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Abstract

Stabilization of nonholonomic systems by time-varying
control laws is considered here to be a special case of
time-invariant dynamic feedback. The paper presents
dynamic feedback laws for stabilization of the class of
drift-free controllable systems, where the first derived
algebra of control vector fields span the tangent space.
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1 Introduction

In this paper, we present a viewpoint for finding stabi-
lizing control laws for a class of nonlinear systems which
cannot be stabilized by continuous static feedback. As
a prototype in this class, consider the following system,
often referred to as the nonholonomic integrator,

Ty = w
Ciz = U2
I3 = ZTiuz — T2l,

where 1,2, T3,u;,us € R. The stabilization of above
system is important because it models various physical
situations [7)].

As shown in [3], there exists no continuous feedback
law that asymptotically stabilizes the nonholonomic in-
tegrator. The topological obstruction to stabilization
by a static feedback is expressible in terms of the de-
gree of a mapping [6, 3].

A number of approaches have been proposed for the sta-
bilization of nonholonomic systems. These approaches
can be broadly classified into three categories. Stabi-
lization by discontinuous time-invariant control laws,
time-varying stabilization, and hybrid stabilization.
The results given here are constructive, and intended
to bring out the topological issues more clearly. Our
point of view is motivated by the following considera-
tion.
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Question 1 Consider a control system & = f(z,u) z €
R", u € R™, which cannot be stabilized by a stat-
ic continuous feedback u : R™ -» R™. Is it pos-
sible to associate with it a higher dimensional man-
ifold R™ x N and find smooth static feedback laws
u(z,8) and g(x,0), (z,0) € R" x N such that, for any
initial condition (z(0),68(0)), the solution of

f(z,u(z,6)) 1)
9(z,0), )]

satisfies limy_, o0 (z(),0(t)) €0 x N ?

z

é

il

In finding such a system, we would achieve the goal of
stabilizing the original system & = f(z,u). Thus, the
problem of stabilization to a point in the original space
has been transformed to the problem of stabilization to
a submanifold in the enlarged state space.

Remark 1 Stabilization of nonholonomic systems by
periodic time-varying feedback is a special case of the
above described situation, where the dynamical system
& = f(z,u(z,t)), x € M, a differentiable manifold, can
be seen as embedded in the larger space M x S!, with

& = f(z,u(z,9))
6=1,

where 6 € S, and stabilization of z to some point zg
in the manifold M can be thought of as stabilization of
(z,8) to the submanifold z¢ x S? in the enlarged state
space M x S1.

As shown by Coron [4)], it is always possible to stabi-
lize a driftless, controllable system by a smooth peri-
odic time-varying control law. However, periodic time-
varying control laws make two special choices in the
above raised Question 1, by choosing N = S! and
g(z,0) = 1. We will show that relaxing these two con-
straints, helps us construct simpler feedback laws for
stabilization of nonholonomic systems.

This paper presents a constructive solution to the prob-
lem of feedback stabilization of the class of drift-free
controllable systems where the first derived algebra of
control vector fields spans the tangent space of the s-
tate space at every point (if E° is a subbundle of the



tangent bundle spanned by the control fields, then the
first derived algebra is given by E! = E° + [E°, E°)).
The feedback law is derived by first solving the problem
of stabilization of a generalization of the nonholonomic
integrator, called the general position-area system [2].
The system is described by the equations

u

.’lZUT

& = 3

] (4)
where z, u are column vectors in R™ and y € so(n), n >
2.

—uzT,

The importance this system is that it is the standard

form of the class of driftless controllable systems of the
n(n+1)

form 2 = B(z)u, u € R", 2 € R™ 7, whose first de-

n(nt1)
rived algebra spans the tangent space TR~ 2  at any

point. In [2], it was shown that a large class of systems
can be transformed to the form of (3)-(4) up to a suit-
able order in the neighborhood of a given point such as
the origin. Bloch et al. have studied the discontinuous
stabilization for the position-area system [1].

The paper is organized as follows. To fix ideas, we first
present the dynamic stabilization for the nonholonomic
integrator. We then analyze the general position-area
system in detail and present smooth feedback stabiliza-
tion laws for it. Finally, we extend the stabilization re-
sults to the class of drift-free controllable systems whose
first derived algebra spans the tangent space.

2 Stabilization of the nonholonomic integrator

Notation: R" denotes the n-dimensional Euclidean
space. We will use O(n) to denote the group of n-
dimensional orthogonal matrices and so(n) the Lie al-
gebra of n x n skew symmetric matrices: yT = —y.
The norm of a n x n real matrix A is defined as
[14]] = /tr(AAT). If £ = (z1,%2,...,7,) € R", then
Izl = \/7? + 22 + - -- + 2. Given the vector differen-
tial equation £ = f(z,t), we say f € E, if f is continu-
ous and satisfies the Lipschitz condition.

Definition 1 Let £ € R" and § € M a compact dif-
ferentiable manifold. Following Zubov [8] we define the
submanifold N = 0 x M to be a asymptotically stable
submanifold of the differential equations

& = f=,61) (feh)
6 = g(6t) (9€E)

if there exists for each € > 0 a number § > 0, such
that the inequality ||z(0){| < & implies that the solu-
tion (z(t),8(t)) corresponding to the initial condition
(z(0), 8(0)), satisfies ||z(¢)]] < &, ¥Vt > 0 and if there is
a number dp > 0, such that for ||z(0)|| < do,

{l

Jim ) =0

(5)
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If equation (5) is satisfied for all z(0) we call the sub-
manifold N to be asymptotically stable in the large.

We will motivate our stabilization approach by the fol-
lowing discussion. Consider the nonholonomic integra-
tor

& o= w (6)
T3 = ug
T3 = iUz — TaUqp.

Observe that, u; = —z; and u, —Zo, exponential-
ly stabilizes z; and z5. Motion in the z3 direction is
produced by generating areas in the z; — z2 plane. Is
there a natural way to stabilize 3 ? Let us add an-
other dimension to the above system by introducing
the variable # € R. In the (z;,z,73,6) space con-
sider a one-parameter family of embedded submani-
folds {S,}, » > 0, defined by S, = {(z1,z2,73,0) €
R* : z r cosf, z r sinf}. Observe that if
(.’131,.’172,13,0) € Sq, ¢ >0, then .’i:g(t) = X1&y — Lok =
q® 6(t). If we let 6(t) = —=x3, then &3(t) = —¢* 3
and hence z3 is exponentially stabilized. Thus, in
(21,2, 23, 0) space, we have identified a structure that
helps us establish stability.

Our control strategy will be to design u; and u; to bring
(21,22, 3,0) to the submanifold Sqt) and let 6 = —z3
to drive z3 to zero. We make g(t) go to zero as z3
approaches zero, thereby bringing all z;, z2, 3 to zero.

Theorem 1 Let # € R, and (z;,z2,23) € R®. If

u; = —Z1 +x3cosf and up = —x3 — z3sin @ then, for
T = up
Tz = up
T3 = ZTiUz — Tl
é xs3,
the submanifold N = { (z1,%2,23,8) € R*
(z1,z2,z3) = 0} is asymptotically stable.
Proof: Introduce
Y1 cosf —sinfd 0 T
Y2 = sin@ cosf@ O zz |, (7)
Ys 0 O 1 I3

In terms of (y1,¥2,¥3), the above equations take the
form

n -1 . ~y3 1 n
U2 = y3 -1 0 Y2 (8)
Y3 0 0 -y Y3

Observe that the equations for (y1,y2,y3) do not de-
pend on 6, so they can be treated as an autonomous



system of equations in R®. Define the Lyapunov func-
tion
V(y1,92,93) = (11 — y3)® +v3 + 93

From equation (8),

V(y1,92,¥3) = —2((y1 = ¥3)> +¥5 +y2u3(y1—y3)). (10)

Notice that if ||ys|| < 1, then V (y1,y2,y3) < 0. Let

B = {(y1,¥2,y3) € R® : V(y1,92,33) < 1}.

Observe that B € {|lys]| < 1}, therefore is a positively
invariant set. Let

S = {(y1,y2,93) € B: V(y1,92,y3) = 0}.

From equation (10), if (y1,¥2,y3) € S, then ¥, =
ys and yo = 0. Substituting this in equation (8),
we conclude that if (y1,y2,y3) € S, then y3 = 0,
72 = y2, and g3 = 0. It follows therefore that. the
largest invariant set contained in S is {0}. Hence,
by LaSalle’s stability theorem (recall y satisfies an au-
tonomous system), if (y1(0),y2(0),y3(0)) € B, then
lim, oo(yl (t)1 yz(t)1y3(t)) =0

Let Q(e) {(z1,29,23) € R%a? + 23 + 113 <
€}, € > 0. By equation (7), we have y3(t) + y3(t) =

z2(t) + z(t), ys(t) = z3(t), from which we can de-
duce that if (z1,z2,23) € ( ), then (yl,yz,yg) € B.
This shows that if (zl(O),xg(O) z3(0)) € Q(3), then
limt_, 0 (.’L‘l (t),lﬁg (t),z;;(t)) = (0,0,0) Q E.D.

We can now extend this viewpoint to find stabilizing
control laws for the general position-area system.

3 General position-area system

Recall that the system is described by the following set
of equations,

u

(11)

T (12)

U T

y —uz,
where z and u are column vectors in R" and y €
so(n), n > 2. We will find smooth stabilizing con-
trol laws for the above system by embedding it in
R™*" x s0(n) x O(n). We motivate the choice of O(n) by
the following discussion. To understand how the gen-
eral problem has an additional level of complexity with
respect to the special case of n = 2, we start by looking
at the qualitative nature of the trajectories that need to
be generated in order to stabilize y. For n = 2, we saw
that motion in z3 direction was produced by generating
areas in the z; — x5 plane. Now, we need to generate
n(n — 1)/2 areas (dy;; = z;dz; — z;dz;) for stabilizing
y € so(n). This can be achieved as follows. Let e € R"
be a unit vector which evolves as é(t) = ye. Suppose we
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can make z(t) = ge(t) where q is a positive constant,
then the norm of y(t) from equation (12) evolves as

d tr(yy”)
dt

which suggests that norm of y will decrease until e be-
gins to lie in the null space of y. Essentially, what
is happening is that the vector e is generating areas
in R™ to stabilize a subspace of yy7. To stabilize all
n orthogonal subspaces of yyT, we will evolve n or-
thonormal vectors in R", each of which will generate
areas to stabilizes a subspace of yyT. This is naturally
achieved by introducing ® € O(n) such that © = y0@.
The columns of © then form the desired orthonormal
frame. We arrange matters so that we can switch be-
tween these orthonormal vectors in a smooth way. This
is done using a Selector Function introduced in the fol-
lowing definition. Now by letting g gradually go to zero
as y goes to zero, we can stabilize both = and y.

=-2¢" |lyel?,

Definition 2 Selector Function: Let e(¢)
(er(t), ea(t), -+, en(t)) € R™ be a C! function of
time. We will call e(t) a selector function of period T
and strength € > 0, if it satisfies the following properties

e e(t) = e(t + T) such that |le(t)]] < 1 and ||é(t)]] is
bounded,

. ft+T||e,( W dr > € Vi, and e;(t)-e;(t) = 0if i #
i,L,j€el...,n

We then say that e € SF(n,T,¢)

Lemma 1 Suppose e(t) € R” is a selector function
and y € so(n), then

eT(t) y é(t) = 0.

Proof: If e(t) = 0, then the proposition is trivial. Sup-
pose e;(t) # 0 for somes € 1...n, then by the definition
of selector function, e;(t) = 0 if i # j. Differentiating
e;(t)-e;(t) = 0, we conclude that e;(t)-é;(t) = 0if i # j.
This shows thateT(t) y é(t) = yi; e;(t)és(t), but y; =0
because y is skew-symmetric. Q.E.D.

Lemma 2 Let ¢ € SF(n,T,¢), y(t) € so(n) and
© € O(n) such that © = w(t)0, where w(t) € so(n).
Suppose {y(t), w(t)] = 0 V¢, then

t+T t+T T
| lweeidr> ¢ / WO _ a4(r) ar.

Proof: Let z = ©Ty0©, then it follows ||z|| = ||y|| and
llyOell = |lzell. Because [y(t),w(t)] = 0, it follows



12N = llg(®)]]- Let uf = (0,...,1,...0) with 1 in
the ** position. Let A(t) = :+T [[2(7)]} dr. Observe

2(t) ugl| > uAgmforsomel‘ze1,...,n. Then,
"

%

t+T t+T
/ lze(ll dr > / llex (D) llzuel] dr
t t

t+T
> / llew (T (lzue ()] — A)
t
> e eu® - A) (13)
O ”

n
where (13) follows from the definition of selector func-
tion. Also notice that

A

t+T t+T
[ tonar < [ Ce@neny ar
¢
< T ([lz@+A). (15)
Combining inequalities (14)-(15) we get the desired re-

sult. Notice in particular that if y(7) = yo a constant,
then

t+T € t+T
[ tweeiar> = [ ol o

Q.E.D.

We now present a feedback stabilization law for the
position-area system. :

Theorem 2 Let S be a subspace of so(n) and P :
so(n) — so(n) be a projection operator onto this sub-
space. Let z € R", g € R, ® € O(n), y € S, and
e € SF(n,T,e). If

u=—z + ||y||Oe + q(yBe + O¢),

then for
T = u (16)
gy = PleuT —uzT] 17
g = —(a-1lvl) (18)
6 = y0 (19)

the submanifold N = { (z,y,¢,0) € R" x so(n) x R x
O(n) :z =0,y =0,¢g =0 } is asymptotically stable in
the large.

Proof: First notice that, for S = so(n) and P the
identity operator, equations (16)-(17) reduce to the
position-area system. Let (z(t),y(t), ©(t),¢(t)) be the
solution of equations (16)-(18) for a given initial con-
dition (z(0), ¥(0), ©(0), ¢(0)). To simplify notation, we
will often drop the time index ¢t and just write the solu-
tion as (z,y,0,q). Let p = Oe, p= ©¢, and r = z —gp.
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Then u = —z + |ly||p + qyp + ¢p. From equations (16)-
(18) we get 7 = —r. Notice that

d tr(yTy)
dt

2 tr(y?T Plzu” —uzT]))  (20)
= 2tr(yTzu? — uz?)) (21)

where equation (21) follows from the fact y € S and P
is a projection on S. Substituting for z(t) and u(t) we
get

diyl® _ L, e T T 2, (=T
- = 4@y p) + ¢ yp)
+ llylitr(@Tyr) + qtr(@yr)
+ qtr(pTyy"r)}. (22)

First, observe that tr(p7 yp) = 0 from Lemma (1). Now
using ¢r(AB) < ||Al|||B]|, from equation (22), we get

2
dﬂ(%“_ < —4?ypl* + 4 lall vl llupl Iirl

+4llyll Nypll il + 4llgll A1yl NIl (23)
dllyll®

e < =2 gl el = ligll Ir1D* = 2%llypl?

+2 lyll® irl® + 4 liylt Nypll N7l
+ 4 lgll 1121l [yl {7l (24)

W< gl e + 2 ol il +2 Yl gl il 25)

Because ||p(t)|| and ||p(t)]| is bounded by the definition
of selector function and r(t) = r(0)e~t, equation (25)
can be written as

W< Al e+ B e, 26)
for positive constants A and B. From equations (26)
and (18), we can deduce that {|y(t)|| is bounded and g(t)
is bounded. Therefore, for the given initial condition
(¥(0), ¢(0)), there exists M < oo such that ||y(t)|]| < M
and |lg(t)|| < M,Vt. Hence, we can rewrite equation
(23) as

2

_t{%l_ < —4¢ |lypll® + My et (27)
for some positive constant M; which depends on the
initial condition (z(0),y(0),g(0)). Defining V(t) =
Hy@®i? + My et, observe that we have V(t) <
—4 ¢* |lypll*> < 0. As V(t) > 0 and non-increasing,
it follows that lims;,., V(t) = 0, implying that
lim¢ o0 iﬂ%ﬁtﬂﬂ = 0, i.e. limi,eoy(t) = yo for some
Yo € so(n). Therefore, by equation (18), lim;—, ¢(t) =
[lyol|. We now argue that ||yl = O.

As limg ;00 illgdgflll = 0, from equation (27) we obtain
limisoollyoll® lyop(¢)[I*> = 0. Since p(t) = O(t)e(t),
where e(t) is a selector function, we conclude from Lem-
ma 2 that ||yo|| = 0. Therefore, lim;,, ¢(t) = 0 and,
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Figure 1: The panel shows the result of stabilization of
the position-area system for n = 10, with the
graphs showing the evolution of ||y|| plotted a-
gainst time.

t

from z(t) = gp + ae™?, it follows lims, o z(t) = 0.

Q.E.D.

A simulation of the stabilization of the general position-
area system using the feedback control law given in
Theorem 2 is shown in Figure 1, where the follow-
ing selector function e(t) € R" with period T = 1 was
used in the simulations

. o, it T
= ), 0<t< =
ei(t) sm(T),O_t_n
=0, Lescr
n
T
ers1(t) = ex(t—=), k{el...n}.

n

We now extend the result of Theorem 2 to the class of
drift-free systems 2 = B(z)u, which are first bracket
controllable. As shown in [2], for such systems, we can
choose coordinates in a neighborhood of a point, say
z = 0, so that equations of motion take the form (33)-
(34). In the following, theorem we present feedback
laws that asymptotically stabilize such systems. First,
we state a modification of the result due to Krasovskii.
For details see [5].

Result 1 Let M be a compact differentiable manifold,
z€R” and 6 € M. Let

f(@,0,1)
9(z,6,1)

The existence of a Lyapunov function v(z, 6,t) satisfy-
ing inequalities of the form

(f € E)
(g € E).

I

]

v<allzl]”, < —anllz||"*” (28)

for sufficiently small ||z|| is necessary and sufficient for
the solution (z(¢),8(t)) of the differential equation (28)
to satisfy an estimate of the form

lz@1~" = BllzOI™" > at ¥Vt 2>0.  (29)
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for small initial values ||z(0)}|. Here, a1, a2, , v, @ and
B are positive constants.

In case an estimate of the type (29) is satisfied, then
v € C; can be determined such that, in addition to
(28), the inequality

Ov _ .
ol < agllal™ G =1,...,m505 > 0,7 > 1) (30)
1

is valid. As a result, the solutions of the modified dif-
ferential equation

f(z,6,t) + h(z,0,t) (f+heE) (31)
9(z,6,1) (32)

with sufficiently small initial values ||z(0)]] also satisfy
an estimate of the form (29) if lim ;)0 ”’l’—l%f—ﬁm =0.

T

é

Theorem 3 Let S be a subspace of so(n) and P :
so(n) — so(n) be a projection operator onto this sub-
space. Let z € R", u € R", ¢ € R, ©® € 0O(n),
y € S,and e € SF(n,T,¢). Let R(z,y,u) € R" and
RY(z,y,u) € so(n) have vanishing first partials with re-
spect to £ and y at the origin and be linear in u, such
that R(z,y,0) = 0, and R(z,y,0) = 0. If

= —z+ ||y{|@e + q(||ly]| *y@e+BQ¢) ,0<v <1

then, for
T = u+ R(z,y,u) (33)
g = Plau? —uz?]+ R (z,y,u) (34)
g = —(@-lyl) (35)
O = _:'/_ e;
Iyl 0

the submanifold N = { (z,y,q,0) € R" x so(n) x R x
O(n) : z =0,y =0,¢9 =0 } is asymptotically stable.

Proof: First notice that, by definition, R and R! sat-
isfy

. R . R!

lim oo my =0, lim e =
liz.v.ali-o0 (|2, y, qlf lley.all~0 [|z,y, q|

We will show that, for small

initial values ||z(0),y(0),¢(0)]| < &, the solutions to
equations

T u (38)
g = Plzu? —uzT] (39)
¢ = —(a—Iiyl) (40)
: Yy v

© TP 0 ,0<v<«l (41)

satisfy for & > 0, # > 0 and ¢ > 0, an estimate of the
form

llz(t), y (), a@) I =>+” — Bl|z(0), y(0),q(0)|| ~*+* > (o_:t |
42



which using the result (1) and (37) proves the theorem.

Let p = Oe, and r = z — gp. From equations (38), (40)
and (41), we get

r=—r. (43)
From equations (43) and (39), we obtain
d [yl —
AW~ —ata? Iyl lunl? + lierGo"yr) +
q Iyl =" tr(p"yy"r) + ¢ tr(pTyr)}. (44)
d 14w -
7'1‘5—” = =2¢" Iy~ Nlypl® + o(r, v, 0) (45)

where o(r,y,q) < b||r,y,q|| for some positive b. Ob-

2
serve that for r = 0, equation (44) reduces to I";{ =
—442 |lyll=" |lyp||>. We will first show that the solutions
to the system of reduced equations

d|£ﬂ2 = —4¢ {lyl~"llypll® (46)
i = -l 47
S o Y
= wr® )

satisfy, for a; > 0, 81 > 0 and ¢t > 0, an estimate of the
form

lly(®), g1~ = Bully(0), g ONI™** > an (49)

for sufficiently small ||y(0),g(0)||. Observe, from equa-
tion (39), that if r =0,

Il < 2¢* lyli~"lipll llypll. (50)

From equation (47), we have

q(t)

Il

i

@)t + / e ENy(r)ldr (51)
0

(9(0) = 9Ol e~ + @)l

where the last inequality follows from the fact that
fly(#)]l is non-increasing function of time (equation
(46)). Let M = ¢(0) - ||ly(0)||, from (46) and (51),
we have

\

d 2
W —a = (01 + 1w 1 lool?
d Y — -
L < —apypiyli= + 4 ] Iy o)~ e
2 M ) e 62
We first show that solutions to
Qo _ e
— = ~lvelllyll (53)

satisfy for a2 > 0, f2 > 0 and t > 0,

ly@®II7*+ = Bally(O)| 7>+ > ast. (54)
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From equation (50) and Lemma 2, it follows that

t+T t+T
/ lup()l dr > ~ / lly() dr
t t

for some positive constant v, implying that

t+T t+T
/t lyp(II? llyll*~"dr > ﬂ/t ()P~ dr

(55)
for some positive constant 3. Therefore (54) follows,
and we can deduce (49) from (52) and (47). Using
Result 1, there exists a Lyapunov function v(y, g, ©)
satisfying (28) and (30) for v = 2 and n = 2 — v, where
v, n as defined in Result 1. Consider the Lyapunov
function

U1 (7‘, ¥4q, 9) = U(ya q, @) + 7'2.

Observe from equations (43), (45), (40) and (41), v,
satisfies estimates of the form (28), for sufficiently s-
mall ||r,y,q|], hence by Result 1, we conclude that the
assertion (42) is valid and thus the proof of the theorem
follows. Q.E.D.
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