 0,0, —sin@;)? + Ly(—sinfy sin by, cos B, — sin by cos 0;)7.

Thus
V3 = ]33|91:% = (—Llél — Lzéz COS 02, —Lgég sin 02, Lzél sin 92)T,

I3 = diag{I3cos? 63, I3sin? 03, I3}, wy = (0,91,93)T, and r3 = (—I3sinfs,l3cosfs,0)7.

Thus
K3 = Sma((L101 + Loy cos 02)% + (Labasin 02)% + (L2by 5in 6)?)
+ 1362 + 62 sin? 6) (3.5)
+1maly (L2603 cos(8; — 03) + Lo63 sin 6y sin 6 + L1613 cos ).

Where I» and I3 are the moments of inertia of link 2 and link 3 with respect to their joints
po and ps, respectively. L; and Lo are the lengths of link 1 and link 2, while /3 and I35 are
the distances from the center of mass to their joints of link 2 and link 3, respectively. We

also have the potential energy
U = Us + Us = magls cos 0 + msg(Ls cos 62 + I3 cos 03). (3.6)

The coupled equations of motion that describe the dynamics of the pendulum are described

by the Euler-Lagrangian equation

d (0L oL .
E (8_01> - 6—01 = Fi, 1= 1,2,3, (37)

where Fj is a generalized force. Combine equation (3.1) ~ (3.7), we get the set of equations

(I1 + Iy sin? Oy + I3sin® 03 + mo L + m3(L? + L2 sin® 03) 4 2m3l3 Lo sin O, sin 63)6,;
+(m212 + mng)LléQ COS 02 + mglngég COS 93
+2m313L29% cos 0y sin O3 — (m212 + m3L2)Llé% sinfy — m3l3L19§ sin 03

+(I2 + mgL%)éléQ sin 209 + (I3 sin 2603 + 2mgl3 Lo sin 65 cos 93)9.19.3 =u,
(3.8)
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(mQZQ + mgLQ)Llél COS 92 + (IQ + mgL%)éQ + m3l3L253 COS(92 — 93)
—(%(IQ + m3L%) sin 260y + m3l3 Lo cos B sin 93)9% + m313L29§ sin(92 - 93) (39)

—(mggb + mgng) sinfy = 0,

m313L151 cos 03 + mglgLQéQ COS(92 — 93) + I3é3
—(%Ig, sin 203 + m313L2 sin 02 COS 93)9% - mglngé% Sil’l(92 — 03) (310)
—mggl3 sin 93 =0.

In this problem, we can directly control the acceleration of the motor. Thus we can

replace (3.8) by 6, = u. If we take friction 2 and p3 into account too, then we will get
él =U
(IQ + mgL%)éQ + mglgLQég COS(92 — 93) + HQéQ

—(%(IQ + mng) sin 2609 + m3l3 Ly cos 05 sin 03)9% + mglgLQé?Q’ sin(02 — 03)

9 —(nglg + M3gL2) sinfy = —u(m2l2 + m3L2)L1 cos 0, (3.11)

m3l3L292 COS(92 - 03) + Igég + M3é3

—(%13 sin 2603 4 msl3 Lo sin 65 cos 93)0.%

—mglngé% sin(92 — 93) — m3glg sin 93 = —um313L1 COS 93.

In order to determinate the parameters of the pendulum, we measure the torque and
the natural frequency. Then we can compute the moment of inertia by I = mlg/(27fr)2.

The parameters we used in the double pendulum setup are as follows:

g = 9.81N/kg; gravitation constant
Ly = 0.32m; Ly, = 0.264m;
maols = —0.0042kgm; mgls = 0.0023kgm; mg = 0.0795kg;
I, = 0.0241kgm?; I; = 7.5642¢ — 4kgm?;
uwa = 0.0 u3 = 0.0; the friction coefficients are artificial.

Figure 3.14 shows a typical plot of the double pendulum around its down-down position
without control. We can see that the coupled motion of the two vertical links is quite

complex.
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free motion of the 1st vertical link (dashed) and the 2nd vertical link (solid)
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Figure 3.14: A typical sample plot of double pendulum at around down-down position.

We now have a nonlinear model for the dynamics of the pendulum. However, when
designing a local, stabilizing control law, a linear model is preferred from a design point
of view. There are many stabilization results, e.g. LQ design, which are computational
feasible and easy to implement. The next step is thus to show how to linearize the equation
(3.11).

We want to stabilize the double pendulum at its invariant positions. We can first
linearize (3.11) at one of its four equilibrium points, 91‘ = 0; = § =0, 0] € R, and

5,05 € {2kn, 2k + V)7},k € Z}. Let 06; = 0; — 6F and 06; = 6; — 7. Then the linear

approximation of equation (3.11) becomes
( (591 =U
(IQ + mgL%)déQ + mglsLo COS(@S — 9;)5(93 + H2(50'2

{ (3.12)
—(magls + m3gLs) cos 05602 = —u(male + m3Lo)Lq cos 05

| mal3Lo cos(05 — 93‘)(552 + I3665 + u3593 — mggls cos 05603 = —umslz L1 cos 0.
If we let z = (661, 561,602, 505, 665, (593) the linearized system equations become

& = Az + bu, (3.13)



§3.3 MATHEMATICAL MODEL FOR THE DOUBLE PENDULUM 34

where
01 0 0 0 0 0
00 0 0 0 0
A= 00 0 1 00 , b= 0 ) (3.14)
0 0 a43 aaa ass age by
00 0 0 0 1 0
0 0 ae3 ass aes ae6 be
with
( (43 Q44 Q45 G46 ) _ oyt ( (magle + m3gLa) cos 05 —po 0 0 )
a3 Ge4 Q65 066 0 0 maglgcos0; —ps3

ba _ oyl —(mala + m3 L)Ly cos 03
b6 —m3l3L1 CcOS 9;
M = ( Iy + m3Lj msls Lo cos(05 — 603) >

mal3Lg cos(05 — 63) I3

Thus at up-up position, 65 = 5 =0,

01 00 0 0 0
00 00 00 1
= 00 01 00 ’ b 0
0 0 56453 0 —-0.6328 0 —0.1635
00 00 01 0
0 0 —4.5720 0 30.6070 0 —0.8493

The denominator of the corresponding transfer function is
p(s) = det(sI — A)
= s%(s" — (a3 + ae5)s” + a43a65 — a45063)
= s2(s* — 35.9852 + 168.5)

= s%(s? —5.536)(s2 — 30.44).
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The transfer function G(s) for C = (z1,z3,25)7,

G(s)=C(sI — A)~'b

1 1
s? )
_ bys® — agsby + aszbg _ —0.16452 + 5.4966
st — (a3 + C165)5>‘2 + G43065 — G45063 s* — 35.9765s% + 168.5048
bes® — agzbs + aszbs —0.841452 + 5.4966
s* — (@43 + ags)s” + aszaes — as5a63 s* — 35.9765s% + 168.5048

3.4 Specialization to single pendulum case

The mathematical model for the single pendulum is a subsystem of the model for dou-
ble pendulum in the previous section, containing (61, 63). Following the derivation from
equation (3.1) to (3.11), we get
(Il + Iy sin? 0y + mgL%)él + mzlngéQ cos 0o
—mQZQLlé% sin @y + Igélég sin20 = u (3.15)
m2l2L151 cos By + IQéQ — %IQ sin 203 — malogsinfy, = 0
With direct acceleration control of the motor, we have
él = U
(3.16)

Igég — %IQ sin 292 — m2lgg sin 02 = —um2l2L1 COS 02

The parameters we used in the single pendulum setup are:
g =9.81N/kg (gravitation constant), L; = 0.452m, mgalo = 0.0109kgm, I, = 0.035kgm?

We now have a nonlinear model for the dynamics of the single pendulum. However, as
we have already pointed out in Section 3.3, when designing a local, stabilizing control law,

a linear model is preferred. If we let = = (61,601,605, 6), the linearized system equations

become
z = Az + bu, (3.17)
where
01 0 O 0
00 0 1
A= , b= ] (3.18)
00 1 0
0 0 a43 0 b4
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with a43 = 1+ m}_igg = 31.57 and b4 = —%Zl’l = —3.116. The denominator of the

corresponding transfer function is

p(s) = det(sI — A) = s%(s? — aq3) = s°(s® — 31.57).

The transfer function G(s) for C = (z1,73)7 is
1 1
3 p p
_2—b4 __ 3116
8% — ay3 s —31.57

Example 3.4.1 If the horizontal link of the pendulum is fairly long, we can approzimate
it by a cart base pendulum with direct acceleration control of the cart. After normalizing
the masses and link lengths, the dynamics become

él =Uu

. (3.19)
0y = sinfy + u cos Os.

Insights about the controllability of this system have been gained from the following Lie
bracket computations based on a reduced order model, see Brockett (1970, 1976) for back-
ground. Let, as before, x = (91,91,92,92). Equation (3.19) becomes

T1 T2 0

T 0 1

Cl= +u = f(z) +ug(x)
T3 Ty 0

Ty sinz3 COS T3

We want to check the Lie bracket directions generated by the drift term f and the control

term g.
-1 0
0 0
[fag]: ) [fa[fag”: . )
— COS I3 2x4 sinxg
—x4 Sin T3 —a:i cos T3 + cos 2z3
0
0
LU= .,

3zjcoszz —2cos2z3 +1

xz sinz3 — 4x4sin2zx3
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[lf,9],9] = . [l[f.gl,9],9] = 0.

sin 2x3

The linearization of system (3.19) at its inverted position is

T = Az + bu, (3.20)
with
0100 0
00 0O 1
A= . b= (3.21)
0 001 0
0010 1

We can locally stabilize this system using state feedback in a straightforward manner, using
u = —b' Kz, where K is the solution to a LQ optimization problem. One choice of feedback

law that stabilizes the system could for instance be

, (3.22)
0 0 20 5

0 -12 5 17

which gives that eig(A — b K) = {—0.12 +40.7, -1, —1.7}.



Chapter 4

Swing-up control of the single

pendulum

In this chapter, we investigate the problem of stabilizing a pendulum to its inverted position.
This is a well studied (see for example Astrom and Furuta (1996); Spong (1995)) and, some
would argue, a well-solved problem, but what is novel in this chapter is that we take the
physical bounds on the control signals into account already at the design stage. Since
physical constraints always impose limits on what control signals are available, we take
the position that any controller that is to be implemented should explicitly address the
bounded input problem. Most part of this Chapter is in unpublished manuscript Li and
Egerstedt (2002).

The experimental platform that we work with, developed at the Harvard Robotics
Laboratory, is a rotational single pendulum, as seen in Figure 3.1~3.3. It consists of a
horizontal link, directly controlled by a servomotor, and a vertical link moving freely in
the plane perpendicular to the horizontal link. Even though our discussion will be quite
general, this platform will serve as a motivating example as well as a test-bed for evaluating
the practical value of our contribution.

Given a Lagrangian system L(z,,u) defined on M x TM x U, where M is a manifold,
T M its tangent space, and U C R a compact set of available control signals from which the
generalized forces in the Lagrangian can be derived. If (z1,u1),. .., (zk, ux), where z; # z;
when i # j, satisfies L(z;,0,u;) =0, i = 1,...,k, then we say that {(z1,u1),..., (g, ug)}
are Lagrangian equilibrium points. Furthermore, let (A4;,b;), ¢ = 1,...,k, be the linear
control systems that characterize the local dynamics around a particular equilibrium point.

The problem of swinging up an inverted pendulum can be thought of as driving the system

38
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from one such equilibrium point (e.g. the pendulum is hanging straight down) to another
(e.g. upright position) under bounded inputs. A more general formulation of the problem
is to drive the system through a list of equilibria. A model that describes such transitions
between different equilibria is that of a reachability graph, i.e. a directed graph obtained
by associating each equilibrium with a node in the graph. The presence of a directed edge,
eij, between node n; and n; is equivalent to the existence of a feasible (u € U) path in
M x TM between (z;,0) and (z;,0). In this chapter, we investigate what nodes can be
reached from each other, and what bounded controllers achieve this, i.e. we design the
reachability graph.

In order to make our control strategy robust we do not demand that the system has
to reach the equilibrium exactly. Instead we are content if the trajectory intersects a suit-
able open set around the equilibrium, from which a locally stabilizing controller can be
constructed that drives the system to the desired state. However, a stabilizing feedback
controller can only be effective on selected parts of the state space when the input is subject
to magnitude constraints. In Section 4.1, we compute these regions of attraction for unsta-
ble, linear control systems driven by bounded inputs. We then let the stabilizing controller,
together with the corresponding region of attraction (which in the hybrid dynamic systems
literature is referred to as an invariant set) define a mode in a multi-modal hybrid system.
We thus control the inverted pendulum by introducing different control modes, such as
swing-up and stabilization.

If we now denote the invariant set, or region of attraction, associated with the equi-
librium (z;,u;) by E(zi,u;) C M x T'M then, as long as E(z;,u;) N E(zj,u;) = 0, the
reachability problem is equivalent to finding feasible paths (u € U) between these regions
of attraction. Our solution to the problem of driving L between the different nodes in
the reachability graph is based on energy control. By injecting energy into the system, a
bounded input control strategy with proven reachability properties can be attained. The

experimental results are shown in Section 4.3.

4.1 Lemon theorem for the region of attraction

As already mentioned in the introduction, we want to construct a reachability graph for the
Lagrangian system L(z,Z,u), where each node n; corresponds to an equilibrium (z;, u;),
and each directed edge e;; represents the existence of a feasible path between n; and n;.

Around (z;,0,u;), the linear system (A;, b;) describes the local behavior of L. Our first task
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is to derive the regions of attraction around each equilibrium point where bounded input
feedback stabilization is possible.

We investigate how to design a locally stabilizing feedback controller for a linear system
under bounded inputs. For the inverted pendulum, this corresponds to constructing a
stabilizing controller for the linearized dynamics around the upright position. The solution
is to be used in a hybrid control strategy. In order for such a mode to be a useful component
in a hybrid system, it must be possible to define its corresponding guards and invariant
sets, i.e. the parts of the state space on which the mode is well defined and locally effective
(invariant sets) and the transition rules (guards). (See for example Henzinger (1996);
Lygeros et al. (1999).)

We start by considering a linearized version of the pendulum model and then move on
to formulate a more general theory. As in Section 3.4, we can approximate the model of
the inverted pendulum by the following set of equations:

6, = u,

. (4.1)
92 = sin92 + u cos 92,

where the subscripts 1 and 2 denote horizontal and vertical link angle, respectively, as seen
in Figure 3.2. If we let the state space be z = (91,91,92,92)T, the linearized dynamics

around 0 becomes

x +

oS o O

10
00
00

= o O
_ o = O

0 01

]

which constitutes an unstable but controllable, linear time-invariant system.
Let us now study this situation in some generality. Consider an unstable, controllable
linear system

T = Az + bu, (4.3)

where z € R",u € R, and A, b are constant matrices of compatible dimensions. In the

absence of control bounds, we can easily construct an exponentially stabilizing controller
u=—bTKz, (4.4)

where K is a symmetric, positive definite matrix solution (we will use > to denote positive
definiteness) to the Riccati equation, Ricc(A,b,Q),

ATK + KA - 2K K +Q =0, (4.5)



§4.1 LEMON THEOREM FOR THE REGION OF ATTRACTION 41

given the positive definite matrix Q. (See any textbook on LQ-design, for example Brockett
(1970).) If we now let the admissible controls be bounded by

lu] <1, (4.6)

then the introduction of this bound on the control means that the closed loop control
strategy in (4.4) can not be guaranteed to work. Instead we add an open loop term to the
controller, and choose to be content with the performance of the controller as long as it
drives the system to any stationary point.

The idea is to construct a locally stabilizing affine control law
u=—blKz+w, (4.7)

where K is the symmetric, positive definite matrix solution to Ricc(A,b,Q) and v € R is a

constant, open-loop term. This gives the closed loop system dynamics as
i=(A-b"K)z + bv, (4.8)
with stationary point
Ty = —(A — b K)"lbw. (4.9)

Here the inverse is well defined since the system is asymptotically stable. This follows from

the fact that the real parts of the eigenvalues of (A — bb! K) are all negative.

Theorem 4.1.1 (Stationary Points Under Bounded Inputs) Let (A,b) be a control-

lable pair and let K be the positive definite matriz solution to Ricc(A,b, Q) for some Q > 0.

Ifu=—b"'Kz+w, |u| <1, then the set of stationary points, X, is given by

Yo —(A-"K)"WW('K(A -bb' K)o+ 1)71[-1,1] if ' K(A—bbTK)"1b+1#0
—(A - K)~1bR otherwise.

Proof: The total control effort necessary for making the system remain at z, is
Uy = —b'K Ty + v

= V'K(A-bb"K) v +o (4.10)
= ('KA-b"K) '+ 1)v.
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If " K(A - ' K)~'b+ 1 = 0, then u, = 0 for any choice of v € R. Since u, € [-1,1],
we must have that the set of open-loop control values V that generate stationary points is
given by

ve BE(A- ' K) h+1)"1-1,1] =V, (4.11)

if ' K(A - bb"K)"'b+1+# 0, and v € R = V otherwise. Here, given the set S C RY, the
set @S ={z € R? | z = as for some s € S}, for a € R.

The set X of stationary points to the closed loop system is given by
X =—(A-bb"K) by, (4.12)
which is equal to

¥ —(A—-"K)" (" K(A - bb" K)o+ 1)1 [-1,1] ifbTK(A-bbTK)'b+1#£0
—(A - K)~1bR otherwise,
(4.13)

which concludes the proof. n

Since the system matrix in (4.2) for the linearized inverted pendulum dynamics has

rank(A) = n — 1, it is worth investigating this special case in some detail.

Lemma 4.1.1 Let (A, b) be a controllable pair, and let K > 0 solve Ricc(A,b,Q) for some

Q@ > 0. Then the following statements are equivalent:
(i) " K(A - bb"K)~'b= -1
(ii) Ker(A) = span{(A — bbT K)~1b}

(iii) rank(A) =n — 1.

Proof:
(i) = (i4): Suppose that bT K(A — bbT K)~'b = —1. Then, from (4.13), it follows that
we can place the equilibrium point z, anywhere on the 1-dimensional subspace span{(A —

bbT K)~1b}. For a given z, the total control action becomes
u = —b' KAz,
where Az, = z — x,, which gives

ALy = (A — bW K)Az, + Az, (4.14)
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Since we have an equilibrium at z = z,, i.e. at Az, = 0, we have that Az, = 0, or in other

words

span{(A — bb" K)7'b} C Ker(A). (4.15)

But, since controllability of (4,b) implies both that b # 0 and rank(A) > n — 1, the two
subspaces in (4.15) have to be 1-dimensional. Thus the inclusion has to be an equality,

which gives that
Ker(A) = span{(A — bb" K)~'b}. (4.16)
(4i) = (i44): If dim(Ker(A)) = dim(span{(A—bb" K)~1b}) = 1, then it directly follows
that rank(A) =n — 1.

(797) = (4): Given the controllable linear system (A,b), we can find an invertible state

transformation z = Tz that transforms the system to a control-canonical form, i.e.

z = Az + bu,
with
0 1 0 0
A=1AT=| ~ . b=T"lb=| " |. (4.17)
0 0 - 1 0
—ap —a1 -+ —ap_1

Furthermore, it is straight forward to see that K = TTKT > 0 solves Ricc(A,b,Q), where
Q =T7QT > 0. We denote the element in K at row i and column j by kij-

Now, rank(A) = n — 1 implies ayp = 0, which allows us to compute

kln

N 0
(A-bb"K)"'b =

0

Since A — bbT K is stable we must have that ki, # 0, and thus

kin

S 0
'K(A—-B0"K) *b= (kin,-- - kun) : = -1
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This equality is furthermore invariant under the state transformation T

W'K(A-bb'K) b
(T '0)"(TT"KT)(T'AT — T~ 'o(T'0)"(T" KT))"'T~ b
= b'K(A—-0bb"K) b,

which concludes the proof. m

Remark 4.1.1 This result is independent of K as long as K solves Ricc(A,b, Q) for some
Q > 0.

This lemma enables us to directly state the following corollary.

Corollary 4.1.1 (Stationary Points when rank(A) = n — 1) Under the assumptions
in Lemma 4.1.1, the set of stationary points X is the subspace Ker(A).

We now have a complete characterization of the set of stationary points under control
action —b" Kz + v, with v € V, but it does not tell us from what parts of the state space
this set can be reached when |u| < 1. The question thus becomes to find the set of states

from which the stabilizing state feedback controller can be used.

Theorem 4.1.2 (Region of Attraction Under Bounded Inputs) Given the assump-

tions in Theorem 4.1.1, the region of attraction contains

L=|JEK,v),

veEY

where E(K,v) is the ellipsoid
E(K,v)={z€R | (z —z,) Kz — z,) < o}

and

= BTKD) ™ (L = [uy ).

Proof: Let, as before, x = x, + Az,, which gives

u= bl K(z, + Azy) + v = uy — b Kag,, (4.18)
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or in other words, since u € [—1,1],
VI KAz, € [—1 + uy, 1 4 u,]. (4.19)
It is clear that K generates a Lyapunov function to the system (4.3) since

V(az,) = azl Kaz, >0, Vaz, € R", az, £ 0

. 4.20
V(az,) = azl (ATK + KA - 2Kbb' K)az, <0, Vaz, € R™, Az, # 0, 4.20)

and K solves Ricc(A,b, Q). Thus, as long as the system starts from a state from which the
flow satisfies (4.19) it reaches the stationary point z,. But, just because (4.19) is satisfied
for some initial condition, it does not follow that it is satisfied by the flow as time evolves.
However, along solutions, the Lyapunov function is decreasing, so if the system starts from
the boundary of an ellipsoid, given by azl Kaz, < «, for some «,, that satisfies (4.19)
then (4.19) is satisfied by the flow as time evolves as well.

In other words, the boundary of this region can be found by computing the smallest

solution to the two quadratic optimization problems

IE;]BA])ZKA])% (4.21)
subject to either
V' KAz, = —1 4 u, (4.22)
or
V' KAz, =1+ u,. (4.23)

If we rename the variables as ¢ = Kb and d+ = +1 + u,, the Lagrange necessary and suffi-
cient conditions (see for example Luenberger (1969)) for these two quadratic optimization

problems are
KAz, +chy =0

(4.24)
caz, —dy = 0,
where )\, € R is the Lagrange multiplier. This gives
A, = — TK—l —ld
v= (KT dy (4.25)
ATy = K le(c'K=te) dy.
That is
Ay = K VKb(BT KK ~1Kb) "1 (£1 + uy) = b(bTKb)~1 (1 + uy) (4.26)

Azl Kaz, = (b7 Kb) 7 (£1 +u,)?,
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where the inverse (b7 Kb)~! exists since K is positive definite and b # 0 due to the control-
lability assumption.

If we let a, be the smallest of the two solutions to (4.21), we directly get that
a = (BTKB) (1 = [uy )2, (4.27)
which gives us the region from which —b” Kz + v stabilizes the system around each z, as
the following ellipsoid
EKw)={zeR | (z —z,) Kz —z,) < ap}. (4.28)
Thus the total region of attraction contains

L=JEexK,w), (4.29)

veY

and the theorem follows. -

0.2

-0.2 L
-0.2 0 0.2

Figure 4.1: The thick, solid line is the set of stationary points achievable for constant inputs
of available magnitudes, X', while each ellipsoid, £(K,v), corresponds to a particular choice
of v e V.

An example of applying Theorem 4.1.2 can be seen in Figure 4.1 where the following

system matrices are used

(o 2) o= () (5
A= b= , K= : (4.30)
0 -1 1 -1 3
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Swing-Up

&L

Stabilization
&= (A-bb"K)z +bv
rzeLl

xz € oL

Figure 4.2: Schematic intended to suggest the need for a transition between stable or
unstable equilibria and unsustainable transient needed to make a particular transition.

Remark 4.1.2 If rank(A) = n — 1, we have that u, = 0 for all v € R, and hence that
a, = (BT Kb)~1, which is independent of v. Thus L is a hyper-cylinder along Ker(A). For
the linearized model of the inverted pendulum z, € Ker(A) = span{(1,0,0,0)T}, which
means that the only stationary points are those for which 6, = 0y = 65 = 0. But, since
6, lives on the quotient space R/2nZ = S, we can rewrite X as {(61,0,0,0) | 6; € S'}.
Thus, the total region of attraction is compact in R*, and it furthermore has the structure

of St x B3, i.e. the circle times the 3-dimensional solid ball.

4.2 Swing-up control

A hybrid system can be modeled as a hybrid automaton (see for example Henzinger (1996);
Lygeros et al. (1999)), which can be thought of as a directed graph with a specific system
dynamics associated with each node. Since we have derived a stabilizing controller and
a corresponding region of attraction, or invariant set, one mode in the hybrid pendulum
controller is already finished. Hence, our switching rule should be to switch from the swing-
up mode to the stabilization mode when = € 9L, i.e. we let this condition be the guard
relation for the stabilization mode. It should be noted that we, throughout this chapter,
assume that the linearized model is adequate on L for describing the system dynamics.
What remains to be done in the pendulum inversion problem is to design a swing-up
controller that drives the system to £ under bounded inputs, i.e. to derive an adequate
4 in the Swing-Up mode in Figure 4.2. In this case the nonlinear nature of the dynamics
must be taken into account since, in the pendulum case, a large part of the state space is
covered as the pendulum is swinging back and forth. Such a swing-up controller can be
designed in a variety of ways. As an illustration, a naive approach can be seen in Figure

4.3, where the system matrices (the system is linear) are given by (4.30). The control is
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0.8 b
Trajectory generated by
saturation control

\

0.6 4

Xz 0.41 -

Estimation on the region of attraction
under affine linear control

0.2

Figure 4.3: A switching example is shown where v = sat(—b’ Kz). This naive approach still
results in a satisfactory behavior, and 0L from Figure 4.1 is intersected by the trajectory.

simply given by a saturation function
u = sat(—bT Kz), (4.31)

where sat(8) = 8 if 8 € (—1,1) and sign(8) otherwise.

A Lagrangian mechanical system L(z,%,u) can be described by the equation

OP(x)
oz

M(z, )i + Clz, )i + = F(2)T(u), (4.32)

where z is a vector of generalized coordinates, M (z,%) the inertia matrix, C(z,%) the
damping matrix, P(x) the potential energy, F'(z) an input gain matrix, and T'(u) are the
external control torques. (See for example Marsden (1992); Spong and Vidyasagar (1989).)
The energy of the system is
1
E = §:ETM(:E,$')$ + P(x),
and in Astrom (1999) it was shown that

dE |
— = T F(2)T(u).

In Astrom and Furuta (1996); Astrém (1999), it was furthermore pointed out that energy

control could be explored for controlling Lagrangian systems.
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In the inverted pendulum case, we have

0, =
o (4.33)
02 = sin92 + u cos 02,

and we can associate an energy measure with the movement of the vertical link. Since we
want to drive this link to an inverted position it makes sense to inject as much energy into
the system as possible.

We see that, if u = 0, we have
éQ(éQ — sin 02) = 0, (4.34)

or, in other words, that 1/ 205 + cos 0 is constant. It is thus possible to define the energy
of the vertical link as
. 1.
E(eg, 92) = 592 ~+ cos 6o, (4.35)

which is constant if v = 0. Moreover, since

%E(HQ, 92) = ’u,ég COS 92 (4.36)

we can easily control this energy since the system is simply an integrator with varying gain.
If we want to increase the energy in the vertical link, which is desirable in the swing-up

situation, we can simply choose u such that
ufy cos By > 0 (4.37)

at the same time as the constraint |u| < 1 is respected. This can always be done except
when 92 =0 or when 0 = § +nw, n € Z.

However, for our experimental platform it is easier to implement swing-up controllers
that are non-zero only when the pendulum is hanging straight down since, by virtue of
(4.37), this is where the effect of the control is the most significant.

Since 0; and 6, are coupled we do not, in general, have control over (61, 01) when the
energy of the vertical link is controlled. However, an energy based control sequence that
drives the states z = (91,91,02,92)T from any initial state 2o = (010,910,020,920)T to an

open neighborhood of zr = (01£,0,0,0)” can be constructed from the following lemma:

Lemma 4.2.1 (Energy Increments) Consider the initial state £(0) = zo = (0,0, —7,d),
where d > 0. By applying the control

u(t) = -1, fort €[0,h)
B 1,  forte€ [h,2h],
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The construction of control sequence to swing up the pendulum

200 T T T T T T
. 81 ~a /
g 0 /
=
[}
2 200 L VAN /N
| \e \/ \-/
_400 1 1 1 1 1 1
0 5 10 15 20 25 30 35
2 T T T T T T
u 1r T
o]
1} 4
_2 1 1 1 1 1 1
0 5 10 15 20 25 30

Figure 4.4: The control sequence and the corresponding trajectories in Lemma 4.2.1.

for a small h € RT, we obtain a net energy increase

E(02(2h),05(2h)) — E(—m,d) = h3d(d® + 1) + O(h%).

Proof: We first observe that from (4.33) it follows that when we apply the control u = —1
followed by u = 1 for the same amount of time h we get 6;(2h) = 0. At the same time
we will see that we get a net increase in the energy function E(Gg,ég). Since the exact
solution to 6 = sin @ involves elliptic functions and is highly dependent on initial conditions
we have to look for alternative ways of expressing the solution. Our proof of is based on

an approximation of the exponential map
y(h) = exp{hf}yo,

where y = (62 — W,éz)T, yo = (0,d)T, and

fly) = ( " )
—siny; —ucosy;
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Since we do not work around an equilibrium point a linear approximation will not suffice.
Instead we can expand exp{hf}yo in a manner similar to Taylor expansions (see for example
Oliver (1993))

h

h? 8 8f
2

ga—y(a—yf) flyo) + O(h?).

Yo

f(yo) +

Yo

y(h) = yo + hf(yo) + g—g

By observing that u = —1 on [0, h), it is tedious but straight forward to compute

{0 a\ m( 1\ w( -d .
= (0 en( ) (L) (0 ) o

Now, on [h,2h], we have u = 1 and we get

—d
5D PO = ( £ ) +0(h)
As before we can expand the exponential map
h? of h* 9 of 4
h) = yh)+h h — = h — (= h O(h
o) = o)+ G| S D] ) + Ol

(O>+h< 2d)+h2< ! )+h3(_4/3d>+(9(h4).
d 0 —2d dz -1

cos(y1(2h)) = 1 — 2r%d? — 2h3d + O(h%),

Now, since

the difference in energy (E(y) = 1/2y3 — cosy due to the change of variables) becomes

Bly(2h)) — Blyo) = 593(2h) — cos(ya(2h)) — 3d° +1

1 1
= - 2h2d + h3(d? — 1))2 — 1 + 2h%d + 2h%d — §d2 + 14 0O(rY)
= Rd(d* + 1) + O(h%),

which concludes the proof. n

Remark 4.2.1 In a similar manner it is possible to derive that when d = 0 we get a net

energy increase of 1/2h* + O(R®).
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With the help of Lemma 4.2.1, we can now state the main swing-up theorem.

Theorem 4.2.1 (Swing-Up Control) Given a pendulum with initial conditions oy =
(910,910,920,920)T, a control sequence based on Lemma 4.2.1 can be constructed, as seen in

Figure 4.2, that drives the initial state to any given open neighborhood of xr = (61r,0,0,0)T €
St.

Proof:

Casel: Let zo = (0,0, —7,0)”, zr = (0,0,0,07). From Lemma 4.2.1 it follows that
we can increase the energy E(6s,62) by a factor h362(63 + 1) when 6 > 0 (or 1/2h* when
0 = 0.) When 6, < 0 we can change the control to u(¢) = 1 for ¢ € [0,k) and u(t) = —1
for ¢ € [h,2h] to get the same amount of energy increase. We can thus apply this control
sequence, as seen in Figure 4.2, whenever 05(t) passes —m until the energy is > 1 — 4, for
any § > 0. (The engergy at the inverted position is 1.) By setting u = 0 the state will
eventually flow into the neighborhood of (01,91,0,0)T by itself once the right energy is
obtained due to the conservation of energy. Since 6, = u the pairs (61, 91) will remain in
the interval [—2h, 0] X [—h, h] for all times. By reducing h and § we can thus make the open
neighborhood of z = (0,0,0,0)7 arbitrarily small.

Case 2: Suppose that the system starts at zo = (0,0,920,920). If the initial energy
E (00, 62) is less than 1 —4 we can use the control sequence in Case 1. If E (6, 629) > 1+,
we need to “flip” the control in order to decrease the energy, i.e. u(t) =1 for ¢t € [t;,t; + h)
and —1 for t € [t; + h,t; + 2h], where 05(;) > 0 when 05(t;) passes —m. If the energy
is still greater 1 at time t; + 2h, we can expect 03 to pass 0 at some ¢;11. We can then
apply the same type of “flipped” control at time ¢;1;. In this way we can keep reducing
the energy until we have E(Og,ég) < 1+ 4, as in Case 1. We can furthermore guarantee
that (61,60,) € [~2h,2h] x [—h,h] for all times and thus the pendulum reaches the open
neighborhood of zr = (0,0,0,0)%.

Case 3: For arbitrary initial conditions zy = (910,910,020,920

zp = (017,0,0,0)T we can first send (6y,6;) to (A1r,0) using a bounded u without difficulty

)T and final conditions

and then apply the controller in Case 2. n

As we will see in Section 4.3, this control sequence is a good candidate for the swing-up

mode in our multi-modal hybrid control design.
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Figure 4.5: Swing-Up and Stabilization. The top figure shows the vertical link angle,
while the horizontal link angle is depicted in the bottom figure. The mode transition from
Swing-Up to Stabilization occurs after 3.8 seconds.

4.3 Experimental results

An example of applying the theory developed in Section 4.1 and Section 4.2 to the platform
in Section 3.4 is shown in Figure 4.5. Here, the bounded input stabilization is combined
with an energy-based swing-up controller. Since we can choose any u € [—1,1] such that
the energy in the system is increased as the pendulum swings back and forth, we choose to
work with the provenly correct control sequence in Theorem 4.2.1.

In Figure 4.6, a case where the pendulum is perturbed at its inverted position is shown.
The figure clearly illustrates that, even though the available inputs are bounded, our solu-

tion is quite robust to external disturbances.
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Figure 4.6: An example when the vertical link is perturbed at its inverted position is shown.



Chapter 5

Results on stabilization

5.1 Introduction

The usual application of feedback stabilization is based on linearization and the assumption
of linear controllability. Least squares optimal control is often used to determine a set of
feedback gains that will stabilize the system. In addition to the commonly acknowledged
challenges arising when this methodology is applied to open-loop unstable systems with
significant nonlinearities, there are also other significant problems that are not given promi-
nence in the literature. These include the role of high gain feedback in exciting vibrations
in unmodeled modes and the possibility of lightly damped oscillatory modes accentuating
the effect of the nonlinearities. In this chapter we report some experimental results relating
to these points and suggest some techniques for dealing with them. Significant parts of this
chapter are reported in Brockett and Li (2003).

This chapter describes an experimental effort concerned with the stabilization of a rotary
double link pendulum. This problem, and several related ones, has a long history going
back several decades. In the literature the name of Furuta stands out because of his early
interest in these problems and the steady stream of experimental results reported by his
group Furuta et al. (1978); Yamakita et al. (1993); Astrom (1999). Our approach differs
from those previously reported not in terms of the basic form of the mechanics, but rather
in terms of important aspects of the experimental apparatus. Most notably, we are working

with a system with the following attributes:

1. All measurement signals are transmitted over a wireless link delivering 50 samples
per second. This removes the need for wires connecting the moving parts to a fixed

platform but introduces some latency in the data path and limits the sampling fre-

95
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quency.

2. The apparatus is light weight and has low inertia. This results in a structure with

low stiffness and a tendency to vibrate.

3. The motor is a low torque, completely integrated amplifier/motor/controller unit
rather than a high performance direct drive motor. This makes it necessary to design

around the possibility of torque saturation.

In attempting to further develop the rotary link double pendulum stabilization technol-

ogy, several challenges present themselves. The principal ones are.

1. The emergence of vibrational modes associated with unmodeled dynamics associated

with the elasticity of the structure.

2. The problem of avoiding high feedback gains which can lead to torque saturation,

noise amplification, and undesirable vibration.

3. A reduction in the size of the domain of asymptotic stability.

The general problem of stabilization via feedback has received considerable attention in
both a linear and nonlinear context. Indeed, one of the central questions in classical control
theory is the problem of avoiding instability in feedback systems. In this chapter we are
concerned with the problem of designing a control law that provides an adequate domain

of attraction for a nonlinear system of the form

&= f(z) +g9(z)u (5.1)

under the hypothesis that f(0) = 0 ; g(0) # 0. We assume that f and g are smooth
functions and that the linearized system is controllable. Such questions are widely studied
in the literature, being motivated by a variety of concrete problems including experimental
work on stabilizing various types of open loop unstable mechanical systems.

Because we assume that the linearization of the system at x = 0 is controllable, in
theory there always exists a linear control law that stabilizes the null solution. Moreover,
there exists a change of coordinates valid in a neighborhood of the origin that makes g
equal to a constant vector so we can carry out the first step in the feedback linearization
procedure. A precise question along these lines can be formulated as follows.

Linear Feedback Stabilization Problem: Given a system of the form & = f(z) +

G(z)u with f(0) =0 and ¢(0) # 0, find the linear time invariant control law u = Kz such
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that the null solution of & = f(z) + G(z) Kz is asymptotically stable and the domain of
attraction of 0 is as large as possible in the sense that it contains a ball of the form ||z|| < a

with a maximal.

5.2 A hierarchy of mechanical systems

Our ultimate goal is to shed further light on the problem of enlarging the domain of attrac-
tion for nonlinear control systems. Both the rotary double pendulum system, as shown in
Figure 3.7, and several other simpler mechanical systems have been extensively studied in
the literature. In order to maximize the usefulness of this chapter and to put our results
in a broader context, we compare this system with a general version of the well-known ball
and beam system and the double pendulum on a cart system. We will see that these form
a progression with the ball and beam being the least complex, the double pendulum being
of intermediate complexity and the rotary pendulum being the most complex. For more

about classical mechanics, see Whittaker (1937).

The ball, beam, cart. This is the least complicated system in our hierarchy. Consider

the ball and beam on a cart system as shown in Figure 5.1. The kinetic energy is
K= %m5[(a'c5 + &1 cos x3)? + (z5@3 — &1 sinx3)?]
+%I5(i,,€—55 —i3)2 + %mgx%
+%I3.7.3§ - m3l3i'1.7.33 COS T3

Where z5 is the position of the center of the ball relative to the joint of the beam. r5 is the
radius of the ball. z3 is the angular position of the beam. z; is the position of the cart.
All z;’s are on the same vertical plane. mg, ms, I3, and I5 are the mass and momentum
of inertia of the ball and beam respectively. We assume to have direct control over the

acceleration of the cart, i.e., 1 = u. The potential energy is
V = msgxs sin 3 + msgls cos 3.
The Euler-Lagrangian equations take the form

F(2)i + G(z, ) + V(z) = ub(z) (5.2)
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with = = [z1, 23, z5)7

1 0 0
F(r)=|0 msz2 + I + I3 —7{—2
0 —7{—2 ms + %%
0
G(z,Z) = | 2msxsisis
—m5m5a’c§
0
V(z) = | —mal3gsinzz + msgzs cos 3
msg sin T3
and b(z) is given by
1
b(z) = | mazssinzz + mal3 cos z3
—mg COS I3
The linearization of the Ball-Beam on Cart is
Fi+Vz=ub (5.3)
with
1 0 0
F=|0 L+, -&
0 —7{—2 ms + 7{—%
0 0 0 1
V=10 —mslzg msg |, b=| masl3
0 msg 0 —ms

The transfer function G(s) from u to z can be most easily obtained from the linearization

in second order form,

Fs*X(s) +VX(s) =U(s)b (5.4)
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o O

Figure 5.1: Ball, Beam, Cart

This yields the transfer function

_ 1 -
2
2
P225” + pao
G(s) = 5.5
(5) q1s* + q25% + qo (5:5)
1743252 +2p30
L q48™ +@q28” +qo
with
P22 = —m57"5I5 + m3lg(m5’l"§ + I5)
b0 = —m%r%g
P32 = —m57“52)(13 + I5) + m313I5
P30 = 2m3mslarsg

g = msri(l3+Is) + I315
g2 = 2msrslsg — m3l39(m57"§ + I5)

_ 2,.2
qgo = —MFrsg

Cart with a double pendulum. The coupled equations of motion that describe the
dynamics of the pendulum, as shown in Figure 5.2, are described by the Euler-Lagrangian
equation

F(0)0+ G(6,0) + V(6) = ub(6) (5.6)
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-~ Lib:

Figure 5.2: The double pendulum on a cart

with 6 = [01, 92, 93]T

F6) =
1 0 0
0 I +m3L3 m3ls Lo cos(fy — 03)
0 mgl3Lscos(fy — 03) I3
0
G(8, 0) = m313L29§ sin(fy — 63)
—m3l3L29§ sin(fy — 63)
[ 0
V(0) = | —(magls +m3gLs)sinb,
i —mz3gls sin 03
and b(#) given by )
1
b(#) = | —(malz +m3Ls) cos b2
i —mgl3 cos 03

where 15 and I3 are the moments of inertia of link 2 and link 3 with respect to their joints
po and p3, respectively. Lo is the length of link 2, while /s and [3 are the distance from
the center of mass to their joints of link 2 and link 3 respectively. In this problem, we can

directly control the acceleration of the motor. Thus the motor equation is simply a double
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integrator §; = u. Its linearization is identical to the rotary double pendulum as describe

in the following subsection if the motor position 6, is replaced by L16;.

Rotary double pendulum.
We rewrite the double pendulum equations in Section 3.3 to compare with those in the
previous two subsections. The coupled equations of motion that describe the dynamics of

the pendulum, as shown in Figure 3.13, are described by the Euler-Lagrangian equation

F(0)0 + G(0,0) + V(0) = ub(6) (5.7)
with 6 = [0, 02, 03]T
1 0 0
F(H) =10 I + mng msls Lo COS(02 — 93)
0 'm,3l3L2 COS(02 — 93) Ig
0
G(6,6) = | 9200,0)
93(9a 0)
0
V(9) = —(magla + m3gLs) sin 6

—mgglg sin 93

and b(#) is given by
1
b(9) = —(m212 + m3L2)L1 cos 02

—’rTL3l3L1 COS 93

where )
g2(0, 9) = —[%(IQ + m3L%) sin 20 + m3l3 L9y cos 05

sin 93]9% + mglgLQég Sin(92 — 93)
g3(@, 0) = —(%Ig sin 203 + mg3l3 Lo sin 09 cos 93)9%
—mglgLQé% Sin(92 — 93)

Here, the notations are the same as those in Section 3.3.
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Associated with this nonlinear model is its linearization about 6; = 0, 6, = 0. The
corresponding terms are given by
FO+V0=ub (5.8)

with
1 0 0

F=110 Ib+ m3L% mglsLo
0 m313L2 13

0 0
V=|0 —(magly +msgLs) 0

0 0 —mgglg
1
b= | —(maly +m3Lo)Ly
—mglsln

The transfer function from u to @ is

_ 1 -
2
G(s) = P2282 + p2o (5.9)
qus* + 25”7 + qo )
1743282 + p3o
| qus® + 28"+ qo
with
pe = —(malo +m3Lo)I3L,
P20 = (m2l2g + m3L29 + m313L2)m313L1
ps2 = —(Io +m3L3)(maly + msLo)Ly
p30 = (malag +m3Llag + msl3Lo)(maly +m3Lo) Ly
@ = (Ip+mzL3);
@ = —[(Is+m3Ld)msls + (mala + m3Lo)Islg

g = (malag? +m3Lag? — malsL3)msls.
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5.3 Feedback linear approximation

In this section, we work with a type of optimization problems in which we linearly ap-
proximate the double pendulum at its equilibrium points. Given a scalar input nonlinear
system

= f(z) + ug(x), z €R" u€eR, (5.10)

with f(0) = 0, i.e., z = 0 is an equilibrium point. We can linearize it at its equilibrium
point in the standard way to get

T = %ﬁ?)x + ug(0). (5.11)

It leads to theorems on local controllability and, via least squares theory, to feedback control
laws resulting in asymptotic stability. However, in this case there are many stabilizing
control laws and if the goal is to design a controller that will have a large domain of
convergence, conventional linearization may not provide the best solution. The region in
which (5.11) accurately approximates (5.10) is usually very small. Brockett (1978) proposed
an exact feedback linearization and its conditions. In many cases, those conditions are not
satisfied. Here we develop an alternative, which we have found effective in controlling the
rotary double pendulum.
Let D represent an open set in R” that contains origin. If we wish to find a matrix
A € R™™ such that Az approximates f(z) on the set D then we might choose A so as to
minimize
m = [ 1) - Aolf*dz (5.12)
of

Of course if D is very small the minimizing value of A will be close to 37 1o but if D is large

it can be rather different. If we work with the Euclidean norm then the optimal value of A

A* = /D f(z)z"dzx ( /D :rdea:>_1 (5.13)

However, the possibility exists for improving the accuracy of this approximation through

is easily seen to be

the use of feedback. Consider a refinement of the above procedure in which we select both
(A € R™™ b € R") and a feedback function a(-) € C* with a(0) = 0 so as to minimize

n = /D 1 () — a(e)g(z) — Az|?d, (5.14)

in a given domain D of = containing zero, called D;-optimal problem, and to minimize

= /D lg(z) — bl[2ds. (5.15)
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separately, called Dy-optimal problem. In this case we can see that for a given value of A
the best choice of « is the choice that cancels the error f(z) — Az in the direction of g(z).

Having done so,
T = Ax +ub

becomes the “best” linear approximation of

& = f(z) — a(z)g(2) + ug(z).

in domain D. We need the following assumption for the remainder of the chapter.

Assumption 5.3.1 ||g(z)|| > 0 for all x € D.

In order to solve the Ds-optimal problem, we consider two sub cost functions first,

i) = [ @)~ dolde,  mafe) = [ 17(0) - atelg(o)|da.
Using first order perturbation analysis, we have
mi(A+64) = [,|f(z) — Az — 6 Az|]*dz
— JolIf(2) — Az|® - 2(f(x) — A, 5Az) + |5 As|2dz
= 11 —2 [,(f(z) — Az,0A)dz + h.o.t.

If A minimizes 71, then

/ (f(z) — Az, 0Az)dz = 0 for any 64,
D

0 = [p(f(z) — Az)T6Az dz
= [ptrace(f(z) — Az)(0Az)" dz
= trace([,(f(z) — Az)zTdz §AT).

Since § A is arbitrary, we have

/ (f(z) — Az)zTdz = 0.
D

/ f(z)zldzx ( / a:a:Tda:) 1. (5.16)

Note that zz! > 0. We can always find a polytope region D; = {x € R" | |z;| < d;} inside

the domain D € 0. Integration of zzT over D; results in a positive diagonal matrix.

1
/ zalde = diag{ | 23dz,- - ,/ ridz} = §Vol(’D1)diag{d%, e d?Y (5.17)
D1 D1 2
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Hence, [, zzldx > fDl zzldz > 0 if Vol(D) > 0. I zzTdz is positive definite even for
D # 0. Thus we can invert [, zz7dz in (5.16). Use first order perturbation analysis again,

we have

ma(o + ba)
= [pIf(2) — a(z)g(z) — da(z)g(z)|*dz

= [plIf(@) — a(z)g(@)|* - 2(f(z) — a(z)g(z), da(z)g(2)) + [|dc(z)g(2)|* dz
= ma(e) — 2 [, (f (2)g(), ba(z)g(z))dz + h.odt.

If o minimizes 712, we have
0 = [p{f(@) - a(z)g(x), dc(z)g(x))dz
= Jp(f(@) — a(z)g(), 9(2))dc(z)da.
Since da(z) is arbitrary, we have
(f(z) — a(z)g(2), 9(2)) = 0,

ie.,

a(z) = (@), 9(z)) for z€D. (5.18)

Combining these two cases, we have

Theorem 5.3.1 The Dg-optimal pair (a*, A*) satisfies
(@) — A, g(x))

A*z, g(z))
a(z) = a(z) — (A", , (5.19)
(9(z),9(x)) (9(z), 9(x))
and
AF = / (f(z) — a*(m)g(:(;))deac(/ zxldr) 1= A— / de(/ cxldr) L.
D D
(5.20)
Where a(z) and A are defined by (5.18) and (5.16), respectively.
We can solve the Dy-optimal problem in the same way.
Theorem 5.3.2 The Dgy-optimal b* is given by
b = Vol(D)l/ g(z)dz. (5.21)
D

Proof. Using the first order perturbation to the cost function 72, we have
m(b+db) = [;llg(z) —b—ob|*dx

= [plla(z) — bl%dz — 2 [, (g(z) — b, 6b)dz + h.o-t.
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If b minimizes 72, we must have
/ (g9(z) — b,0b)dx =0, for arbitrary db.
D

Thus

/Dg(gc)azgc:/Dbdgc:b/D dz = bVol(D).

The next question we need to answer is the existence of the Ds-optimal pair (a*, A*).

The space C*[D] 3 « is of infinite dimension. The minimal cost (5.14) may not be achiev-
able. If that is the case, we can only find a sequence {(«;, A;)} to approach the minimal
cost (5.14). But {(w;, Ai)} doesn’t converge in C*°[D]. Fortunately, we can reduce it in to
a finite dimensional optimization problem. Hence the minimal is achievable. We rewrite

the Dy-optimal problem (5.14) as follows
i _ 5.22
minlf =, (5.22)
where || f]l = (/, ||f(ac)||2dx)% defines a norm on vector field f € C°[D], and
®={peCrD]| ¢(z) = a(z)g(z) + Az,a € C*[D],and A € R"*"}.

Clearly ® with inner product defined by (@1, p2)) = [5{¢1(z), p2(z))dz is a Hilbert space

of infinite dimension. Norm || - || is induced by inner product ((-,-)). Let
0 0 0 0 0
Eij=10 0 1 0 0
0 0 0 0 0

where only the (7,7)-th entry is 1. Then matrix A* = (a%) = > a;;Eyj. We rewrite
2]

equation (5.19) in theorem 5.3.1 as

o (z) = alz) — Za;jcpij(x). (5.23)
1,J

We need the projection theorem to prove the existence of the solution to (5.22).
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Lemma 5.3.1 (The classic projection theorem) Let H be a Hilbert space and M a closed
subspace of H. Corresponding to any vector x € H, there is a unique vector my such that
lx — mo|| < ||z — m| for all m € H. Further more, a necessary and sufficient condition
that mg € M be the unique minimizing vector is that x — mqg be orthogonal to M.

See Luenberger (1969) p.51 for the proof.

Theorem 5.3.3 The Dy-optimal problem (5.22)

min || f — ¢,
min I - ¢
is equivalent to the following problem
i —a— 5.24
min If —a—ol, (5.24)
where ®1 = span{p11, 12, Ynn} on domain D. Dimension of @1 is at most n?. Fur-

thermore, there is a unique solution ¢* € ®1 to (5.24).

®, is a finite dimensional subspace of Hilbert space ® and is hence closed. We identify
H with CX[D], M with ®;, z with f —«a, and m with ¢. Thus we can apply the projection
theorem to prove the last part of theorem 5.3.3.

The projection theorem also provides us a way to find the minimal ¢*, hence the minimal

pair (o*, A*). Let ¢*(z) = }_ aj;¢i;(z). Then the orthogonal condition
0

(f —a—¢* o) =0

for any ¢ € @, is equivalent to
> aliley,ond) = (f — o om)  forkl=12-n. (5.25)
12

It has n? unknowns and n? linear equations. Once all the inner products in (5.25) are
x
ij
o*(z) can be computed via equation (5.19).

provided, we can solve it for A* = (a ) via standard LS method. The corresponding

Remark 5.3.1 While solution ¢ € ®1 is unique, the corresponding D-optimal pair (o*, A*)
may not be unique. The pair (a*, A*) is unique only when {11, P12, , Pnn} form a basis
for ®1, i.e., @1 is of dimension n’.

In order to find a solution to equation (5.25), we need to compute the inverse (pseudo-
inverse when it is singular) of the coefficient matrix of size n? x n?. When n = 6, the size
of the coefficient matrix is already 36 x 36. We will show that the optimization problem
(5.14) is convex. Moreover, we will propose a simple descent algorithm to solve problem

(5.14).
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Lemma 5.3.2 The cost function
mie ) = [ (@) - alalg(a) - Aalda

is convez with respect to a(-) € C*[D] and A € R™™. Thus the minimal cost 11 is unique.
Proof. The space of smooth functions C*[D] over domain D is a linear space. So is the

Cartesian product space C®[D] x R™*™. For any 0 < v < 1,

m(yon + (1 — 7)oz, yA1 + (1 — 7)A42)

= Jp If (@) = (e (z) + (1 = Y)az(z))g(z) — (vA1 + (1 = 7)A2)z|*dz

= [pl(f(2) — e1(z) — Ar1z) + (1 =) (f(z) — az(2)g9(z) — A22)|*dz

< fpVPlf (@) — ealz) — Awzl? + (1 = )| f (=) — az(2)g(z) — A2z?dz

< Jpllf (@) — en(z) — Avz]? + (1 = Y)If (z) — ea(z)g(z) — Asz|*dz

= ym(a, A1) + (1 —v)m (a2, Az)

Thus 71 (e, A) is a convex function. =
Now, we can construct a converging sequence of ay(z) and Ay by

Ao=4,  aolz) = alx
A = Ao — [po—1(z)g(z

~—

bl

~—

o dz( [ zz’dr) ™, (5.26)

{Agz, g(z))
{9(2), 9(2))’

for k=1,2,---. It is easy to verify that
m(ak—1,Ax—1) > m (a1, Ax) > m(ax, Ax), for k=1,2,---
Combined with the convexity of the cost function 7;, we have

Theorem 5.3.4 The sequence {ay, Ar} in (5.26) will converge to the solution of the cou-
pled equations (5.19) and (5.20) as k — oc.

Proof. The cost {n:i(ax,Ax)} decreases monotonously and 7; is non-negative. Thus
{m (ag, Ax)} converges. Let Ay = (afj). From equation (5.23), we rewrite ay(z) in equa-
tion (5.26) as

ak(z) = ao(z E az] pij(x
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Thus (ag, Ax) € (ap+ @) x R™*™ which is a finite dimensional variety hence closed. So the
gradient algorithm (5.26) converges to a local extreme. The D -optimal problem is convex.

It only has a minimal cost 7;. n

. . . . A
Let’s consider a special case. Define the radius of domain D to be p(D) = max |||
T€

Lemma 5.3.3 When the radius p(D) — 0, (A,b) approaches (ngvﬂ) ,g(0)).
Proof. Note that f(0) = 0. Using Taylor expansion of f(z) at z = 0, from (5.16) we have

4 = fp(aé(xo) z + h.ot)z"dz( [, zz"dz) !
~ UL fo 2 ) + o,

= 3_]”69 + h.o.t.

Thus A approaches %ﬁ?), as p(D) — 0. Similarly, b — ¢(0), as p(D) — 0. n

The above sequence (5.26) becomes

9 9f(0) 9o (0) Lo
A == - o=t — g0 = A— ——bb'A = BA.
1= 5 (f(2) — ao(2)9(2))o=0 = 5 = —9(0)— wb%
Where B =1 — ﬁbbT . Property of B,
BQZU——LMHQZI—zqu+ L T = T " = B.
b'b b'p (b1'D)? b'b

Thus we have
Ay = BA; = B2A = BA.

Corollary 5.3.1 The sequence {a;, A;} converges to {a*, A*} in two steps,

(f(x) — Az, g(z))
(9(2), 9(x))

A* = BA, a*(z) = (5.27)

when radius p(D) — 0.
For the rotary double pendulum it is possible to “regularize” the drift vector field f
through of a preliminary feedback as described here. In our experiments, this was an

essential step in arriving at a stable system.
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5.4 Low gain control

The High Gain Dilemma. A major source of difficulty in achieving stability for the
rotary double pendulum to be described below is the possibility of oscillations corresponding
to unmodeled dynamics. For our system these are generally in the range of 6 to 8Hz and
are strongly destabilizing. It was observed experimentally that these oscillations could be
avoided if the gains could be kept low. Sepulchre has several interesting examples on the
high gain dilemma Sepulchre (2003).

However, when stabilizing open loop unstable systems there are limitations on how low
the gains can be. Letting p(s) = det (Is — A), the effect of the feedback term is to replace
p(s) by p(s) + q(s). Suppose that p(s) = s™ + p, 15"~ + ... + po has real coefficients and
that we want to find the “smallest” polynomial g(s) = g,—15" "' + gn_25""2 + ... + qo such
that p(s) + ¢(s) has all its roots in the left half-plane. Because the different entries in ¢

have different units we adopt a flexible characterization of size involving a scaling vector a.

A
|gla = Z gl

with the components of a being positive numbers.

Consider

Recall that for a lossless mechanical system, p(D) is automatically an even function of
D.
Fact 1. p(s) is Hurwitz if and only if the zeros of pe(s) = (p(s) + p(—s) and the zeroes of
Po(s) = p(s) — p(—s) are purely imaginary and interlace.
Fact 2. p(s) is Hurwitz with all roots real and negative if and only p(s?) has all its roots on
the imaginary axis. If this is the case, and if p’ denotes the derivative of p then p(s?)+p’(s?)

is Hurwitz.

Example 5.4.1 Consider the polynomial s?(s* —3s2+2). What polynomials can we add to
this to get a polynomial that has all purely imaginary roots? Consider adding as* + bs® + c.

Conditions on the coefficients are
Na—3>0; (a—3)2—-4b—-8>0

Possible solutions include a = 3, b= —2 (minimal for o; = 1 for all i’s) and b= —1, a =
3+ \/6, ete.

This analysis shows that there is a lower bound on the minimum gain required to
stabilize an unstable mechanical system and that this can be characterized in terms of its

determinantal polynomial.
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In the chapter 4, the feedback gain is obtained by solving a Riccati equation Ricc(A, b, Q),
where @ is a weighting pattern between control and states. There is no systematic way of
selecting () to derive a desired feedback vector/matrix k in general. Typically, one picks
a branch of @), solves the Riccati equation, and then choose a relatively good k, Elto-
hamy and Kuo (1998). An alternative approach is selecting k£ with small norm. Let’s call
it low gain feedback. Low gain is good, if we can achieve the same performance by low
gain instead of high gain. Low gain can lower the magnitude of control. Consider the
scalar control u = —kz, then |u| < ||k||2||z||2- Thus for domain D = {z|||z||2 < 1}, let
Umaz = Maxzep{|u|} = ||kl2. Then low gain implies small upmq,. Low gain is preferable
for the pendulum system, because large control input u will cause vibration and camera
sensor failure. Large control input will produce extremely large acceleration, which is not

safe. Low gain is a way reduce u for the same domain D of states.

Definition 5.4.1 Given a controllable scalar input linear system
T = Az + bu, z € R", (5.28)

the minimal gain design is to find k with minimal gain (= ||k||2), such that the closed-loop
system under feedback uw = —kz is o-exponential stable for some o < 0, i.e., ||z(t)]] <
e’ ||z (0)]].

Recall that for the controllable single-input linear system (5.28) we can find a linear
transformation z = T'T such that

z = Az + bz (5.29)

is the controllable companion form, where A = T~ AT, b= T'b, T = [g; qA;---;qA" 1],
and q is the nth row of [b, Ab,---, A" 1b]~!. We have that u = —kz = —kTZ. Let
k =[ky,+--,k,] = ET. Then, the closed-loop system becomes

z = (A — bk)z. (5.30)
The characteristic polynomial of the closed-loop system is
f(s) = det(sI — (A —bk)) = s™ + (an_1 + kn)s™ 4+ + (a1 + k2)s +ag + k1, (5.31)

and f(s) is o-exponential stable iff f(s+ o) is stable. We can expand f(s+ o) and rewrite

it in a matrix form

f(s+o) = (s+0)"+(an_1+ky)s" P +---+ (a1 + ko)(s +0) +ag + k1

. nel (5.32)
= " +pp-18 + + p1s + po,
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where

p=(po,p1,+sPn-1) =Po + (a+k)Z = po + (a + kT)Z (5.33)

with p, = (", (nfl)on_l, .- (?)0), a = (ag,a1, - +,ap_1), and

1 0 <. 0 0

o 1 0 0
5 = . (5.34)

n—2 (HIQ)UTL—?) 1 0

nb (e (hTy)o 1

Definition 5.4.2 Given a polynomial
p(s) = 8" + pp_15™ "+ -+ + p1s + po, (5.35)
the set P of parameters corresponding to stable polynomials is defined as
P ={(po,p1,**,Pn—1) € R"| the real parts of p(s)’s roots are all negative}. (5.36)

Then the minimal gain problem can be formulated as

Theorem 5.4.1 Given o < 0, the minimal gain feedback k* such that the closed-loop

system is o-exponentially stable exists and
k= [(p" —po)S ' —aT ! (5.37)
where
p* = argmin{||[(p — po) =~ — T2}, (5.38)
peD

with D = BNP, B={p € R"|||[(p — po)B " —a]T Y2 < ||(po X"+ a)T~ Y2}, and P the
closure of P. k* =0 when A is o-exponential stable by itself.

Proof. By definition, k* is the solution, if it exists, of the following minimization problem

inf {||k
inf (]2}

subjecting to p = p, + (a + kT)X € P. From 5.33, we have that

E=[p—ps)2 ' —a]T™', peP. (5.39)

Let p = 0, then k* = —(p,%~! 4+ a)T~! is a o-exponential stable controller with roots

of closed-loop system are all . Thus we only need to search for £ in the closed ball
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K = {k € R"|||k|l2 < ||k°[]2}, which is equivalent to searching for p in D = BNP. D is

compact, thus we can replace the inf by min. Thus the theorem follows. m

So far, we still do not know how to search in P to find the minimal gain k. Is the
minimal gain unique? It is easy to show that for n = 2 the minimal k£ is unique. But
for higher dimension, we do not know yet. There may exist many local minimums. The
rest of this section will focus on steepest descent algorithm for searching the minimal gain

controller k.
Lemma 5.4.1 Given a polynomial
p(s) = s" + pp—18" 1+ -+ p1s+ po,

the set of parameters corresponding to stable polynomials P forms a simply connected set
in RY = {(po,p1,-+*,pn-1) €ER"|p; >0, fori=0,1,---,n—1.}.
Proof. For any polynomial p(s), we can factorize it into a product of first-order and/or

second-order polynomials. Say n = 6, we can find ¢;’s and 7;’s in R, such that
p(s) = (s> + qs +71)(s* + qos + 19)(s* + g3s + r3). (5.40)

Thus, the roots of p(s) are the collection of root of s2+¢;s+r;. The real parts of root of 52+
gis + r; are negative iff ¢; > 0 and r; > 0. Therefore p(s) is stable iff (¢1,q2,93,71,72,73) €
R . We can expand p(s) as

p(s) = s®+ (g1 +q+q3)s® + (g2 + @23 + g3q1 + 71 + 12 +73)8*

+(q19203 + @172 + Q173 + Q23 + qor1 + q3T1 + gara) s

+(q1q2r3 + q2qsT1 + q3qire + T1T2 + o3 + T371) 57 (5.41)

+(qi7rors + gorary + gsriT2)s + r1T2r3

= 8+ pss®+--- +pis+po.

Thus ¢ = (q1,---,73) € RS is a parameterization of p(q) = (po,p1,: -+, p5) € P. The map
p: Ri — P is a multi-linear surjective map, thus smooth. Ri is simply connected, so is
P. Since the signs of p(q)’s components are all positive and ¢ € Ri, p = p(q) is still in Ri.

This argument is valid for arbitrary n. n

With the parameterization of p € P by ¢ € R’}, we can instead search for the minimal &
in g € R}. Let g(q) = [(p(g) —po)E 7" —a]T (T )" [(p(q) —po)Z~" —a]", then g = [IK|3.
Since we use the Euclidean norm, the steepest-descent method is just the gradient method

of Hiriart-Urruty and Lemaréchal (1991),

Gk+1 = gk — h * Vg(qr), (5.42)
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the step-size h > 0 being given by a line-search, and

Vg(ar) = 2[(p(ar) — po)S " — a7 (T HT (SN (Vp(ak))" (5.43)

The calculation of the map p(q) and Vp(q) takes some time, but is rather straight forward,

eg forn==6
P(Q) = (?”17"27"3, q17or3 + qor3r1 + q3riTe,
Q19273 + Q29371 + q3q172 + 1172 + T2T3 + T37T1, (5.44)
9149293 + q172 + q173 + q2r3 + 271 + 371 + g372,
q192 + 42g3 + @31 + 11 + 12+ 73, q1 + g2 + ¢3),
0 ToT3 Gor3 +q3re qogs +1o+713 g +gq3 1
0 T371 gr1+qirs @ +r3s+r1 ogg+qr 1
0 172 qiro+qri @ +ri+re g +q 1
Vp(q) = (5.45)
T9T3 (oT3 +q3T2 G293 +To + T3 g2+ q3 10
T3r1  @3T1 +q1T3  g3q1 + 713+ 711 g3+ q1 10
T1T2 @172 + Qo1 q192 +71 + T2 q1+ qo 10

In each step, we need to make sure that ¢ € R",. We can force the direction pointing

out of R’} to zero, i.e. move on the boundary hyper-surface of R} .

Remark 5.4.1 (1) Because the set P need not be convez, it is not necessarily easy to search
for k directly, so we need to perform a Routh test for each set of the parameters p. It is
rather easy to search in the parameterization space of the parameters of the polynomial,
which is M But we introduce redundancy by doing so, since interchanging (q;,r;) with
(gj,75) will result in the same polynomial p(s). Thus it may introduce extraneous minimal
points. (2) It is necessary to fix o < 0 before the minimization procedure, because, otherwise,

the characteristic polynomial of the closed-loop system will have zero as a root.

Example 5.4.2 In this example, we try to show that the minimal gain design method
described above can find a much smaller k compared with the LQR method. Consider the
linearization (A,b) of the double pendulum with

01 0 0 0 0) 0
00 0 0 0 0

A |00 0o 10 of o |
00 5.0 0 —221.1 0 1.8
00 0 0 0 1 0
0 0 —2472 0 1813 0 ~3.1
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let pick @ = diag{20, 10,400, 20, 1000,40}, then we have
k = b * Ricc(A, b, Q) = (—4.8,—5.0,141.6,13.2, —249.3, —10.2).

We have the ezponential stable rate o = max{Re[eig(A—bxk)]} = —0.93 and ||k||2 = 287.3.

For the minimal gain design with o = —0.93, we have

q=(0,3.8,0,0,51.2,0),
p = (0,0,0,0,51.2,3.8),
k* = (—0.0009, —0.0042, 82.1, —2.6, —56.9, —4.5),

with ||k*||2 = 100, which is much smaller than k.

5.5 Application to the double pendulum

Example 5.5.1 Let’s look at an ezample to get some idea about the Dy-optimal approzi-

mations. Consider the 2nd order system

T1 = sinxo + % COS T
(5.46)
To = —Sinx] + U CoS Ty

The standard linear approrimation gives us

T = Ax +ub

0 1 1
with A = ( 0 ) and b= ( ) ) Follow the procedure for feedback linear approxima-

tion for p(D) — 0, we have
1 1 1 1 1
A* = (I — —b")A=_ , br=b= ;
( bTb ) 2(—1 —1) (1)

o (z) = (f(z) — A*z,g(z)) _sin(w1 —T2) + %(.771 + z9)(cos 1 — cos o)
C (g(@),g(2) cos? 71 + cos” 23 :

and

For the double pendulum application, our laboratory experience leads us to believe that
it is more important to accurately approximate the system (3.11) in coordinates (62, 63)
than in 6;. So we use weighted norm || - ||, instead of the Euclidean norm. Then Corollary
: : 1 T\ 2 1 T :
5.3.1 changes slightly. Note that the equality (I — bb"W)s =1 — bb™ W still
ges slightly quality (I — ) W
holds. Thus we have
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Corollary 5.5.1 The solution {o*, A*} to the weighted D-optimal problem satisfies

1
b'Wh

BTW)A, o) = L@ A0y (5.47)

A= (I - (9(2),9(x))y

when radius p(D) — 0.
Let W = diag{e,¢,1,1,1,1}, where € > 0. Following the above derivation for ¢ — 0,

we have

01 0 0 0 0 0
0 0 —3.9315 0 34.5878 0 1
1 0 0 01 0 0 0

A* = (I-——b"W)A = , b=
b Wb 00 6.2939 0 —-6.2939 0 —0.1635
0 0 0 0 01 0
0 0 —1.2269 0 1.2269 0 —0.8493

Figure 6.4 shows a plot of the double pendulum at its inverted position with feedback
control law computed from its feedback linear approximation (a*(z), A*,b). This plot is
put in Chapter 6 for comparison with other stabilization results. The linear feedback gain

we used after feedback linear approximation is
E=1[0.7 218 200 79.2 —126 —27.4]
and

eig(A — bk) = {—3.4682 £ 0.50197, —2.2113, —1.3882 + 2.37934, —0.5776}.



Chapter 6

Implementation of the DM DL on
the double pendulum

This chapter describes a series of experiments that were performed in order to demonstrate

the DMDL proposed in chapter 2 and stabilization results in chapter 5.

6.1 Stabilization

The HRL rotary double pendulum described in Chapter 3 has four equilibrium states:
down-down, down-up, up-down, up-up, as shown in its dynamical equations (3.11). We have
successively stabilized the double pendulum at all of these four equilibrium points. The up-
up stabilization is achieved using the feedback linear approximation and stabilization results
in Chapter 5. The rest are done using LQ controller design based on its standard linearized
model (3.12). The difficulty of stabilization increases in the order of down-down, up-down,
down-up, up-up. Indeed, there is no difficulty at down-down position! For this position, we
only need to change it from bounded-input bounded-state stability to asymptotic stability.
The down-up stabilization is more difficult than up-down, because the control of the second
vertical link has to “pass through” the first vertical link. Up-up stabilization is the most
difficult, because the two vertical links need to be kept upward simultaneously while the
associated coupling effects tend to be destabilizing. Limited torque, limited communication
rate, vibration, sensoring inaccuracy, and other unmodeled effects also need to be overcome.
A photograph and a plot shows stabilization at each of the four equilibrium states, see

Figure 6.1~6.4. What follows is a list describing our approach in each case.

7
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For down-down control, the weighting matrix in LQ optimization is
Qua =100diag{1 1 1 1 1 1},
and the resulting linear feedback gain and closed-loop eigenvalues are
kgq = [10 12.7907 16.1927 1.3920 50.6430 4.5563]
and

eig(Agq—bagkaq) = {—12.3343, —1.5798+4.74607, —1.0051, —0.2111+2.3303:}.

For the down-up stabilization
Qay = diag{0.01 0.02 1 0.1 10 0.1},

kaw = [-0.1, —0.5082, 10.5262, 1.3055, —77.6966, —14.0438],

and

eig(Adgy — baukay) = {—5.5322 £0.20775, —0.2338 +£0.2116¢, —0.0495 + 2.3602:}.

For the up-down one
Quq = diag{0.01 0.02 1 0.1 10 1},

kya =[-0.1 —0.5582 —81.8311 —34.4866 6.4736 1.2933],

and

eig(Aug — buakug) = {—0.5019 + 5.5149i, —2.3599 +0.0271i, —0.2338 & 0.2116i}.

For the up-up stabilization, the control law is computed from its feedback linear
approximation in Chapter 5. The results are repeated here for comparison only. The

linear feedback gain used after feedback linear approximation is
kE=1[0.7 218 200 79.2 —126 —27.4].
The resulting eigenvalues are

eig(A — bk) = {—3.4682 £+ 0.5019¢, —2.2113, —1.3882 + 2.3793i, —0.5776}.
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Figure 6.1: Top: Photograph of down-down stabilizing control. Bottom: Plot of experi-
mental data of down-down stabilizing control.
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Figure 6.2: Top: Photograph of down-up stabilizing control. Bottom: Plot of experimental
data of down-up stabilizing control.
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Figure 6.3: Top: Photograph of up-down stabilizing control. Bottom: Plot of experimental
data of up-down stabilizing control.
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Figure 6.4: Top: Photograph of up-up stabilizing control. Bottom: Plot of experimental
data of up-up stabilizing control.
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6.2 Generate circling orbits

In Figure 6.5 and 6.6, the top link circles while the other links oscillate. In addition to
developing algorithms for stabilization, we also consider the generation of this periodic
motion. This result together with an oscillation transition enlarge our “vocabulary” in
that they represent motion states that can be used as pieces in a more elaborate motion
script.

The control used is negative feedback for the motor link and the first vertical link plus
a positive feedback control for the 2nd vertical link. The positive feedback for the 2nd

vertical link acts as a periodic feedforward control.

u = k1x1 + koxo + ksx3 + kaxa + ysign(ze) cos xs.
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Figure 6.5: Plot of top link circling other links oscillating.
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Figure 6.6: From left to right and top to bottom are a series of photographs of top link
circling other links oscillating.
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6.3 Transition between equilibria and circling orbits

Finally we describe a transition which takes the system from up-down stabilization to top
link circling other links oscillating, in Figure 6.7~6.10.

We start the system using the up-down stabilization control, and then switch the control
to negative feedback for the motor link and first vertical link and positive feedback for the

second vertical link.
u=u=kix1 + koxo + k3xs + ksxs — ksxs — kgTs-

Once the second vertical link reaches its upright position, we switch to the control for

circling orbits described in Section 6.2.
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Figure 6.7: Plot of the transition from up-down state to top link circling other links oscil-
lating.
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Figure 6.8: From left to right and top to bottom are a series of photographs of the transition
from up-down state to top link circling other links oscillating (Part I).
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Figure 6.9: From left to right and top to bottom are a series of photographs of the transition
from up-down state to top link circling other links oscillating (Part II).
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Figure 6.10: From left to right and top to bottom are a series of photographs of the
transition from up-down state to top link circling other links oscillating (Part ITI).



Chapter 7

Conclusions

We have outlined a program for extending MDL to Dynamic situations (DMDL), although
this extension is difficult and in some ways imperfect. The study of the control of unstable
mechanical systems is quite challenging, involving difficult problems caused by limited
communication rates, quantization errors, and parasitic dynamics. Trajectories following
problems, of the type investigated here are particularly difficult and have previously not
been investigated from the motion control language point of view. We have provided a
mathematical foundation for designing control systems capable of processing choreographic
scripts. The language atoms are defined based on a discretization of a function space which
includes the possible trajectories of the dynamical system under consideration. The class
of dynamical systems considered here can model systems with momentum and this has the
effect of making our motion control languages context sensitive.

A useful class of language elements (atoms) was constructed using phase space charac-
terizations of the input space appropriate for a second order single pendulum system. Two
types of phase space characterization were given: the dumbbell phase space and the bean
phase space. We can identify these with pulse trains and then showed that under either
type of pulse train, the pendulum will turn one full circle after each pulse.

We built an experimental apparatus to explore the utility of our ideas. The HRL
single pendulum that we used for the experiments consists of a horizontal link, driven
by a servomotor, and a vertical link that moves freely in the plane perpendicular to the
horizontal link. A digital camera based angular position sensor was used to measure the
angular position of the vertical link of the pendulum. The HRL double pendulum consists
of a horizontal link, driven by a servomotor, and two vertical links that move freely in

the plane perpendicular to the horizontal link. In order to measure the position of the
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vertical links, a rotary electrostatic resolver is mounted on each of the vertical link joints
and communicates with the host computer wirelessly.

Taking the physical bounds of the control signals into account, a swing-up control of
the single pendulum was designed and tested with the experimental apparatus. In order to
make our swing-up control strategy robust we did not demand that the system reach the
equilibrium exactly. A locally stabilizing controller drives the system to the desired state
after the swing-up procedure places the system near the equilibrium point. We computed
the regions of attraction for unstable, linear control systems driven by bounded inputs.

One way to stabilize a wide class of nonlinear system is to linearize the systems around
its equilibrium and to apply a linear feedback control of the linearized system to the original,
nonlinear system. In some cases, a low gain controller can be designed in this way. Low gain
is desirable because of the limited torque of our motor. This design was used as a way of
enlarging the domain of attraction. We formalized the low gain control as an optimization
problem, and then provided a gradient algorithm which provides a partial solution.

We developed a new type of nonlocal linearization to deal with local stabilization in a
lightweight structure with limited control torque. We presented the linearization problem
as an optimization problem for which a linear system and a feedback control are selected
simultaneously such that the distance between the nonlinear system with nonlinear feedback
and the linear system is minimized in a neighborhood of an equilibrium. We have called
this procedure feedback linear approximation. The optimization problem is reduced to the
solution of two coupled equations involving the feedback control function and the matrix
corresponding the linear approximation. The pair is solved using the projection theorem.
Although a formal explicit solution is available it is more convenient to use an iterative
algorithm which we have derived. Applying this linearization method to the HRL double
inverted pendulum, we successfully stabilized it at its up-up position.

We now offer some suggestions for future work. It would be desirable to have better
stabilization algorithms and a more complete knowledge of the limits on the domain of sta-
bilization. One of the basic problems here involves the relationship between the stabilizable
set and magnitude and bandwidth limitations of the actuators. That is to say, typically
the control u is bounded both in the time and frequency domain. This is also related to the
currently unknown “Fundamental Theorem of Robotics”, which would place precise limits
on the achievable paths, in terms of the capabilities of the sensors and actuators.

Optimal control of unstable Lagrangian systems is an element in the study of DMDL.

Optimality is a subgoal but expressiveness is more important. We want to find an efficient
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way to move from one equilibrium to another. This could mean a minimal time transfer or
a minimal energy transfer. The theory of geometric control as applied to smooth nonlinear
systems offers some techniques for answering those problems.

Eventually we want to produce a modulized prototype software package, capable of
incorporating a more or less arbitrary sensing and control algorithms. It should also be
able to accept descriptions of tasks, decompose the task into a sequence of trajectories, and
select the appropriate control sequence to accomplish the task.

Control and optimization the DMDL level also needs to be investigated. In DMDL we
define language atoms in terms of quantization of trajectory space instead of state space.
This gives us an opportunity to do control and optimization in the quantized trajectory
space. This approach may not always yield the very best performance but control and
approximate optimization could be much easier on this higher level than on the dynamical
system level. The performance can be expected to depend on the construction of atoms.

Finer atoms will improve the performance but will also increase the implementation cost.
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