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Time optimal control in spin systems
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In this paper, we study the design of pulse sequences for nuclear magnetic resonance spectroscopy as a
problem of time optimal control of the unitary propagator. Radio-frequency pulses are used in coherent
spectroscopy to implement a unitary transfer between states. Pulse sequences that accomplish a desired transfer
should be as short as possible in order to minimize the effects of relaxation and to optimize the sensitivity of
the experiments. Here, we give an analytical characterization of such time optimal pulse sequences applicable
to coherence transfer experiments in multiple-spin systems. We have adopted a general mathematical formu-
lation, and present many of our results in this setting, mindful of the fact that new structures in optimal pulse
design are constantly arising. From a general control theory perspective, the problems we want to study have
the following character. Suppose we are given a controllable right invariant system on a compact Lie group.
What is the minimum time required to steer the system from some initial point to a specified final point? In
nuclear magnetic resonan¢BlMR) spectroscopy and quantum computing, this translates to, what is the
minimum time required to produce a unitary propagator? We also give an analytical characterization of
maximum achievable transfer in a given time for the two-spin system.
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[. INTRODUCTION most need for design strategies for pulse sequences that can
achieve these bounds. From a control theory perspective, this
Many spectroscopic fields, such as NMR, electron magis a constructive controllability problerfil5]. At the same
netic resonance, and optical spectroscopy rely on a limiteime it is desirable that the pulse sequences be as short as
set of control variables in order to create desired unitampOSSib'e so as to minimize the relaxation effects. This natu-
transformationg5—7]. In NMR, unitary transformations are rally leads us to the problem of time optimal control, i.e.,
used to manipulate an ensemble of nuclear spins, e.g., @ven that there exist controls that steer the system from a
transfer coherence between Coup]ed Spins in mu|tidimengiven initial to a final state, we would like to determine con-
sional NMR experimentf5] or to implement quantum-logic  trols that achieve the task in minimum possible tifhé,16.
gates in NMR quantum comput€fi8]. However, the design In nonrelativistic quantum mechanics, the time evolution
of a sequence of radio-frequency pulses that generate a def a quantum system is defined through the time-dependent
sired unitary operator is not trivi§®]. Such a pulse sequence Schralinger equation
should be as short as possible in order to minimize the ef- .
fects of relaxation or decoherence that are always present. So U(H=—iH{®U®), U0)=lI,
far, no general approach was known to determine the mini- o ,
mum time for the implementation of a desired unitary trans-W_hereH(t) andU(t) are the Hamlltonlan a}nd the unltary.
formation[6]. Here we give an analytical characterization of diSPlacement operators, respectively. In this paper, we will
such time optimal pulse sequences related to coheren&nly .be concerned with f|n|te-d|men§|onal qugntum systems.
transfer experiments in multiple spin systems. We determind" thiS case, we can choose a basis and thinki(f) as a
for example, the best possible in-phase and antiphasdermitian matrix. We can split the Hamiltonian
[6,10,11 coherence transfer achievable in a given time. We
show that the optimal in-phase transfer sequences improve
the transfer efficiency relative to the isotropic mixing se-
guenced12] and demonstrate the optimality of some previ-
ously known sequences. where H is the part of Hamiltonian that is internal to the
During the last decade the questions of controllability ofsystem and we call it thalrift or free Hamiltonianand
guantum systems have generated considerable intereE}’“:lUj(t)Hj is the part of Hamiltonian that can be exter-
[13,14. In particular, coherence or polarization transfer innally changed. It is called theontrol or rf Hamiltonian The

pulsed coherent spectroscopy has received lot of attentiofquation forU(t) dictates the evolution of the density matrix
[6,9]. Algorithms for determining bounds quantifying the according to

maximum possible efficiency of transfer between non-
Hermitian operators have been determinéf There is ut- p(H)=U(1)p(0)UT(t).

m

H=Hg+ > vjH;,
j=1

The problem we are ultimately interested in is to find the
*Email address: navin@hrl.harvard.edu minimum time required to transfer the density matrix from
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the initial statepy to a final statepr. Thus, we will be
interested in computing the minimum time required to steer
the system

U=—i u, 1)

m
Hd+2 UIH]
=1

from identity U(0)=1 to a final propagatotr .
In this paper we establish a framework for studying such

problems. For reasons suggested before, our approach is

more general than the current application requires, but this

added generality does not complicate the development. Start
Keeping the interests of a broad audience in mind, we

have organized the paper into two parts. The first (f8ecs. _ . .
_ - C o entsU andV belonging toG. The dashed line depicts the fast
lI-1V) expresses the main ideas of the paper more intuitivel ortion of the path corresponding to movement within the ci&ét

?;PSC: Sg(:'tszfes 512):18'52:/2% p“ec(?tflfonrﬁ ;f;i:]?ﬁ)?ihpggfenfr(i ”;éf_ir(]ad, in traditional NMR language, corresponds to the pulse and the
fi p th d Sp V_VI) of th y pTh PEC50lid line corresponds to the slow portion of the curve connecting
ive in the second partSecs. V-VI) o € paper. € dirfferent cosets and corresponds to evolution of the couplings.

reader can choose to read in any order depending on her o

FIG. 1. The panel shows the time optimal path between ele-

his taste. the case when the strength of external Hamiltonians can be
made large compared to the internal couplings represented
Il. MAIN IDEAS by Hg.
In this section we present a summary of main geometric B. Minimum time to go between cosets

ideas used in the paper. The goal is to develop intuition and If th h of th | Hamiltoni b d
motivate the mathematical results. We also give here refer- the strength of the control Hamiltonians can be made
ences to the lemmas and theorems of Secs. V—VII, where th&"Y large, then. starting from identity propagator, we can
ideas laid down in this section are presented in detail. ~ Jenerate any unitary propagator belonging(tm aimost no

Recall that the evolution of the unitary propagator fromtime' Similarly, starting fromUl,_ we can produce any.
Eq. (1) is kU;, keK, in almost no time. This strongly suggests that if

we are trying to find the time optimal contrals that drive
m the evolution(1) from U; to U, in minimum possible time,
Hyt D ijj) U, U(0)=I, we should look for the fastest way to get from the cdselt;
=1 to KU, (the cosetkU; denotes the setkU, ke K}), be-
cause it takes no time to travel inside a coset and once inside
whereHy is the internal or drift Hamiltonian and; are the  the right coset we can reach the desired element in negligible
control Hamiltonians, which can be externally changed. Adime. This is illustrated in the Fig. 1. Therefore one is moti-
described in the introductory section, the central goal of thevated to look at the quotient spa@ K, where each point
paper is to find the minimum time it takes to implement arepresents some coseU.
unitary propagator in a quantum system and to find the con-
trolsv; that produce the propagator in the minimum time. In C. Controlling the direction of flow in G/K space
the context of NMR, the controls; correspond to the pulse
sequences. The key geometric ideas involved in the searc
for these time optimal pulse sequences are as follows.

U=—i

The problem of finding the fastest way to get between
oints inG reduces to finding the fastest way to get between
corresponding point&osets in G/K space. It is well known
that the spac&/K has the structure of a differentiable mani-
A. Control Hamiltonians generate a subgroup fold. Let g represent the Lie algebra of the generator&of

Let G denote the unitary group under consideration. Ob-2nd€={H;} 4 represent the Lie algebra of the generators of

serve that the control Hamiltoniar{$1;}, generate a sub- the subgrougk. We can then decompoge=p® ¢ such that
groupK, given by p is orthogonal toé and represents all possible directions to

move in theG/K space(Observe if we move iiG, in direc-
K=exp({H}.a), tions represented by, we always stay inside a coset and
therefore do not go anywhere in the sp&#.) The flow in
where {H;}_» is the Lie algebra generated by elements the groupG, is governed by the evolution equatioh) and
{—iH;,—iH,, ... ,—iH.}. The subgrouf is the set of therefore constrains the directions we can choose to move in
unitary propagators that can be produced, if there were n#1eG/K space. The directions i@/K, which we can choose
Hq present in the Eq1). We assume that the strength of the to move directly, are represented by the set
control Hamiltonians can be made arbitrary large. Please
note this is an idealization, which is a good agprogmation to Adg(Ha) ={Ady,(Ha) = kiHgkalk; K} ep.
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fast that the system hardly evolves undiy in that time.
This setAdk(Hy) is called theadjoint orbit of Hgq under the

K
action of the subgroug.
ki
D. Equivalence theorem and adjoint control system
The control HamiltoniangH }, steer the direction of flow
T in the G/K space by helping us to be at the right place in a

coset. The possible choice of directions is then represented
by the setAdy(Hq). This form of direction control has been
defined as an adjoint control syst¢Bg. (14)]. Observe that

@ the rate at which we move in the/K space is always con-
stant because all elements Al (H4) have the same norm
[Hgll=Ik™H k|| (kis unitary sokk' is identity). All we get to

change is the direction of flow iG/K space undeHg.
Therefore the problem of finding the fastest way to get be-
tween two points in the spad®/K reduces to finding the
shortest path between those two points under the constraint
that the tangent direction of the path must always belong to
the setAdg(Hy). This is essentially the content of the
equivalence theorerttheorem 7.

G/K

—~—"

E. Cartan decomposition and Riemannian symmetric spaces

The set of accessible directiodglc(Hy), in the general
case is not the wholg, the set of all possible directions in
G/K. Therefore we may not be able to move directly in all
the directions inG/K space, but motion in all directions in
G/K space may be achieved by a back and forth motion in
directions we can directly access. This is the usual idea
of generating new directions of motion by using noncom-
muting  generators [exp(eA)exp(eB)exp(— eA)exp(—eB)

To see why this is the case, observe that the control Hamil-NeXp(_ez[A’B])]' The class of coset spacegK, which will

tonians do not generate any motion 1K space as they be of most interest to us in this paper, are the Riemannian
only produce motion inside a coset. Therefore all the motio symmetric spacese.g., SU(4)/SU2)®SU(2)). We wil

Tee that the geometric structure of this space plays an impor-
in G/K space is generated by the drift Hamiltonidg. No- - . ; .
tice that the elements @& belonging to a coset go to differ- tant role in finding the time optimal control for a pair of

) ; .. . coupled two level quantum systems. If the decomposition
ent cosets under the evolution of the coupling Hamiltonian b g y P

_ ~ bl cnticf : ;
Hq. Letk, andk, belong toK, the coset containing identity. g=padt, p=t satisfies the commutation relations

FIG. 2. The panel illustrates how the direction of flow in the
G/K space, under the evolution of the diifty, depends on where
one is in the coseK. The arrows depict the direction of motion
under the influence of the drift term.

Under the drift HamiltoniaH 4, these propagators after time [eE]CE,

ot, will evolve to exp(-iHydt)k, and expEiHgdt)ks,, respec-

tively. Note [p,t]=p
exp( —iH St ky=kq[ k] exp(—iH4t)ki] [p.p]CE.

and thus is an element of the coset represented by We call it a Cartan decomposition gf In this case the coset

spaceG/K is identified with expg) and is called a globally

k! exp( —iH got)ky = exp( — ikTH gk, ot). Riemannian symmetric space.

Similarly exp(—iHydt)k, belongs to the coset represented by F. Time optimal tori theorem

exp(~ikjHgka). Thus inG/K, we can choose to move in  The key point to note is that iG/K is a Riemannian
directions given bykIHdkl or kEHdkz, depending on symmetric space, then we do not generate any new direction
whether we were sitting &t; or k, initially. This is illus-  in the spaceG/K by a back and forth motion d,p]CE.
trated in Fig. 2. But now note, we can choose to be at anyrhus if the tangent vectors to a path@iK do not commute,
point in K because we can move Kimuch faster than evo- there is a component of the net motion that lies inside a
lution underH4. So we generate all directiodsdc(Hg) in coset, but clearly this cannot be time optimal because we
G/K by choosing to be at the rigthte K, which we can do could have produced this motion in the coset much faster by
by use of our control Hamiltonian@ve can move irK so  using our control Hamiltonians. This suggests that the time
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optimal path in theG/K space is the one whose tangent 2. Chatter sequence

directions always commute. L&(C p denote a subspace of |5 this case,G/K is no more a Riemannian symmetric
maximally commuting directions or generat@itsis not pos-  gnace andp,p]de. This is a characteristic of more than
sible to add additional directions and still have everythlngtwo_spin systems. In this case many direction§itk space
commutg in G/K space. We call such a subspace@@tan o only be generated by back and forth motion in the direc-

subalgebreof G/K and the dimension dj is called the rank  iong given byAdy(H,). The best and the most relevant
of G/K. The interesting fact is that any eleméh& G/K has example for our purpose is

an element of the forszkI exp(k;, k;eK, andYeh.

This implies that any element &€ G can be written as su2"
k, exp(Y)k;. This can also be expressed as SU(2)®"”
G=Kexph)K. (2 whenn>2. This is the problem of building or producing an

arbitrary unitary transformation omqubits in the context of
guantum computing when we can selectively excite each of
the qubit fast and the drift corresponds to the interactions

Now given Ug=k, exp(Y)k;, we can producé,; andk, in
negligible time by control Hamiltonians. Therefore the fast-
est way to reaclJ or the coseP from identity reduces to among the qubits.

finding the quickest way to generate the propagator ¥xp( In this paper we will confine ourselves to the Riemannian
To do this we need to select from all the paths whose tangenty \metric case. The nonsymmetric case will be treated in
directions commute and that connect identity to &Jpthe  jetail in a forthcoming paper. This concludes the section on
one that. is the shortest. Thls_ is achieved by choosing among,enview of basic geometric ideas in the design of time op-
all possible ways of expressingas timal pulse sequences. We will now elucidate these ideas

P using examples from NMR. We first quickly review here the
Y:E aAd, (Hy), @>0, 3) product operator formalism used in NMR.
=1 !

I1l. PRODUCT OPERATOR BASIS
such thatAdki(Hd) commute, the one that has the smallest

value of%P_, «; and then flow along direction@dki(Hd) for
«a; units of time, which produces the propagator

The Lie groupG of most interest to us iSU(2"), the
special unitary group describing the evolutionrointeract-
ing spin 3 particles.[Please note that we focus @&J(2")
instead ofU (2") because a global phase is not of interest to
=exp(Y). us, The Lie algebrau(2") is a 4'— 1 dimensional space of
tracelessn X n skew-Hermitian matrices. The orthonormal
basis, which we will use for this space, is expressed as tensor
This is essentially the content of time optimal tori theoremproduct of Pauli spin matricg4.7] (product operator basis
(Theorem 10 We choose to work in these bases because of their wide-
If G/K is of rank one, then any e p can be written as  spread use in the NMR literature and our desire to look at the
Y=aAd(Hq), a>0 for somekeK. Therefore the fastest jmplementations of NMR quantum computers. Recall the

way to reach the coset represented by &g to just flow  pauli spin matrices, , l,, andl, defined by
along directionAd,(Hy) for a units of time. We give here a

n

2, aiAdg(Ha)

I, exd eiAd (Hg) 1= ex;{

classification of qualitative nature of time optimal control 1/0 1
sequences in NMR and other coherent quantum control ex- IX:E 1 0/’
periments based on the geometry of the coset spacks
1/0 —i
1. Riemannian symmetric case |y:§( . 0 ),
i
The coset spac&/K in this case is a Riemannian sym-
metric space. This is a characteristic of one and two spin 1/1 O
systems. IZ=§ 0o —1/

(i) Pulse-drift-pulse sequenc&haracteristic of single-
spin systemkIn this case, the rank of the symmetric spaceye the generators of the rotation in the two-dimensional Hil-
G/K is one(e.g.,SU(2)/U(1)). Roughly speaking, the time  part space and the basis for the Lie algebra of traceless skew-

optimal controly; take the form of a sequence of hard pulsesygrmitian matricesu(2). They obey the well-known rela-
followed by evolution under drift and then some hard pulses;jgng

again. See theorem 1.

(if) Chained pulse-drift-pulse sequen@haracteristic of (Lol d=ilgs [yt =il [l =il (4)
two-spin system In this case, the rank of the symmetric
spaceG/K is more than onée.g.,SU(4)/SU(2)®@ SU(2)). s 2 o 1
The optimal controlg; take the form of “impulse drift im- 'x:|y:|zzzl’ ®)

pulse” pattern. The total time for the sequence is the time
spent when the system just evolves under drift. where

032308-4



TIME OPTIMAL CONTROL IN SPIN SYSTEMS PHYSICAL REVIEW A63 032308

1 0 timal control to the specific case of a heteronuclear two-spin
1= ( 0 1) . system with a scalal coupling[6]. It should be emphasized
here that the methods developed in this paper are general

Notation 1: The orthogonal basf§B.}, for su(2") take en_ough to give time optima} control laws for producing a
the form unitary propagator in any pair of coupled two level quantum
system. Therefore these methods will find immediate appli-
n cations in building 2 qubit gates in various implementations
B=29" [ (1,n)%s. (6)  of qguantum computing. Also we want to emphasize that al-
k=1 though we look at a specific form of coupling between the
spins, our results are general enough to give time optimal
pulses for any kind of coupling. These time optimal pulses
=1, .0l 1 @) for other kinds of couplings like isotropic and dipolar cou-
ka— I a y . . . . . . .
plings will be given with experimental details in future pub-

wherel ,, the Pauli matrix, appears in the above expressioncations. ,
only at thekth position, andL the two-dimensional identity ~ EXample 2: Suppose we have two heteronuclear spins
matrix, appears everywhere except at kifle position.a, . is ~ c0UPled by a scalal coupling[6]. Furthermore assume we

1 in q of the indices and 0 in the remaining. Note that can mdmdually excite each splfperform one qubit opera-
>1 asq=0 corresponds to the identity matrix and is not ations in context of quantum computingrhe goal now is to

wherea=x, y, or zand

part of the algebra. produce any arbitrary unitary transformatidhe SU(4),
Example 1: As an example for=2 the basis fosu(4) from this specified coupling and single-spin operations. This
takes the forn'1 structure appears often in the NMR situation. The unitary

propagatorU, describing the evolution of the system in a

=1 i{loe 1y, laz,loxs oy o suitable rotating frame, is described by

. 4
q=2 i{lydolidoy lid 2z, Tiyl o iyl oy s .
Tl 2x5 1 1 2y taxt2zs Tayloxslayloy U=_i Hd+2 UJ'H]' U, U(0)=1, )
=1
I1y|221 |z|2x-|12|2ya|lz|22}-
where
IV. ONE- AND TWO-SPIN EXAMPLES: BUILDING FAST
QUANTUM GATES He=27J11,l 55,
To elaborate on the ideas developed in Sec. 2, let us start
with the example of controlling a spin 1/2 nuclei in a mag- Hi=2ml,,
netic field by rf pulses that can produce a rapitation on
the spin. H,=2ml,,
Theorem 1: LetU e G=SU(2), and letl, andl, repre-
sent the Pauli spin matrices given in BEd4). The unitary Ha=27S,
evolution of the single-spin system is given by 3 '
U=—i[l,+vl,JU, U0)=I, H,=27S,,

where the control veR. Given any UreSU(2), wherel,, 1, andl, represent operators for the first spin and

there exists a unique Be€[0,2r] such that Ug have the same meaning k&g, |y, andl,,, respectively, as
=exp(—ial)exp(ipl)exp(—iy,), wherea, ye R, and the explained in previous Sec. lll. Similary,, S, andS, rep-

minimum time for producindJ¢ is B. resent operators for the second spin and have the same mean-

Proof: First note that the Lie algebgs=su(2) has a Car- ing as Iy, l,y, and l,,. The symbolJ represents the

tan decompositiong=p@h, where p=spadil,il,}, ¢ strength of the scalar coupling between the spins. Observe
=spadil,}, andG/K=SU(2)/U(1) has rank 1. Therefore that the subgrougX generated byH;} is SU(2)®SU(2).

from Eg. (2), any Ure SU(2) has a decompositiot)r ~ Therefore the unitary transformations belongingSitJ(2)
=exp(—ial,)exp(idl)exp(—iyly). [This is well known as ®SU(2) can be produced very fast by hard pulses that excite

Euler angle decomposition &U(2)]. Note expial,) and  each of the spins individually.

exp(—iyl,) are generated in no time. All the time is spentin  The Lie algebrag=su(4), has thedirect sum decompo-

producing exp€iél,) under the drift Hamiltonian,. Be-  sition g=p® ¢, where

cause expfitl,) is periodic with period 4, the smallest

value of |8 such that exptifl)=exp(-igl,) is e=span i{l,,l,,1,,5.S,.S;},

0 mod — 2,27 ]. Because the Hamiltonian |, can also be
roduced, we can restrig to the interval[0, 2]. _ ;

P Remark 1: We now gfneralize to the case of two coupled p=span H{LS LS LS, 1,SalyS,,

nuclear spins. We will apply our general results on time op- 1,S,, 1,51,5,.1,S;}.

032308-5



NAVIN KHANEJA, ROGER BROCKETT, AND STEFFEN J. GLASER PHYSICAL REVIEW 83 032308

Please note that span in above equations denotes all lineathere a;e R, Q;, and Q, belong to expf)=SU(2)
combinations with real coefficients. Using the well-known ® SU(2).

commutation relations Proof: As is shown in the example above the decomposi-
tion g=pot, where p=spanil,Ss}, €=spanil,,Sg},
[A®B,Ce®D]=[A,C]®(B.D)+(C.A)®[B,D], and (@, B) € (x,y,2) is a Cartan decomposition gfsuch that
and Eqgs.(4) and(5), it is easily verified h=span i{1,S, 1,S.1,S,},

[eElICtp.tl=plp.pICt is a Cartan subalgebra. Therefore any unitary propadator

Therefore the decompositiag=p@ € is a Cartan decompo- €SU(4) has the decompositiol) =Q; exd —i2mJ(al,S
sition of su(4). As thesubalgebrat=su(2)®su(2) gener-  t@2lyS+ a3l 5)]Qz, where Q;,Qze SU(2)®SU(2). Ob-

ates the groufk =SU(2)®SU(2), thecoset space serveQ; andQ, take almost no time to produce. Therefore
we need to compute the minimum time required to produce
SU(4) the propagatoA=ex{ —i2mJ(a, S+ a,l S+ a3l ,S)]. The
WSU(Z) maximally commuting set of Hamiltonians that can generate

the above propagator ig+1,S,,*1,S,,*1,S/}. Since we
is a Riemannian symmetric space. Note that the Abelian sul&:an produce all of these Hamiltoniafteey belong to the set

a|gebra[] generated by AdK(Hd)], we can pI’Oduce the above propagamrin
>3 ||, units of time. Therefore, the minimum time for
LSSy 1S} producingUg is the smallest value &?_,|«;|, such that we
. . . ] ] ] can solve
is contained inp and is maximal Abelian and hence a Cartan
subalgebra of the symmetric spa8&J(4)/SU(2)®@ SU(2). Up=0Q, exd —i27J(ayl, S+ al S + a3l ,S,) ]1Qs.
Therefore using Eq2) (see theorem)éanyUr e SU(4) can F=Quext St azlySyt asl5,)1Q;
be decomposed as Remark 2: From the nature of time optimal control se-
B . quences, it is clear that the set of unitary propagators that can
Ur=Kiexd —i(a1hSct azlySy+ a3l ,S)) 1Ko, be produced in a given tim€ take the form

whereK;,K,e SU(2)®SU(2). .

Now let us see how this decomposition makes obvious the Q1 exf —i2m)(ayl St aal S+ @1,5,)1Q2,
choice of pulse sequences for producing this propagator.
Note that for K, =exp(~i m/21,)exp(~i m2S,) and K;’ |aa| +]az| +]ag[=T, (9

=exp( m/21,)exp(=i 7/2S,), we have i i
whereQ,,Q,e SU(2)®SU(2). This set is the reachable set

Ky exp(—il,S)(Ky) t=exp( *il,S,). of the control systen(8), for time T. _ .
Now we address the question of maximum possible
Similarly for Kfzexp(iiw/ZlX)exp(—iq-rlz S,) we have achievable transfer by a pulse sequence in some given time
T. For this purpose we define the transfer efficiency.
(K) " texp—il ;S K, =exp =il ,S)). Definition 1 (Transfer Efficiency. Given the evolution of

the density matrixp(t)=U(t)p(0)UT(t), where
This makes transparent, that we can generate any Hamil-
tonian from the set

=15, 21,S,, = 1,8,
and therefore any Hamiltonian of the form define the transfer efficiency(t) from p(0), to some given
target operatoF as
a1l S+ ayl Syt asl,S,, ajeR

and hence every element of the Cartan subalggbr@he
unitary propagator, , Kf , K1, andK, can be produced Remark 3: In the formula for the transfer efficiency, we
by selective hard pulses, and takes almost no time. We noalways assume that the starting operai@) and the final
claim that synthesizing) ¢, using the decomposition given operator F are both normalized to have norm ofee.,
above, is indeed the fastest way to genethte Tr(FTF)=1].

Theorem 2: For the heteronuclear spin system, described We will now look at the in-phase and antiphase transfers
by Eg. (8), let €&={H;} 5. The minimum time required to in the two-spin system, whose evolution is given by E8).
produce a unitary propagatdre SU(4) is the smallest We give here expressions for maximum transfer efficiencies.

m

U=—i| Hg+ X UJ-H])U, u()=I,
=1

7(H)=[TIFTU®p(0)U (D]

value of 37 [aj], such that we can solve We first state some lemmas, which will be required in com-
puting transfer efficiencies. For proofs see the Appendix.
Up=Qexfd —i2mI(a1, S+ azl S+ a3l ;S;)]Qa, Lemma 1: Let
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p=| —i
0

and letX be a real diagonal matrix

a, 0 O
5= 0 a O
0 0 aj

If |aj|=|a;|=|ay/=0, where{i,j,k} {1,2,3} and letU, V
e 0(3), then the maximum value ofpUSVp| is |a]
+1a;].

Liemma 2: Consider the functionf(ay,as,as)
=sin{Jmay)sinQmaz) +sinQmay)SinQmas). If aq,a,,a3=0
and a;+ a,+a3=T, where T<3/2], then the maximum
value of f(aq,a,,@3) is 2 singmwa)sin@dwb), wherea+2b
=t and tan{ma)=2 tan{=b).

Theorem 3(Maximum in-phase transfer Consider the

PHYSICAL REVIEW A63 032308

3
R(e,t)= QlAQlel,QzeK,ai>o,i:El aj<tf,

can be produced by appropriate pulse sequence in&g.
Therefore we will maximize

(O =[TTFU®pO)UT )],

for U(t)eR(et). Let I=exgililyil} and S
=exp(iS,,iS, ,iS;}. By definition,K=SX1. In the expression

() =|ITTQIFTQ1AQ,p(0)QIAT]],

p(0) commutes witH, andF commutes withS therefore it
suffices to restric); andQ, to | andS respectively.

Let s denote the subspace spanned by the orthonormal
basis{S,,S,,S,} andi denote the subspace spanned by the
orthonormal basigl,,l,l,}. We represent the starting op-
eratorp(0)=1~2(S,—iS,) as a column vectop=1~2[1

evolution for the heteronuclear IS spin system as defined by 101" in s. The actionp(0)— Q,p(0)Q} can then be rep-

Eq. (8). Let p(0)=S,—iS,/v2 and F=1,—il ,/v2. Fort
< 3/2], the maximum achievable transfer

7* (1) =sin(Jma)sin(Jb),

wherea+2b=t and tan{ma)=2tan(wb). For t=3/2] the
maximum achievable transfer is one.
Proof: Let

Alay,az,az)=exd —i2mI(a S+ asl Sy + a3l ,S,) |

From now on we will simply writeA(aq,a5,a3) as A.
From Theorem 2, any unitary propagatlde belonging to
the set

resented ap—Vp, whereV is a orthogonal matrix.
Let P, denote the projection on the subspacé simple
computation yields that

Pi(ASAT)=sinJmaz)sin(Imas)ly,
PI(AS,AT) =sinJmay)sindmas)ly,
P (AS, AN =sin(Jma,)sindmay)l,.

We denote the target operater=1~2(l,—ily) as a col-

umn vector W2[1—i0]" in i. The action p(0)
— P [AQ,m(0)QJAT] can be written ap—3Vp, where

sin(Jmay)sin(Jmas) 0 0
S = 0 sinJmay)sin(Jmas) 0
0 0 sinJmaq)sin(Jmas)

Therefore we can rewrite
7(1) =TI QIFQ1AQ,p(0)QIA ™|

as 7(t)=||p'USVp|, whereU andV are real orthogonal

seen that we maximize the above expressionjif<1/2J. In
that case it suffices to maximize

sin(Jmraq)sin(Jma,) +sin(Jdma,)sin(Jras)
2

matrices. Using the result of Lemma 1, we get that for

|sinQdma,)|=|sinUmay)|=|sin@mag)|, the maximum value of
7(t) is

[sin(Jmay)sin(Jma,)|+|sin(Jmaq)sin(Jmas)]
> .

Now we maximize the above expression with respeat tp

for O=<aq,a5,a3<1/2]). Now from Lemma 2, we get the
above result.

Now we prove the last part of the theorem. Note for
=3/2], the maximum achievable transfer is one. Because
p(0) and F are normalized, this is the maximum possible
transfer between these operators. tif3/2], say t=T
+3/2], we can always arrange matters so t4f) =e [by

a5, andas. From the property of the sine function, it can be creating a propagato (T/2)=exd —i27J(T/21,S,)] and
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; __ Optimal inphase Transfer several dayscan be reduced by 20% at no extra cost.
Theorem 4(Maximum anti-phase transferConsider the

09 1 evolution for the heteronuclear IS spin system as defined by

Eq. (8). Let p(0)=v21,S =v2I(S,—iSy) andF=1"=I,

—ily/v2. Then, fort<1/J, the maximum achievable trans-

07r ] fer *(t) is

o
o
T

[TTETU(t)p(0)UT(1)]||=sin(Imt/2).

Fort=1/J, the maximum achievable transfer is one.

The proof is exactly on same lines as Theorem 3. The
theorem proves that the transfer efficiency achieved using the
known mixing sequencil0] is optimal. We now develop all
the ideas presented in Sec. Il from a mathematical control
theory viewpoint.

Transter efficiency
o o o o
N @ b wn
T T T T
L L L

o

0 1 L

0 05 1 15 V. PRELIMINARIES

Time in units of 14

FIG. 3. The panel shows the comparison between the best We Will assume that the reader has some familiarity with

achievable transfebold curvé and the transfer achieved using the the basic facts about Lie groups and homogeneous spaces
isotropic mixing Hamiltonian for the in-phase transfer in 2 spin [2].

case. Orx axis is plotted time in units of 11/ Throughout this part of the pape® will denote a com-
pact semisimple Lie group arglits identity elementwe use
then creating its inverse ejfJ(T/21,S,)] from T/2 to T]. | to denote _the identity matrix when working with the n_1atrix
In the remaining 3/2 units of time, we can produce the fepresentation of the groupAs is well known there is a
optimal propagator. naturally defined bi-invariant metric d@, given by the Kill-

The optimal transfer curve is plotted in comparison withing form. We denote this bi-invariant metric ly)s . LetK
the transfer achieved using the isotropic mixing HamiltonianP€ @ compact closed subgroup&fLet g andt represent the
in the Fig. 3. Lie algebra ofG andK, respectively. Consider the direct sum

Implementation Details: The optimal propagator for thedecompositiong=p& ¢ such thatp=#¢" with respect to the
in-phase transfeB™—1~ can be implemented in practice Metric.
simply by modifying the delays of the well-known pulse  Definition 2 (Cartan decomposition gf): Let g be a real
sequence elements that are commonly used for such cohe&emi-simple Lie algebra and let the decompositign p
ence transfeICOS-CT) experiments(in-phase coherence ®t, p=t" satisfy the commutation relations
order selective coherence transfd¢dl]. Many different

implementations of ICOS-CT experiments have been intro- [, E]CE, (10
duced,which create isotropic mixing conditions in hetero-
nuclear two-spin systems based on pulse-interrupted delays. [p.t]=p, (13)
For a given heteronuclear coupling term these sequences
create effective coupling termsmd1,S,, 27JI1,S,, and [p.p]CE. (12)

2mJ1,S, that are active for durations, 7,, andr,, respec- _ . . .
tively [11]. The resulting average Hamiltonid8] is given We will refer to th|s decor_nposmon as a Cartan decomposi-
by H=27d(atyl Sut ) S+ asl,S) With a1 =17,/7, o, tion of g. The pair(g, €) will be called an orthogonal sym-

o - V. . metric Lie algebra paif18,2].
=7yl/7, andag=r,/7 for 7=rt 7, 7,. Whereas an iso- " ol known  that the (right) coset spaceG/K
tropic average Hamiltonian results feg=r,= r,= 7/3 [11],

the desired average Hamiltonian that achieves the optim :I{KU:U € G} (homogeneous spacadmits the structure of

transfer amplitude, which is up to a factdr1.12 larger 4 differentiable manifold 1]. Let m:G— G/K denote the

than the transfer amplitude of isotropic mixing experimentsnatural projection map. Definee G/K by o=m(e). The

. e tangent space plang,(G/K) can be identified with the vec-
(Seseu;? ?ﬁ;?:g)fxs i)riazt?gns(,‘]lmplgl vsi);hmodzlfym:gx, T{f’sirf tor subspacep. Given the bi-invariant metri€,); on G,
Tz T, i TLE T Ty . there is a corresponding left invariant mettig,, on the
eral ICOS-CT transfer steps occur sequentially in a glvemomogeneous spa@/K arising from the restriction of,)
experiment(e.g., from*3C to H via °N), the overall gain o p [1] /G
factor f i; the produqt of the individua.I gain factofsaand  The i_ie groupG acts on its Lie algebrg by conjugation
may be quite substantial. For example, if a transfer step wmAd .g—g (called the adjoint action[2,3]. This is defined
a gain factor of onlyf=1.06 [corresponding to the case as ?dllows GivernU c G. Xe a. then =
=3/(4J), see Fig. 3 occurs twice in a given NMR experi- ' ' 9
ment, f,;=1.12 and the required number of accumulations dU~texp(tX)U
(which for a desired signal-to-noise ratio is proportional to Ady(X)=——
1/f2,) and hence the overall measurement tiwich can be dt t

I
o
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To fix ideas if G=SU(n) and UeG, Aesu(n), then t=0, U(t)=U’, we say that the contral steersU into U’

Ady(A)=U"'AU. We use the notation in t units of time andJ” is attainable or reachable frobhat
time t.

Adg(X)= U Adi(X). Definition 4 (Reachable SgtThe set of allU’ € G attain-

keK able fromU, at timet will be denoted byR(U,,t). Also we

use the following notation
Definition 3 (Cartan subalgebya Consider the semi-

simple Lie algebrag and its Cartan decompositiog=p R(Ug, T)= U R(Ug,t),

@¢t. If p is a subalgebra ofy contained inp, then § is Ost<T

Abelian becausép,p]e €. A maximal Abelian subalgebra

contained inp is called a Cartan subalgebra of the pajrt) R(Ug)= U R(Uqg,t).

[2,3]. O<t<w
Theorem 5:[2] If h and b’ are two maximal Abelian

subalgebras contained jn then We will refer toR(Uy), as the reachable set bf.
(1) There is an elemerke K such thatAd,(h)=h'. Remark 5: From the right invariance of control systems it
(2) p=UrcAdi(h). follows that R(Uy,T)=R(e,T)Uy, R(Ug,T)=R(e,T)Uy,

Remark 4: Ifg=p@t is a Cartan decomposition then the and R(Ug)=R(€)U,. Note thatR(Uy,T) need not be a
homogeneous spadg/K=exp(p), and is called gylobally  closed set, we usR(Uy,t) to denote its closure.
Riemannian symmetric spad&]. From the above stated Definition 5 (Infimizing Time): Given U e G, we will de-
theorem 5, the maximal Abelian subalgebragp @ire allAdy fine
conjugate and in particular they have the same dimension.

The dimension is called thenk of the globally Riemannian t* (Ug)=inf{t=0|Ur e R(e,1)},
symmetric spac&/K.

Theorem 6]2] Given the semi-simple Lie algebgaand . —_—
its Cartan decompositiop=p®¥, let h be a Cartan subal- t*(KUp) =inf{t=0lkUr e R(e,t) ke K]}
gebra of the pair ¢,€) and defineA=exp®H)CG. ThenG . ) o .

—KAK. The spacé/K is a union of maximal Abelian sub- andt*(U) is called theinfimizing time S
groupsAd,(A), calledmaximal tori From a mathematlcal point of V|eyv, we may identify two
Definition (Weyl Orbit): Let g=p@ €, be a Cartan de- 9oals in this paper(l) to characterizeR(e,t) and hence

composition and le§C p be a cartan subalgebra of the pair COmputet* (Ug), the infimizing time forUg € G, and(2) to
(g,8) containing X4. We use the notationW(Xy) chqrac.terlze t_he_ infimizing cpntrol sequenckin Eq. (13),
=hNAdc(Xy) to denote the Weyl orbit oy. We use which in the limitn—oo, ach|ev_es th_e transfer timé& (Ug)
(X)) ={2M . BX|B =038 =1X cW(Xy)}, to denote Of Steering the systerl3) from identitye to Ug. From the
the convex hull of the Weyl orbit oKy, with vertices given physms point of view, th(_ase results establish the minimum
by the elements of the Weyl orbit o, . time required gnd the opt|m_al contrqme rf pulse sequence
in NMR experimentsto achieve desired transfers in a spec-
troscopy experiment.

Assumption 1: LelU e G and let the control system

m

Xgt > viXi}U, U(0)=I (13) VI. TIME OPTIMAL CONTROL
i=1

The key observation as described in Sec. Il is the follow-
ing. In the control systenil3), if UgeK thent*(Ug)=0.
To see this, note that by lettingin Eq. (13) be large, we can
move on the subgroul as fast as we wish. In the limit as

- . . .. approaches infinity, we can come arbitrarily close to any
sume thaf{Xy,Xy,... Xmjia=g, and sinceG is compact, it point in K in arbitrarily small time with almost no effect

follows that the system(13) is controllable [4]. Let & ¢ ihe termX.. B .

_ _ 4- By the same reasoning for anye G,
={Xi}La j‘nbd K—eXF{Xi}LAhbedt_he C'OseddcompaCt_grOUp t* (U) =t* (kU) for ke K. Thus, findingt* (Ug) reduces to
generate %X‘i Given the direct sum decompositi@n  fining the minimum time to steer the systéfi8) between
=pot, wherep==&" with respect to the bi-invariant metric the cosetKe andKUg . This is illustrated in the Fig. 1.

(e, letXyep. We will assume thafdy(p) C p, in which With this intuitive picture in mind, we now state some
case one says the homogeneous si@te is reductive. All | mas.

our exar'npl.es will fall into tﬂis clategorfy. Il locall Lemma 3: LetU e G and X:R— g be a locally bounded
Notation: LetC denote the class of all locally bounded yo5qrable function of time. K,(t) converges toX(t) in
measurable functions defined on the intefale) and tak- the sense that

ing value inR™. C[0,T] denotes their restriction on the in-

terval[0,T]. We will assume throughout that in E(L3), v -
=(v1,02,...,vm) €C. Givenv eC, we useU(t) to denote lim f [X(t) —Xq(1)]|dt=0,
the solution of Eq(13) such thatJ(0)=e. If, for some time n—e J0

U:

be given. Please note we are working with the matrix repre
sentation of the group. We ug$Xy,X1,....Xm}a to denote
the Lie algebra generated B¥Xy,Xq,....X}. We will as-
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then the solution of the differential equatidihz Xy(t)U at
time T converges to the solution &f = X(t)U at timeT. The

PHYSICAL REVIEW 83 032308

Then observe that

m
proof of the above result is a direct consequence of the l_mi- dQP) = X4+ >, viX |(QP), Q(0)P(0)=e,
form convergence of the Peano-Baker series. We use this to dt i=1
show L _ . .
Lemma 4: For the control system in E(L3), t* (U which is the same evolution equation as thatlpfand since
=t*(KUp). y 43, t"(Ur) U(0)=Q(0)P(0)=e, by the uniqueness theorem for the

Proof: Observe it suffices to show that kfe K, then
t* (k) =0. From[4] (Theorem 5.}, for everyT>0, we have
R(e,T)=K and therefore the result follows. Q.E.D.

differential equationsU(t)=Q(t)P(t). Therefore, given a
solution U(t) of Eq. (13) with the initial conditionU(0),
there exist unique curveB(t) and Q(t), defined through

Remark 6: The above observation will help us make aggs. (15) and(16), satisfyingU(t) = Q(t) P(t). Observe that

bridge between the problem of computit(Ug) and the

problem of computing minimum length paths for a related

problem that we now explain.

Definition 6 (Adjoint Control Systent Let Pe G. Asso-
ciated with the control systeifi3) is the right invariant con-
trol system

P=XP, (14)
where now the controX no longer belongs to the vector
space but is restricted to an adjoint orbit i.¥.e Adk(Xy)
={k~IXq4k|k e K}. We call such a control system anljoint
control system

For the control system(14), we say that KUg
e B(Ug,t") if there exists a controlX[0Ot'] that steers
P(0)=Ug to P(t") e KUg in t’ units of time. We use the
notation

B(Uo,T): U B(Uo,t)

o=t=T
From Lemma 3, it follows thaB(U,,T) is closed. We use
L*(KUg)=inf{t=0|KUreB(e,t)}

to denote the minimum time required to steer the sy<tetn
from identity e to the coseKUg. We call it theminimum
coset time

Theorem 7(Equivalence theorejn The infimizing time
t* (Ug) for steering the system

m

U: Xd+2 viXi U
i=1

if O(T)=Ug then it follows thatP(T)eKUg. If Ug
eR(e,T), then there exists a sequence of control laws
v'[0,T] such that the corresponding solution$ (t) of
Eq. (13 satisfyU'(T)—Ug. Therefore, the solutionB"(t)

of the associated control system(15) satisfy
lim, .. P"(T) e KUg. BecauseB(e,T) is closed, it follows
that KUgeB(e,T), which implies that L*(KU)
<t*(Ug).

To prove the equality observe thatkfU - € B(e,T), then
there exists a controK[0,T] such that the corresponding
solution P(t) to Eq. (14) satisfiesP(T) e KUg. Because
X(t) e Adc(Xq), we can expresX(t) asQ(t) 1X4Q(t). It
is well known[21] that we can find a family(t) of control
laws such that the corresponding soluti@f(t) of

Qf={i21 v!X|Q, Q'(0)=e

satisfies lim_... [3]|Q(t) — Q"(t)|| dt=0. Hence,
lim, _.. [oIX(t) —[Q" (1)1~ *X4Q'(t)||[dt=0. Using Lemma
3, we claim that the solutions to family of differential equa-
tions
P'=[(Q") '()X,Q"(DIP", P'(0)=e

satisfies lim_. P'(T)eKUg. Therefore, t*(KUg)<T.
Since the choice oflf was arbitrary, it followst* (KUg)
<L*(KUg). Becauset* (KUg)=t*(Ug), it follows that
t* (Ug)<L*(KUg). Hence the proof. Q.E.D.

Remark 7: We will now compute* (Ug) using the prop-
erties of the sefdy(Xy). In this paper we will confine to the
case when the coset spaGK is a globally Riemannian

from U(0)=e to U is the same as the minimum coset time symmetric space. We consider the following two cases based

L*(KUg), for steering the adjoint system
P=XP, XeAd(Xq)

from P(0)=e to KUg.
Proof: LetQ e K satisfy the differential equation

Q= Zlvixi}Q, Q(0)=e. (15)
Let P e G evolve according to the equation
P=(Q X4Q)P, P(0)=e. (16)

on the rank of the symmetric space.

A. Rank one case

Remark 8: We begin with case where the rank of the
symmetric spacé&/K is one. As the Cartan subalgebra is
one dimensional, it follows from Theorem 5 that
={aAdk(Xy)|a € R}. Furthermore, iiG/K is rank one, then
(—Xgq) e Adk(Xy), [2] (Theorem 2.12, Chaptep.7Therefore

p={aAdc(Xq)|a=0}.

Therefore computing* (Ug) reduces to finding the geodesic
distance in the homogeneous sp&.
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Theorem 8: LetG be a compact semi-simple Lie group
with a bi-invariant metric(,), andK be a closed subgroup.
Let g and & denote their Lie algebras such that the decom-
positiong=p® ¢ is a Cartan decomposition and the rank of
G/K is one. For the right invariant control system

m

Xg+ 2 viXi}U, UeG, U(0)=e,
i=1

U=

wherev; e R, Xgep, and {Xj} o=¢, the infimizing time
t* (Ug) is the smallest value af>0 such that we can solve
Ur=Qy exp(aXy)Q, with Q;,Q, e K.

Proof: By the equivalence theoreti,(Ug) is the same as
the minimum time for steering the system

P=XP, XeAd(Xy),

from P(0)=e to KU . From Ref[1], the geodesics iG/K
under the standard metrig), originating fromo take the
form z[exp(rY)] for Y e p. BecauseG/K is a Riemannian
symmetric space of rank one, the set

{aAdc(Xg)|a=0}=p

Maximal Tori Containing A and B

and generates all the geodesicsGiK space. Hence the  FiG. 4. The panel illustrates the fastest way to get between two

result follows. pcosetsA andB is to flow on a maximal torus containing the cosets
Remark 9: Roughly speaking, the time optimal trajectory
(obtained as a limit of the infimizing sequender the sys- Ur=0Q, exgaY)Q,

tem (13), which steers the system frod(0)=e to Ug

=Q1exp(aXy)Q,, takes the forme—Q,—expEXdQ:  whereQ,, Q,cK, andY belongs to the convex hu(Xy).
—Q exp@Xy)Q,, where the first and last step of this chain  \ye sketch here the outline of a Proof.
takes no time, and all the time is required for the drift pro- | o h be a Cartan subalgebra 67K containingXy and
cess(second step let A=exp(). It suffices to prove the theorem for: € A as
by theorem 6 G=KAK. ForUgreA, let T be the smallest
B. Rank greater than one case value of =™, @j,a;=0 such thalUr=expE™ ,a;X;), where
Let us now consider the case when the rank of the RieX;jeW(Xy). It is immediate that* (Ug)<T as the adjoint
mannian symmetric spad8/K is greater than one. Please control systemP=XP, can be steered to¢ in T units of
refer to [19] for the role of symmetric spaces in control time, by lettingX be X; for a; units of time.
theroy. We first state a convexity theorem due to Kostant.  To see that* (Ug) =T, let P(t) be the shortestor time
Theorem 9[20] (Kostant’'s Convexity TheoremLet g
=pat be a Cartan decomposition ahd” p a Cartan subal-
gebra of(g,€) containingXy. LetI":p— b, be the orthogonal
projection of p onto h with respect to the killing metric.
ThenI':Adk(Xq) = c¢(Xy), Wherec(Xy) is the convex hull of
the Weyl orbit ofXg.
Theorem 10(Time Optimal Tori Theorem Let G be a

optimal trajectory of the adjoint control systeR= X P that
steersP(0)=e to the coseKU,. Leta(t) be its projection
under the mapm,: G/K—A such thatm,:k; exp(Y)k]
—explY), Yebh, k;eK [note that the projection is only
unique modulo a Weyl group action, to make it unique, fix a
Weyl chambert in § and consider projection onto exp].

compact semi-simple Lie group amdbe a closed subgroup The prolect|onwA induces the maprA*:P(t)Ha(t). The
with g ande their Lie algebras, respectively. Lgt=p@t be ~ €volution of the curvea(t) has the forma(t)=0a(t),

a Cartan decomposition. Consider the right invariant controwhere Q =I'[Adi(Xg)], for somekeK (recall I':p—b is
system the orthogonal projection ontip). Now using Kostant’s con-
vexity theorem, we hav€ e ¢(Xy). Therefore we can write
a(t)=(=" B X)a(t), where Xje W(Xy) and =1, 6;=1

for §;=0. This makes clear that f=={" ; @; is the smallest
value for whichUr e A satisfiesUr=expE_,aX;) for «;
where vieR, Xyep, {X}.o=€ Then any Ug =0, then the patla(t) will at least takeT units of time to
=Q,exp@Y)Q,, where a>0, Q, Q,eK, and Y reachUg .

e ¢(Xy4), belongs to the closure of the reachable set. The Remark 10: The essence of the above theorem is that the
infimizing time t* (Ug) is the smallest value ak>0, such  spaceG/K is a union of maximal torAdx(A), and the fast-
that we can solve est way to steer the adjoint control system between two

m

Xyt+ 2 viXi}U, UeG, U(0)=e,
i=1

U=
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points is to always move on a maximal torus containingBy definition 3 =ATA. Using Cauchy Schwartz inequality
these points. This is illustrated in Fig 4. The theorem char{p'USVp||<|[AVp|||AUp|. Observe, the maximum value
acterizesB(et), the reachable set for the adjoint system.of [AVp| is Va;+a;. Therefore ||pTU2Vp||sai+aj_
This is given by Clearly for the appropriate choice &f andV, this upper
bound is achievedfor example, in casa;=a,=a;, the
bound is achieved folJ andV identity). Hence the result
follows.

Proof of Lemma 2: Let

KB(e,t)=KexpaY)K, O=sa=t,

whereY belongs to the convex hutl(Xy).

VIl. CONCLUSION

In this paper, we presented a mathematical formulation of Hiay,az,a3,0)

the problem of finding the shortest pulse sequences in coher- =sin(Jmray)sin(Jmag)+sin(Jma,)sin(Jmas)
ent spectroscopy. We showed how the problem of computing
minimum time to produce a unitary propagator can be re- TNartaztaz—T).

duced to finding the shortest length paths on certain coset

spaces. A remarkable feature of time optimal control laws is, e T _
. ; : n r ndition for imali ivesd =
that they are singular, i.e., the control is zero most of the e necessary condition for optimality g /9a,=0,

time, with impulses in between. We explicitly computed the/H1/7@2=0, and H/da3=0, which implies respectively,
shortest transfer times and maximum achievable transfer in a

given time for the case of heteronuclear two-spin transfers.

In a forthcoming paper, we plan to extend these results to mJ[cogImaq)sin(Jmasz)]+A=0, (17)
higher spin systems.
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give a maxima as it makekidentically zero. The second

APPENDIX condition implies
Proof of Lemma 1: It suffices to considey,a,,a;=0 as
we can absorb the negative sign using the orthogonal matri- Jray=2mm+Jdmas,. (20)
cesU or V. Let
Va, 0 0 Since @y, a,=0, anda;+ a,<T=<3/2], condition (20) is
A=| 0 \/a—z 0| _only gat_isfied fom=0. Therefore,alzaz. Now substitut-
ing this in Eq.(19) and using the Eqg18) and(19), we get
0 0 \a the desired result.
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