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Time optimal control in spin systems
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In this paper, we study the design of pulse sequences for nuclear magnetic resonance spectroscopy as a
problem of time optimal control of the unitary propagator. Radio-frequency pulses are used in coherent
spectroscopy to implement a unitary transfer between states. Pulse sequences that accomplish a desired transfer
should be as short as possible in order to minimize the effects of relaxation and to optimize the sensitivity of
the experiments. Here, we give an analytical characterization of such time optimal pulse sequences applicable
to coherence transfer experiments in multiple-spin systems. We have adopted a general mathematical formu-
lation, and present many of our results in this setting, mindful of the fact that new structures in optimal pulse
design are constantly arising. From a general control theory perspective, the problems we want to study have
the following character. Suppose we are given a controllable right invariant system on a compact Lie group.
What is the minimum time required to steer the system from some initial point to a specified final point? In
nuclear magnetic resonance~NMR! spectroscopy and quantum computing, this translates to, what is the
minimum time required to produce a unitary propagator? We also give an analytical characterization of
maximum achievable transfer in a given time for the two-spin system.

DOI: 10.1103/PhysRevA.63.032308 PACS number~s!: 03.67.2a, 32.80.Qk
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I. INTRODUCTION

Many spectroscopic fields, such as NMR, electron m
netic resonance, and optical spectroscopy rely on a lim
set of control variables in order to create desired unit
transformations@5–7#. In NMR, unitary transformations ar
used to manipulate an ensemble of nuclear spins, e.g
transfer coherence between coupled spins in multidim
sional NMR experiments@5# or to implement quantum-logic
gates in NMR quantum computers@8#. However, the design
of a sequence of radio-frequency pulses that generate a
sired unitary operator is not trivial@9#. Such a pulse sequenc
should be as short as possible in order to minimize the
fects of relaxation or decoherence that are always presen
far, no general approach was known to determine the m
mum time for the implementation of a desired unitary tra
formation@6#. Here we give an analytical characterization
such time optimal pulse sequences related to cohere
transfer experiments in multiple spin systems. We determ
for example, the best possible in-phase and antiph
@6,10,11# coherence transfer achievable in a given time. W
show that the optimal in-phase transfer sequences imp
the transfer efficiency relative to the isotropic mixing s
quences@12# and demonstrate the optimality of some pre
ously known sequences.

During the last decade the questions of controllability
quantum systems have generated considerable int
@13,14#. In particular, coherence or polarization transfer
pulsed coherent spectroscopy has received lot of atten
@6,9#. Algorithms for determining bounds quantifying th
maximum possible efficiency of transfer between no
Hermitian operators have been determined@6#. There is ut-
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most need for design strategies for pulse sequences tha
achieve these bounds. From a control theory perspective,
is a constructive controllability problem@15#. At the same
time it is desirable that the pulse sequences be as sho
possible so as to minimize the relaxation effects. This na
rally leads us to the problem of time optimal control, i.e
given that there exist controls that steer the system from
given initial to a final state, we would like to determine co
trols that achieve the task in minimum possible time@14,16#.

In nonrelativistic quantum mechanics, the time evoluti
of a quantum system is defined through the time-depend
Schrödinger equation

U~ t !52 iH ~ t !U~ t !, U~0!5I ,

where H(t) and U(t) are the Hamiltonian and the unitar
displacement operators, respectively. In this paper, we
only be concerned with finite-dimensional quantum syste
In this case, we can choose a basis and think ofH(t) as a
Hermitian matrix. We can split the Hamiltonian

H5Hd1(
j 51

m

v jH j ,

whereHd is the part of Hamiltonian that is internal to th
system and we call it thedrift or free Hamiltonian and
( j 51

m v j (t)H j is the part of Hamiltonian that can be exte
nally changed. It is called thecontrol or rf Hamiltonian. The
equation forU(t) dictates the evolution of the density matr
according to

r~ t !5U~ t !r~0!U†~ t !.

The problem we are ultimately interested in is to find t
minimum time required to transfer the density matrix fro
©2001 The American Physical Society08-1
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the initial stater0 to a final staterF . Thus, we will be
interested in computing the minimum time required to st
the system

U̇52 i S Hd1(
j 51

m

v jH j DU, ~1!

from identity U(0)5I to a final propagatorUF .
In this paper we establish a framework for studying su

problems. For reasons suggested before, our approac
more general than the current application requires, but
added generality does not complicate the development.

Keeping the interests of a broad audience in mind,
have organized the paper into two parts. The first part~Secs.
II–IV ! expresses the main ideas of the paper more intuitiv
and stresses physical applications. The ideas presented i
first part are then developed from a control theory persp
tive in the second part~Secs. V–VII! of the paper. The
reader can choose to read in any order depending on h
his taste.

II. MAIN IDEAS

In this section we present a summary of main geome
ideas used in the paper. The goal is to develop intuition
motivate the mathematical results. We also give here re
ences to the lemmas and theorems of Secs. V–VII, where
ideas laid down in this section are presented in detail.

Recall that the evolution of the unitary propagator fro
Eq. ~1! is

U̇52 i S Hd1(
j 51

m

v jH j DU, U~0!5I ,

whereHd is the internal or drift Hamiltonian andH j are the
control Hamiltonians, which can be externally changed.
described in the introductory section, the central goal of
paper is to find the minimum time it takes to implemen
unitary propagator in a quantum system and to find the c
trols v j that produce the propagator in the minimum time.
the context of NMR, the controlsv j correspond to the puls
sequences. The key geometric ideas involved in the se
for these time optimal pulse sequences are as follows.

A. Control Hamiltonians generate a subgroup

Let G denote the unitary group under consideration. O
serve that the control Hamiltonians$H j%, generate a sub
groupK, given by

K5exp~$H j%LA !,

where $H j%LA is the Lie algebra generated by element
$2 iH 1,2 iH 2, . . . ,2 iH m%. The subgroupK is the set of
unitary propagators that can be produced, if there were
Hd present in the Eq.~1!. We assume that the strength of th
control Hamiltonians can be made arbitrary large. Ple
note this is an idealization, which is a good approximation
03230
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the case when the strength of external Hamiltonians can
made large compared to the internal couplings represe
by Hd .

B. Minimum time to go between cosets

If the strength of the control Hamiltonians can be ma
very large, then starting from identity propagator, we c
generate any unitary propagator belonging toK in almost no
time. Similarly, starting fromU1 , we can produce any
kU1 , kPK, in almost no time. This strongly suggests that
we are trying to find the time optimal controlsv j that drive
the evolution~1! from U1 to U2 in minimum possible time,
we should look for the fastest way to get from the cosetKU1
to KU2 ~the cosetKU1 denotes the set$kU1ukPK%!, be-
cause it takes no time to travel inside a coset and once in
the right coset we can reach the desired element in neglig
time. This is illustrated in the Fig. 1. Therefore one is mo
vated to look at the quotient spaceG/K, where each point
represents some cosetKU.

C. Controlling the direction of flow in GÕK space

The problem of finding the fastest way to get betwe
points inG reduces to finding the fastest way to get betwe
corresponding points~cosets! in G/K space. It is well known
that the spaceG/K has the structure of a differentiable man
fold. Let g represent the Lie algebra of the generators ofG
andk5$H j%LA represent the Lie algebra of the generators
the subgroupK. We can then decomposeg5p% k such that
p is orthogonal tok and represents all possible directions
move in theG/K space.~Observe if we move inG, in direc-
tions represented byk, we always stay inside a coset an
therefore do not go anywhere in the spaceG/K.! The flow in
the groupG, is governed by the evolution equation~1! and
therefore constrains the directions we can choose to mov
theG/K space. The directions inG/K, which we can choose
to move directly, are represented by the set

AdK~Hd!5$Adk1
~Hd!5k1

†Hdk1uk1PK%Pp.

FIG. 1. The panel shows the time optimal path between e
mentsU and V belonging toG. The dashed line depicts the fa
portion of the path corresponding to movement within the cosetKU
and, in traditional NMR language, corresponds to the pulse and
solid line corresponds to the slow portion of the curve connect
different cosets and corresponds to evolution of the couplings.
8-2
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To see why this is the case, observe that the control Ha
tonians do not generate any motion inG/K space as they
only produce motion inside a coset. Therefore all the mot
in G/K space is generated by the drift HamiltonianHd . No-
tice that the elements ofG belonging to a coset go to differ
ent cosets under the evolution of the coupling Hamilton
Hd . Let k1 andk2 belong toK, the coset containing identity
Under the drift HamiltonianHd , these propagators after tim
dt, will evolve to exp(2iHddt)k1 and exp(2iHddt)k2, respec-
tively. Note

exp~2 iH ddt !k15k1@k1
† exp~2 iH ddt !k1#

and thus is an element of the coset represented by

k1
† exp~2 iH ddt !k15exp~2 ik1

†Hdk1dt !.

Similarly exp(2iHddt)k2 belongs to the coset represented
exp(2ik2

†Hdk2dt). Thus in G/K, we can choose to move i
directions given byk1

†Hdk1 or k2
†Hdk2 , depending on

whether we were sitting atk1 or k2 initially. This is illus-
trated in Fig. 2. But now note, we can choose to be at
point in K because we can move inK much faster than evo
lution underHd . So we generate all directionsAdK(Hd) in
G/K by choosing to be at the rightkPK, which we can do
by use of our control Hamiltonians~we can move inK so

FIG. 2. The panel illustrates how the direction of flow in th
G/K space, under the evolution of the driftHd , depends on where
one is in the cosetK. The arrows depict the direction of motio
under the influence of the drift term.
03230
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fast that the system hardly evolves underHd in that time!.
This setAdK(Hd) is called theadjoint orbit of Hd under the
action of the subgroupK.

D. Equivalence theorem and adjoint control system

The control Hamiltonians$H j%, steer the direction of flow
in the G/K space by helping us to be at the right place in
coset. The possible choice of directions is then represe
by the setAdK(Hd). This form of direction control has bee
defined as an adjoint control system@Eq. ~14!#. Observe that
the rate at which we move in theG/K space is always con
stant because all elements ofAdK(Hd) have the same norm
iHdi5ik†Hdki ~k is unitary sokk† is identity!. All we get to
change is the direction of flow inG/K space underHd .
Therefore the problem of finding the fastest way to get
tween two points in the spaceG/K reduces to finding the
shortest path between those two points under the const
that the tangent direction of the path must always belong
the set AdK(Hd). This is essentially the content of th
equivalence theorem~theorem 7!.

E. Cartan decomposition and Riemannian symmetric spaces

The set of accessible directionsAdK(Hd), in the general
case is not the wholep, the set of all possible directions i
G/K. Therefore we may not be able to move directly in
the directions inG/K space, but motion in all directions in
G/K space may be achieved by a back and forth motion
directions we can directly access. This is the usual id
of generating new directions of motion by using nonco
muting generators @exp(eA)exp(eB)exp(2eA)exp(2eB)
;exp(2e2@A,B#)#. The class of coset spacesG/K, which will
be of most interest to us in this paper, are the Riemann
symmetric spaces~e.g., SU(4)/SU(2)^ SU(2)!. We will
see that the geometric structure of this space plays an im
tant role in finding the time optimal control for a pair o
coupled two level quantum systems. If the decomposit
g5p% k, p5k' satisfies the commutation relations

@k,k#,k,

@p,k#5p,

@p,p#,k.

We call it a Cartan decomposition ofg. In this case the cose
spaceG/K is identified with exp(p) and is called a globally
Riemannian symmetric space.

F. Time optimal tori theorem

The key point to note is that ifG/K is a Riemannian
symmetric space, then we do not generate any new direc
in the spaceG/K by a back and forth motion as@p,p#,k.
Thus if the tangent vectors to a path inG/K do not commute,
there is a component of the net motion that lies inside
coset, but clearly this cannot be time optimal because
could have produced this motion in the coset much faster
using our control Hamiltonians. This suggests that the ti
8-3
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optimal path in theG/K space is the one whose tange
directions always commute. Leth,p denote a subspace o
maximally commuting directions or generators~it is not pos-
sible to add additional directions and still have everyth
commute! in G/K space. We call such a subspace theCartan
subalgebraof G/K and the dimension ofh is called the rank
of G/K. The interesting fact is that any elementPPG/K has
an element of the formP5k1

† exp(Y)k1, k1PK, andYPh.
This implies that any element ofUFPG can be written as
k2 exp(Y)k1. This can also be expressed as

G5K exp~h!K. ~2!

Now given UF5k2 exp(Y)k1, we can producek1 and k2 in
negligible time by control Hamiltonians. Therefore the fa
est way to reachUF or the cosetP from identity reduces to
finding the quickest way to generate the propagator expY).
To do this we need to select from all the paths whose tang
directions commute and that connect identity to exp(Y), the
one that is the shortest. This is achieved by choosing am
all possible ways of expressingY as

Y5(
i 51

p

a iAdki
~Hd!, a i.0, ~3!

such thatAdki
(Hd) commute, the one that has the smalle

value ofS i 51
p a i and then flow along directionsAdki

(Hd) for

a i units of time, which produces the propagator

P i 51
n exp@a iAdki

~Hd!#5expF(
i 51

n

a iAdki
~Hd!G5exp~Y!.

This is essentially the content of time optimal tori theore
~Theorem 10!.

If G/K is of rank one, then anyYPp can be written as
Y5aAdk(Hd), a.0 for somekPK. Therefore the fastes
way to reach the coset represented by exp(Y) is to just flow
along directionAdk(Hd) for a units of time. We give here a
classification of qualitative nature of time optimal contr
sequences in NMR and other coherent quantum control
periments based on the geometry of the coset spacesG/K.

1. Riemannian symmetric case

The coset spaceG/K in this case is a Riemannian sym
metric space. This is a characteristic of one and two s
systems.

~i! Pulse-drift-pulse sequence~characteristic of single-
spin systems! In this case, the rank of the symmetric spa
G/K is one~e.g.,SU(2)/U(1)!. Roughly speaking, the time
optimal controlv j take the form of a sequence of hard puls
followed by evolution under drift and then some hard puls
again. See theorem 1.

~ii ! Chained pulse-drift-pulse sequence~characteristic of
two-spin system! In this case, the rank of the symmetr
spaceG/K is more than one~e.g.,SU(4)/SU(2)^ SU(2)!.
The optimal controlsv j take the form of ‘‘impulse drift im-
pulse’’ pattern. The total time for the sequence is the ti
spent when the system just evolves under drift.
03230
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2. Chatter sequence

In this case,G/K is no more a Riemannian symmetr
space and@p,p#úk. This is a characteristic of more tha
two-spin systems. In this case many directions inG/K space
can only be generated by back and forth motion in the dir
tions given byAdK(Hd). The best and the most releva
example for our purpose is

SU~2n!

SU~2! ^ n ,

whenn.2. This is the problem of building or producing a
arbitrary unitary transformation onn qubits in the context of
quantum computing when we can selectively excite each
the qubit fast and the drift corresponds to the interactio
among the qubits.

In this paper we will confine ourselves to the Riemann
symmetric case. The nonsymmetric case will be treated
detail in a forthcoming paper. This concludes the section
overview of basic geometric ideas in the design of time o
timal pulse sequences. We will now elucidate these id
using examples from NMR. We first quickly review here th
product operator formalism used in NMR.

III. PRODUCT OPERATOR BASIS

The Lie groupG of most interest to us isSU(2n), the
special unitary group describing the evolution ofn interact-
ing spin 1

2 particles.@Please note that we focus onSU(2n)
instead ofU(2n) because a global phase is not of interest
us.# The Lie algebrasu(2n) is a 4n21 dimensional space o
tracelessn3n skew-Hermitian matrices. The orthonorm
basis, which we will use for this space, is expressed as te
product of Pauli spin matrices@17# ~product operator basis!.
We choose to work in these bases because of their w
spread use in the NMR literature and our desire to look at
implementations of NMR quantum computers. Recall t
Pauli spin matricesI x , I y , andI z defined by

I x5
1

2 S 0 1

1 0D ,

I y5
1

2 S 0 2 i

i 0 D ,

I z5
1

2 S 1 0

0 21D ,

are the generators of the rotation in the two-dimensional H
bert space and the basis for the Lie algebra of traceless s
Hermitian matricessu(2). They obey the well-known rela
tions

@ I x ,I y#5 i I z ; @ I y ,I z#5 i I x ; @ I z ,I x#5 i I y ; ~4!

I x
25I y

25I z
25

1

4
1, ~5!

where
8-4
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15S 1 0

0 1D .

Notation 1: The orthogonal basis$ iBs%, for su(2n) take
the form

Bs52q21)
k51

n

~ I ka!aks. ~6!

wherea5x, y, or z and

I ka51^ ...^ I a ^ 1, ~7!

whereI a , the Pauli matrix, appears in the above express
only at thekth position, and1 the two-dimensional identity
matrix, appears everywhere except at thekth position.aks is
1 in q of the indices and 0 in the remaining. Note thatq
>1 asq50 corresponds to the identity matrix and is not
part of the algebra.

Example 1: As an example forn52 the basis forsu(4)
takes the form

q51 i $I 1x ,I 1y ,I 1z ,I 2x ,I 2y ,I 2x%,

q52 i $I 1xI 2x ,I 1xI 2y ,I 1xI 2z , I 1yI 2x ,I 1yI 2y ,

I 1yI 2z , I zI 2x ,I 1zI 2y ,I 1zI 2z%.

IV. ONE- AND TWO-SPIN EXAMPLES: BUILDING FAST
QUANTUM GATES

To elaborate on the ideas developed in Sec. 2, let us
with the example of controlling a spin 1/2 nuclei in a ma
netic field by rf pulses that can produce a rapidx rotation on
the spin.

Theorem 1: LetUPG5SU(2), and letI x and I z repre-
sent the Pauli spin matrices given in Eq.~4!. The unitary
evolution of the single-spin system is given by

U̇52 i @ I z1vI x#U, U~0!5I ,

where the control vPR. Given any UFPSU(2),
there exists a unique bP@0,2p# such that UF
5exp(2iaIx)exp(2ibIz)exp(2igIx), wherea, gPR, and the
minimum time for producingUF is b.

Proof: First note that the Lie algebrag5su(2) has a Car-
tan decompositiong5p% h, where p5span$ i I y ,i I z%, k
5span$ i I x%, andG/K5SU(2)/U(1) has rank 1. Therefore
from Eq. ~2!, any UFPSU(2) has a decompositionUF
5exp(2iaIx)exp(2iuIz)exp(2igIx). @This is well known as
Euler angle decomposition ofSU(2)#. Note exp(2iaIx) and
exp(2igIx) are generated in no time. All the time is spent
producing exp(2iuIz) under the drift HamiltonianI z . Be-
cause exp(2itI z) is periodic with period 4p, the smallest
value of ubu such that exp(2iuIz)5exp(2ibIz) is
u mod@22p,2p#. Because the Hamiltonian2I z can also be
produced, we can restrictb to the interval@0, 2p#.

Remark 1: We now generalize to the case of two coup
nuclear spins. We will apply our general results on time o
03230
n

art

d
-

timal control to the specific case of a heteronuclear two-s
system with a scalarJ coupling@6#. It should be emphasized
here that the methods developed in this paper are gen
enough to give time optimal control laws for producing
unitary propagator in any pair of coupled two level quantu
system. Therefore these methods will find immediate ap
cations in building 2 qubit gates in various implementatio
of quantum computing. Also we want to emphasize that
though we look at a specific form of coupling between t
spins, our results are general enough to give time opti
pulses for any kind of coupling. These time optimal puls
for other kinds of couplings like isotropic and dipolar co
plings will be given with experimental details in future pu
lications.

Example 2: Suppose we have two heteronuclear sp
coupled by a scalarJ coupling @6#. Furthermore assume w
can individually excite each spin~perform one qubit opera
tions in context of quantum computing!. The goal now is to
produce any arbitrary unitary transformationUPSU(4),
from this specified coupling and single-spin operations. T
structure appears often in the NMR situation. The unita
propagatorU, describing the evolution of the system in
suitable rotating frame, is described by

U̇52 i S Hd1(
j 51

4

v jH j DU, U~0!5I , ~8!

where

Hd52pJI12I 22 ,

H152pI x ,

H252pI y ,

H352pSx ,

H452pSy ,

whereI x , I y , andI z represent operators for the first spin a
have the same meaning asI 1x , I 1y , andI 1z , respectively, as
explained in previous Sec. III. SimilarlySx , Sy , andSz rep-
resent operators for the second spin and have the same m
ing as I 2x , I 2y , and I 2z . The symbol J represents the
strength of the scalar coupling between the spins. Obse
that the subgroupK generated by$H j% is SU(2)^ SU(2).
Therefore the unitary transformations belonging toSU(2)
^ SU(2) can be produced very fast by hard pulses that ex
each of the spins individually.

The Lie algebrag5su(4), has thedirect sum decompo-
sition g5p% k, where

k5span i $I x ,I y ,I z ,Sx ,Sy ,Sz%,

p5span i $I xSx ,I xSy ,I xSz , I ySx ,I ySy ,

I ySz , I zSx ,I zSy ,I zSz%.
8-5
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Please note that span in above equations denotes all l
combinations with real coefficients. Using the well-know
commutation relations

@A^ B,C^ D#5@A,C# ^ ~B.D !1~C.A! ^ @B,D#,

and Eqs.~4! and ~5!, it is easily verified

@k,k#,k,@p,k#5p,@p,p#,k.

Therefore the decompositiong5p% k is a Cartan decompo
sition of su(4). As thesubalgebrak5su(2)% su(2) gener-
ates the groupK5SU(2)^ SU(2), thecoset space

SU~4!

SU~2! ^ SU~2!

is a Riemannian symmetric space. Note that the Abelian s
algebrah generated by

i $I xSx ,I ySy ,I zSz%

is contained inp and is maximal Abelian and hence a Cart
subalgebra of the symmetric spaceSU(4)/SU(2)^ SU(2).
Therefore using Eq.~2! ~see theorem 6! anyUFPSU(4) can
be decomposed as

UF5K1 exp@2 i ~a1I xSx1a2I ySy1a3I zSz!#K2 ,

whereK1 ,K2PSU(2)^ SU(2).
Now let us see how this decomposition makes obvious

choice of pulse sequences for producing this propaga
Note that for Ky

25exp(2i p/2 I y)exp(2i p/2Sy) and Ky
1

5exp(i p/2 I y)exp(2i p/2Sy), we have

Ky
6 exp~2 i I zSz!~Ky

6!215exp~6 i I xSx!.

Similarly for Kx
65exp(6ip/2 I x)exp(2ip/2Sx) we have

~Kx
6!21 exp~2 i I zSz!Kx

65exp~6 i I ySy!.

This makes transparent, that we can generate any Ha
tonian from the set

$6I zSz ,6I ySy ,6I xSx%,

and therefore any Hamiltonian of the form

a1I xSx1a2I ySy1a3I zSz , a iPR

and hence every element of the Cartan subalgebrah. The
unitary propagatorsKx

6 , Ky
6 , K1 , andK2 can be produced

by selective hard pulses, and takes almost no time. We
claim that synthesizingUF , using the decomposition give
above, is indeed the fastest way to generateUF .

Theorem 2: For the heteronuclear spin system, descr
by Eq. ~8!, let k5$H j%LA . The minimum time required to
produce a unitary propagatorUFPSU(4) is the smallest
value of( i 51

3 ua i u, such that we can solve

UF5Q1 exp@2 i2pJ~a1I xSx1a2I ySy1a3I zSz!#Q2 ,
03230
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where a iPR, Q1 , and Q2 belong to exp(k)5SU(2)
^ SU(2).

Proof: As is shown in the example above the decompo
tion g5p% k, where p5spani $I aSb%, k5spani $I a ,Sb%,
and (a,b)P(x,y,z) is a Cartan decomposition ofg such that

h5span i $I zSz ,I xSx ,I ySy%,

is a Cartan subalgebra. Therefore any unitary propagatoU
PSU(4) has the decompositionU5Q1 exp@2i2pJ(a1IxSx
1a2IySy1a3IzSz)#Q2, where Q1 ,Q2PSU(2)^ SU(2). Ob-
serveQ1 andQ2 take almost no time to produce. Therefo
we need to compute the minimum time required to produ
the propagatorA5exp@2i2pJ(a1IxSx1a2IySy1a3IzSz)#. The
maximally commuting set of Hamiltonians that can gener
the above propagator is$6I zSz ,6I xSx ,6I ySy%. Since we
can produce all of these Hamiltonians@they belong to the se
AdK(Hd)#, we can produce the above propagatorA in
( i 51

3 ua i u, units of time. Therefore, the minimum time fo
producingUF is the smallest value ofS i 51

3 ua i u, such that we
can solve

UF5Q1 exp@2 i2pJ~a1I xSx1a2I ySy1a3I zSz!#Q2 .

Remark 2: From the nature of time optimal control s
quences, it is clear that the set of unitary propagators that
be produced in a given timeT take the form

Q1 exp@2 i2pJ~a1I xSx1a2I ySy1a3I zSz!#Q2 ,

ua1u1ua2u1ua3u5T, ~9!

whereQ1 ,Q2PSU(2)^ SU(2). This set is the reachable se
of the control system~8!, for time T.

Now we address the question of maximum possi
achievable transfer by a pulse sequence in some given
T. For this purpose we define the transfer efficiency.

Definition 1 ~Transfer Efficiency!: Given the evolution of
the density matrixr(t)5U(t)r(0)U†(t), where

U̇52 i S Hd1(
j 51

m

v jH j DU, U~0!5I ,

define the transfer efficiencyh(t) from r~0!, to some given
target operatorF as

h~ t !5iTr@F†U~ t !r~0!U†~ t !#i .

Remark 3: In the formula for the transfer efficiency, w
always assume that the starting operatorr~0! and the final
operator F are both normalized to have norm one@i.e.,
Tr(F†F)51#.

We will now look at the in-phase and antiphase transf
in the two-spin system, whose evolution is given by Eq.~8!.
We give here expressions for maximum transfer efficienc
We first state some lemmas, which will be required in co
puting transfer efficiencies. For proofs see the Appendix.

Lemma 1: Let
8-6
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p5F 1
2 i
0
G

and letS be a real diagonal matrix

S5F a1 0 0

0 a2 0

0 0 a3

G .

If uai u>uaj u>uaku>0, where$ i , j ,k%P$1,2,3% and letU, V
PO(3), then the maximum value ofip†USVpi is uai u
1uaj u.

Lemma 2: Consider the function f (a1 ,a2 ,a3)
5sin(Jpa1)sin(Jpa3)1sin(Jpa2)sin(Jpa3). If a1 ,a2 ,a3>0
and a11a21a35T, where T<3/2J, then the maximum
value of f (a1 ,a2 ,a3) is 2 sin(Jpa)sin(Jpb), wherea12b
5t and tan(Jpa)52 tan(Jpb).

Theorem 3~Maximum in-phase transfer!: Consider the
evolution for the heteronuclear IS spin system as defined
Eq. ~8!. Let r(0)5Sx2 iSy /& and F5I x2 i I y /&. For t
<3/2J, the maximum achievable transfer

h* ~ t !5sin~Jpa!sin~Jpb!,

wherea12b5t and tan(Jpa)52 tan(Jpb). For t>3/2J the
maximum achievable transfer is one.

Proof: Let

L~a1 ,a2 ,a3!5exp@2 i2pJ~a1I xSx1a2I ySy1a3I zSz!#.

From now on we will simply writeL(a1 ,a2 ,a3) as L.
From Theorem 2, any unitary propagatorUF belonging to
the set
l
fo

e

03230
y

R~e,t !5H Q1LQ2uQ1 ,Q2PK,a i.0,(
i 51

3

a i<tJ ,

can be produced by appropriate pulse sequence in Eq.~8!.
Therefore we will maximize

h~ t !5iTr@F†U~ t !r~0!U†~ t !#i ,

for U(t)PR(e,t). Let I 5exp$iI x ,iI y ,iI z% and S
5exp$iSx ,iSy ,iSz%. By definition,K5S3I . In the expression

h~ t !5iTr@Q1
†F†Q1LQ2r~0!Q2

†L†#i ,

r(0) commutes withI, andF commutes withS, therefore it
suffices to restrictQ1 andQ2 to I andS, respectively.

Let s denote the subspace spanned by the orthonor
basis$Sx ,Sy ,Sz% and i denote the subspace spanned by
orthonormal basis$I x ,I y ,I z%. We represent the starting op
eratorr(0)51/&(Sx2 iSy) as a column vectorp51/&@1
2 i0#t in s. The actionr(0)→Q2r(0)Q2

† can then be rep-
resented asp→Vp, whereV is a orthogonal matrix.

Let PI denote the projection on the subspacei. A simple
computation yields that

PI~LSxL
†!5sin~Jpa2!sin~Jpa3!I x ,

PI~LSyL
†!5sin~Jpa1!sin~Jpa3!I y ,

PI~LSzL
†!5sin~Jpa2!sin~Jpa1!I z .

We denote the target operatorF51/&(I x2 i I y) as a col-
umn vector 1/&@12 i0#T in i. The action r(0)
→PI@LQ2p(0)Q2

†L†# can be written asp→SVp, where
S5F sin~Jpa2!sin~Jpa3! 0 0

0 sin~Jpa1!sin~Jpa3! 0

0 0 sin~Jpa1!sin~Jpa2!
G .
use
le
Therefore we can rewrite

h~ t !5iTr@Q1
†F†Q1LQ2r~0!Q2

†L†#i

as h(t)5ip†USVpi , where U and V are real orthogona
matrices. Using the result of Lemma 1, we get that
usin(Jpa1)u>usin(Jpa2)u>usin(Jpa3)u, the maximum value of
h(t) is

usin~Jpa1!sin~Jpa2!u1usin~Jpa1!sin~Jpa3!u
2

.

Now we maximize the above expression with respect toa1 ,
a2 , anda3 . From the property of the sine function, it can b
r

seen that we maximize the above expression ifua i u<1/2J. In
that case it suffices to maximize

sin~Jpa1!sin~Jpa2!1sin~Jpa1!sin~Jpa3!

2

for 0<a1 ,a2 ,a3<1/2J. Now from Lemma 2, we get the
above result.

Now we prove the last part of the theorem. Note fort
53/2J, the maximum achievable transfer is one. Beca
r~0! and F are normalized, this is the maximum possib
transfer between these operators. Ift.3/2J, say t5T
13/2J, we can always arrange matters so thatU(T)5e @by
creating a propagatorU(T/2)5exp@2i2pJ(T/2I z Sz)# and
8-7
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then creating its inverse exp@i2pJ(T/2I z Sz)# from T/2 to T#.
In the remaining 3/2J units of time, we can produce th
optimal propagator.

The optimal transfer curve is plotted in comparison w
the transfer achieved using the isotropic mixing Hamilton
in the Fig. 3.

Implementation Details: The optimal propagator for t
in-phase transferS2→I 2 can be implemented in practic
simply by modifying the delays of the well-known puls
sequence elements that are commonly used for such co
ence transfer~ICOS-CT! experiments~in-phase coherenc
order selective coherence transfer! @11#. Many different
implementations of ICOS-CT experiments have been in
duced,which create isotropic mixing conditions in hete
nuclear two-spin systems based on pulse-interrupted de
For a given heteronuclearJ coupling term these sequenc
create effective coupling terms 2pJIxSx , 2pJIySy , and
2pJIzSz that are active for durationstx , ty , andtz , respec-
tively @11#. The resulting average Hamiltonian@5# is given
by H̄52pJ(a1I xSx1a2I ySy1a3I zSz) with a15tx /t, a2
5ty /t, anda35tz /t for t5tx1ty1tz . Whereas an iso-
tropic average Hamiltonian results fortx5ty5tz5t/3 @11#,
the desired average Hamiltonian that achieves the opt
transfer amplitude, which is up to a factorf 51.12 larger
than the transfer amplitude of isotropic mixing experime
~see Theorem 3! is created simply by modifyingtx , ty , and
tz such that tan(Jptz)52 tan(Jpt') with t'5tx5ty . If sev-
eral ICOS-CT transfer steps occur sequentially in a giv
experiment~e.g., from 13C to 1H via 15N!, the overall gain
factor f tot is the product of the individual gain factorsf and
may be quite substantial. For example, if a transfer step w
a gain factor of onlyf 51.06 @corresponding to the caset
53/(4J), see Fig. 3# occurs twice in a given NMR experi
ment, f tot51.12 and the required number of accumulatio
~which for a desired signal-to-noise ratio is proportional
1/f tot

2 ! and hence the overall measurement time~which can be

FIG. 3. The panel shows the comparison between the
achievable transfer~bold curve! and the transfer achieved using th
isotropic mixing Hamiltonian for the in-phase transfer in 2 sp
case. Onx axis is plotted time in units of 1/J.
03230
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several days! can be reduced by 20% at no extra cost.
Theorem 4~Maximum anti-phase transfer!: Consider the

evolution for the heteronuclear IS spin system as defined
Eq. ~8!. Let r(0)5&I zS

25&I z(Sx2 iSy) and F5I 25I x
2 i I y /&. Then, fort<1/J, the maximum achievable trans
fer h* (t) is

iTr@F†U~ t !r~0!U†~ t !#i5sin~Jpt/2!.

For t>1/J, the maximum achievable transfer is one.
The proof is exactly on same lines as Theorem 3. T

theorem proves that the transfer efficiency achieved using
known mixing sequence@10# is optimal. We now develop al
the ideas presented in Sec. II from a mathematical con
theory viewpoint.

V. PRELIMINARIES

We will assume that the reader has some familiarity w
the basic facts about Lie groups and homogeneous sp
@2#.

Throughout this part of the paper,G will denote a com-
pact semisimple Lie group ande its identity element~we use
I to denote the identity matrix when working with the matr
representation of the group!. As is well known there is a
naturally defined bi-invariant metric onG, given by the Kill-
ing form. We denote this bi-invariant metric by^,&G . Let K
be a compact closed subgroup ofG. Let g andk represent the
Lie algebra ofG andK, respectively. Consider the direct su
decompositiong5p% k such thatp5k' with respect to the
metric.

Definition 2 ~Cartan decomposition ofg!: Let g be a real
semi-simple Lie algebra and let the decompositiong5p
% k, p5k' satisfy the commutation relations

@k,k#,k, ~10!

@p,k#5p, ~11!

@p,p#,k. ~12!

We will refer to this decomposition as a Cartan decompo
tion of g. The pair~g, k! will be called an orthogonal sym
metric Lie algebra pair@18,2#.

It is well known that the ~right! coset spaceG/K
5$KU:UPG% ~homogeneous space! admits the structure o
a differentiable manifold@1#. Let p:G→G/K denote the
natural projection map. DefineoPG/K by o5p(e). The
tangent space planeTo(G/K) can be identified with the vec
tor subspacep. Given the bi-invariant metriĉ ,&G on G,
there is a corresponding left invariant metric^,&n , on the
homogeneous spaceG/K arising from the restriction of̂,&G
to p @1#.

The Lie groupG acts on its Lie algebrag by conjugation
AdG :g→g ~called the adjoint action! @2,3#. This is defined
as follows. GivenUPG, XPg, then

AdU~X!5
dU21 exp~ tX!U

dt U
t50

.

st
8-8
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To fix ideas if G5SU(n) and UPG, APsu(n), then
AdU(A)5U†AU. We use the notation

AdK~X!5 ø
kPK

Adk~X!.

Definition 3 ~Cartan subalgebra!: Consider the semi-
simple Lie algebrag and its Cartan decompositiong5p
% k. If h is a subalgebra ofg contained inp, then h is
Abelian because@p,p#Pk. A maximal Abelian subalgebra
contained inp is called a Cartan subalgebra of the pair (g,k)
@2,3#.

Theorem 5:@2# If h and h8 are two maximal Abelian
subalgebras contained inp, then

~1! There is an elementkPK such thatAdk(h)5h8.
~2! p5økPKAdk(h).
Remark 4: Ifg5p% k is a Cartan decomposition then th

homogeneous spaceG/K5exp(p), and is called aglobally
Riemannian symmetric space@3#. From the above state
theorem 5, the maximal Abelian subalgebras ofp are allAdK
conjugate and in particular they have the same dimens
The dimension is called therank of the globally Riemannian
symmetric spaceG/K.

Theorem 6:@2# Given the semi-simple Lie algebrag and
its Cartan decompositiong5p% k, let h be a Cartan subal
gebra of the pair (g,k) and defineA5exp(h),G. ThenG
5KAK. The spaceG/K is a union of maximal Abelian sub
groupsAdk(A), calledmaximal tori.

Definition ~Weyl Orbit!: Let g5p% k, be a Cartan de-
composition and leth,p be a cartan subalgebra of the pa
(g,k) containing Xd . We use the notationW(Xd)
5hùAdK(Xd) to denote the Weyl orbit ofXd . We use
c(Xd)5$( i 51

n b iXi ub i>0,(b i51,XiPW(Xd)%, to denote
the convex hull of the Weyl orbit ofXd , with vertices given
by the elements of the Weyl orbit ofXd .

Assumption 1: LetUPG and let the control system

U̇5FXd1(
i 51

m

v iXi GU, U~0!5I ~13!

be given. Please note we are working with the matrix rep
sentation of the group. We use$Xd ,X1 ,...,Xm%LA to denote
the Lie algebra generated by$Xd ,X1 ,...,Xm%. We will as-
sume that$Xd ,X1 ,...,Xm%LA5g, and sinceG is compact, it
follows that the system~13! is controllable @4#. Let k
5$Xi%LA and K5exp$Xi%LA be the closed compact grou
generated by$Xi%. Given the direct sum decompositiong
5p% k, wherep5k' with respect to the bi-invariant metri
^,&G , let XdPp. We will assume thatAdK(p),p, in which
case one says the homogeneous spaceG/K is reductive. All
our examples will fall into this category.

Notation: Let C denote the class of all locally bounde
measurable functions defined on the interval@0, `! and tak-
ing value inRm. C@0,T# denotes their restriction on the in
terval @0,T#. We will assume throughout that in Eq.~13!, v
5(v1 ,v2 ,...,vm)PC. Given vPC, we useU(t) to denote
the solution of Eq.~13! such thatU(0)5e. If, for some time
03230
n.

-

t>0, U(t)5U8, we say that the controlv steersU into U8
in t units of time andU8 is attainable or reachable fromU at
time t.

Definition 4 ~Reachable Set!: The set of allU8PG attain-
able fromU0 at timet will be denoted byR(U0 ,t). Also we
use the following notation

R~U0 ,T!5 ø
0<t<T

R~U0 ,t !,

R~U0!5 ø
0<t<`

R~U0 ,t !.

We will refer to R(U0), as the reachable set ofU0 .
Remark 5: From the right invariance of control systems

follows that R(U0 ,T)5R(e,T)U0 , R(U0 ,T)5R(e,T)U0 ,
and R(U0)5R(e)U0 . Note thatR(U0 ,T) need not be a
closed set, we useR(U0 ,t) to denote its closure.
Definition 5 ~Infimizing Time!: Given UFPG, we will de-
fine

t* ~UF!5 inf$t>0uUFPR~e,t !%,

t* ~KUF!5 inf$t>0ukUFPR~e,t !,kPK%

and t* (U) is called theinfimizing time.
From a mathematical point of view, we may identify tw

goals in this paper:~1! to characterizeR(e,t) and hence
computet* (UF), the infimizing time forUFPG, and~2! to
characterize the infimizing control sequencevn in Eq. ~13!,
which in the limit n→`, achieves the transfer timet* (UF)
of steering the system~13! from identity e to UF . From the
physics point of view, these results establish the minim
time required and the optimal controls~the rf pulse sequence
in NMR experiments! to achieve desired transfers in a spe
troscopy experiment.

VI. TIME OPTIMAL CONTROL

The key observation as described in Sec. II is the follo
ing. In the control system~13!, if UFPK then t* (UF)50.
To see this, note that by lettingv in Eq. ~13! be large, we can
move on the subgroupK as fast as we wish. In the limit asv
approaches infinity, we can come arbitrarily close to a
point in K in arbitrarily small time with almost no effec
from the termXd . By the same reasoning for anyUPG,
t* (U)5t* (kU) for kPK. Thus, findingt* (UF) reduces to
finding the minimum time to steer the system~13! between
the cosetsKe andKUF . This is illustrated in the Fig. 1.

With this intuitive picture in mind, we now state som
lemmas.

Lemma 3: LetUPG and X:R→g be a locally bounded
measurable function of time. IfXn(t) converges toX(t) in
the sense that

lim
n→`

E
0

T

iX~ t !2Xn~ t !idt50,
8-9
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then the solution of the differential equationU̇5Xn(t)U at
time T converges to the solution ofU̇5X(t)U at timeT. The
proof of the above result is a direct consequence of the
form convergence of the Peano-Baker series. We use th
show

Lemma 4: For the control system in Eq.~13!, t* (UF)
5t* (KUF).

Proof: Observe it suffices to show that ifkPK, then
t* (k)50. From@4# ~Theorem 5.1!, for everyT.0, we have
R(e,T)5K and therefore the result follows. Q.E.D.

Remark 6: The above observation will help us make
bridge between the problem of computingt* (UF) and the
problem of computing minimum length paths for a relat
problem that we now explain.

Definition 6 ~Adjoint Control System!: Let PPG. Asso-
ciated with the control system~13! is the right invariant con-
trol system

Ṗ5XP, ~14!

where now the controlX no longer belongs to the vecto
space but is restricted to an adjoint orbit i.e.,XPAdK(Xd)
5$k21XdkukPK%. We call such a control system anadjoint
control system.

For the control system~14!, we say that KUF
PB(U0 ,t8) if there exists a controlX@0,t8# that steers
P(0)5U0 to P(t8)PKUF in t8 units of time. We use the
notation

B~U0 ,T!5 ø
0<t<T

B~U0 ,t !.

From Lemma 3, it follows thatB(U0 ,T) is closed. We use

L* ~KUF!5 inf$t>0uKUFPB~e,t !%

to denote the minimum time required to steer the system~14!
from identity e to the cosetKUF . We call it theminimum
coset time.

Theorem 7~Equivalence theorem!: The infimizing time
t* (UF) for steering the system

U̇5FXd1(
i 51

m

v iXi GU

from U(0)5e to UF is the same as the minimum coset tim
L* (KUF), for steering the adjoint system

Ṗ5XP, XPAdK~Xd!

from P(0)5e to KUF .
Proof: LetQPK satisfy the differential equation

Q̇5F(
i 51

m

v iXi GQ, Q~0!5e. ~15!

Let PPG evolve according to the equation

Ṗ5~Q21XdQ!P, P~0!5e. ~16!
03230
i-
to

a

Then observe that

d~QP!

dt
5FXd1(

i 51

m

v iXi G ~QP!, Q~0!P~0!5e,

which is the same evolution equation as that ofU, and since
U(0)5Q(0)P(0)5e, by the uniqueness theorem for th
differential equations,U(t)5Q(t)P(t). Therefore, given a
solution Û(t) of Eq. ~13! with the initial conditionÛ(0),
there exist unique curvesP̂(t) and Q̂(t), defined through
Eqs.~15! and~16!, satisfyingÛ(t)5Q̂(t) P̂(t). Observe that
if Û(T)5UF then it follows that P̂(T)PKUF . If UF

PR(e,T), then there exists a sequence of control la
v r@0,T# such that the corresponding solutionsUr(t) of
Eq. ~13! satisfyUr(T)→UF . Therefore, the solutionsPr(t)
of the associated control system~15! satisfy
limr→` Pr(T)PKUF . BecauseB(e,T) is closed, it follows
that KUFPB(e,T), which implies that L* (KUF)
<t* (UF).

To prove the equality observe that ifKUFPB(e,T), then
there exists a controlX̄@0,T# such that the correspondin
solution P̄(t) to Eq. ~14! satisfiesP̄(T)PKUF . Because
X̄(t)PAdK(Xd), we can expressX̄(t) as Q̄(t)21XdQ̄(t). It
is well known@21# that we can find a familyv r(t) of control
laws such that the corresponding solutionQr(t) of

Q̇r5F(
i 51

m

v i
rXi GQr , Qr~0!5e

satisfies limr→` *0
TiQ̄(t)2Qr(t)idt50. Hence,

limr→` *0
TiX̄(t)2@Qr(t)#21XdQr(t)idt50. Using Lemma

3, we claim that the solutions to family of differential equ
tions

Ṗr5@~Qr !21~ t !XdQr~ t !#Pr , Pr~0!5e

satisfies limr→` Pr(T)PKUF . Therefore, t* (KUF)<T.
Since the choice ofT was arbitrary, it followst* (KUF)
<L* (KUF). Becauset* (KUF)5t* (UF), it follows that
t* (UF)<L* (KUF). Hence the proof. Q.E.D.

Remark 7: We will now computet* (UF) using the prop-
erties of the setAdK(Xd). In this paper we will confine to the
case when the coset spaceG/K is a globally Riemannian
symmetric space. We consider the following two cases ba
on the rank of the symmetric space.

A. Rank one case

Remark 8: We begin with case where the rank of t
symmetric spaceG/K is one. As the Cartan subalgebra
one dimensional, it follows from Theorem 5 thatp
5$aAdK(Xd)uaPR%. Furthermore, ifG/K is rank one, then
(2Xd)PAdK(Xd), @2# ~Theorem 2.12, Chapter 7!. Therefore

p5$aAdK~Xd!ua>0%.

Therefore computingt* (UF) reduces to finding the geodes
distance in the homogeneous spaceG/K.
8-10
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Theorem 8: LetG be a compact semi-simple Lie grou
with a bi-invariant metriĉ ,&, and K be a closed subgroup
Let g and k denote their Lie algebras such that the deco
positiong5p% k is a Cartan decomposition and the rank
G/K is one. For the right invariant control system

U̇5FXd1(
i 51

m

v iXi GU, UPG, U~0!5e,

where v iPR, XdPp, and $Xi%LA5k, the infimizing time
t* (UF) is the smallest value ofa.0 such that we can solv
UF5Q1 exp(aXd)Q2 with Q1 ,Q2PK.

Proof: By the equivalence theorem,t* (UF) is the same as
the minimum time for steering the system

Ṗ5XP, XPAdK~Xd!,

from P(0)5e to KUF . From Ref.@1#, the geodesics inG/K
under the standard metriĉ,&n originating from o take the
form p@exp(tY)# for YPp. BecauseG/K is a Riemannian
symmetric space of rank one, the set

$aAdK~Xd!ua>0%5p

and generates all the geodesics inG/K space. Hence the
result follows.

Remark 9: Roughly speaking, the time optimal trajecto
~obtained as a limit of the infimizing sequence! for the sys-
tem ~13!, which steers the system fromU(0)5e to UF
5Q1 exp(aXd)Q2, takes the form e→Q2→exp(aXd)Q2
→Q1 exp(aXd)Q2, where the first and last step of this cha
takes no time, and all the time is required for the drift pr
cess~second step!.

B. Rank greater than one case

Let us now consider the case when the rank of the R
mannian symmetric spaceG/K is greater than one. Pleas
refer to @19# for the role of symmetric spaces in contr
theroy. We first state a convexity theorem due to Kostan

Theorem 9@20# ~Kostant’s Convexity Theorem!: Let g
5p% k be a Cartan decomposition andh,p a Cartan subal-
gebra of~g,k! containingXd . Let G:p→h, be the orthogona
projection of p onto h with respect to the killing metric.
ThenG:AdK(Xd)5c(Xd), wherec(Xd) is the convex hull of
the Weyl orbit ofXd .

Theorem 10~Time Optimal Tori Theorem!: Let G be a
compact semi-simple Lie group andK be a closed subgrou
with g andk their Lie algebras, respectively. Letg5p% k be
a Cartan decomposition. Consider the right invariant con
system

U̇5FXd1(
i 51

m

v iXi GU, UPG, U~0!5e,

where v iPR, XdPp, $Xi%LA5k. Then any UF
5Q1 exp(aY)Q2, where a.0, Q1 , Q2PK, and Y
Pc(Xd), belongs to the closure of the reachable set. T
infimizing time t* (UF) is the smallest value ofa.0, such
that we can solve
03230
-
f

y

-

-

l

e

UF5Q1 exp~aY!Q2 ,

whereQ1 , Q2PK, andY belongs to the convex hullc(Xd).
We sketch here the outline of a proof.
Let h be a Cartan subalgebra ofG/K containingXd and

let A5exp(h). It suffices to prove the theorem forUFPA as
by theorem 6,G5KAK. For UFPA, let T be the smallest
value of( i 51

m a i ,a i>0 such thatUF5exp((i51
m aiXi), where

XiPW(Xd). It is immediate thatt* (UF)<T as the adjoint
control systemṖ5XP, can be steered toUF in T units of
time, by lettingX be Xi for a i units of time.

To see thatt* (UF)5T, let P(t) be the shortest~or time
optimal! trajectory of the adjoint control systemṖ5XP that
steersP(0)5e to the cosetKUF . Let a(t) be its projection
under the mappA : G/K→A such that pA :k1 exp(Y)k1

†

→exp(Y), YPh, k1PK @note that the projection is only
unique modulo a Weyl group action, to make it unique, fix
Weyl chamberb in h and consider projection onto exp~b!#.
The projectionpA induces the mappA

*
:P(t)

.

→ȧ(t). The
evolution of the curvea(t) has the formȧ(t)5Va(t),
where V5G@Adk̃(Xd)#, for somek̃PK ~recall G:p→h is
the orthogonal projection ontoh!. Now using Kostant’s con-
vexity theorem, we haveVPc(Xd). Therefore we can write
ȧ(t)5(( i 51

m b iXi)a(t), where XiPW(Xd) and ( i 51
m b i51

for b i>0. This makes clear that ifT5( i 51
m a i is the smallest

value for whichUFPA satisfiesUF5exp((i51
m aiXi) for a i

>0, then the patha(t) will at least takeT units of time to
reachUF .

Remark 10: The essence of the above theorem is tha
spaceG/K is a union of maximal toriAdK(A), and the fast-
est way to steer the adjoint control system between

FIG. 4. The panel illustrates the fastest way to get between
pcosetsA andB is to flow on a maximal torus containing the cose
8-11
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points is to always move on a maximal torus contain
these points. This is illustrated in Fig 4. The theorem ch
acterizesB(e,t), the reachable set for the adjoint syste
This is given by

KB~e,t !5K exp~aY!K, 0<a<t,

whereY belongs to the convex hullc(Xd).

VII. CONCLUSION

In this paper, we presented a mathematical formulation
the problem of finding the shortest pulse sequences in co
ent spectroscopy. We showed how the problem of compu
minimum time to produce a unitary propagator can be
duced to finding the shortest length paths on certain c
spaces. A remarkable feature of time optimal control law
that they are singular, i.e., the control is zero most of
time, with impulses in between. We explicitly computed t
shortest transfer times and maximum achievable transfer
given time for the case of heteronuclear two-spin transf
In a forthcoming paper, we plan to extend these results
higher spin systems.
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APPENDIX

Proof of Lemma 1: It suffices to considera1 ,a2 ,a3>0 as
we can absorb the negative sign using the orthogonal m
cesU or V. Let

L5F Aa1 0 0

0 Aa2 0

0 0 Aa3

G .
t-

on

03230
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.

f
r-
g
-
et
is
e

a
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to

ge-

ri-

By definition S5L†L. Using Cauchy Schwartz inequalit
ip†USVpi<iLVpiiLUpi . Observe, the maximum valu
of iLVpi is Aai1aj . Therefore ip†USVpi<ai1aj .
Clearly for the appropriate choice ofU and V, this upper
bound is achieved~for example, in casea1>a2>a3 , the
bound is achieved forU and V identity!. Hence the result
follows.

Proof of Lemma 2: Let

H~a1,a2 ,a3 ,l!

5sin~Jpa1!sin~Jpa3!1sin~Jpa2!sin~Jpa3!

1l~a11a21a32T!.

The necessary condition for optimality gives]H/]a150,
]H/]a250, and ]H/]a350, which implies respectively
that

pJ@cos~Jpa1!sin~Jpa3!#1l50, ~17!

pJ@cos~Jpa2!sin~Jpa3!#1l50, ~18!

pJ@sin~Jpa1!cos~Jpa3!1sin~Jpa2!cos~Jpa3!#1l50.
~19!

From Eqs.~17! and ~18!, we obtain that either sin(Jpa3)
50 or cos(Jpa2)5cos(Jpa1). The first condition does no
give a maxima as it makesf identically zero. The second
condition implies

Jpa152mp1Jpa2 . ~20!

Sincea1 , a2>0, anda11a2<T<3/2J, condition ~20! is
only satisfied form50. Therefore,a15a2 . Now substitut-
ing this in Eq.~19! and using the Eqs.~18! and~19!, we get
the desired result.
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