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Abstract

In this thesis, we address problems in control and stabilization of nonholonomic control
systems arising in the areas of quantum physics, robotics, and locomotion systems. We
provide a control theoretic framework for problems involving manipulation of quantum
systems. The problem of design of pulse sequences in coherent spectroscopy is treated
as a problem of constructive controllability in geometric control. We derive time optimal
control laws for a class of control problems with drift, evolving on compact Lie groups.
It is shown that these results find applications in design of pulse sequences that minimize
decoherence effects in spectroscopic experiments and maximize signal to noise ratio. We
also analyze in detail the problem of feedback stabilization of nonholonomic control systems.
For nonholonomic systems, smooth state feedback control laws do not exist. In this thesis,
we show how this topological obstruction can be overcome by embedding the system in a
higher-dimensional manifold and constructing dynamic controllers. The choice of higher
dimensional space is dictated by the symmetries of the system and can be interpreted as
a gauge in the system. We finally draw a bridge between gauge theories in physics and

control of nonholonomic control systems.

iv



Acknowledgements

First, I would like to express my sincere thanks to my thesis advisor, Prof. Roger Brockett.
His ideas of a broad, scientific, and mathematical training have guided my education and
research for last three years, and I have cherished every moment of it. His zest for creative
work will always be a source of inspiration. I am also grateful to Prof. Steffen Glaser,
whose collaboration has been so valuable in creating a bridge between the fields of control
theory and NMR. I would also like to express my appreciation towards the members of my
doctoral committee, Prof. Roger Brockett, Prof. Sanjoy Mitter, Prof. Y.C. Ho, and Prof.
Michael Brandstein, for evaluation of this work. I am also indebted to Prof. Ulf Grenander,
whose collaboration instilled in me a love for Applied Mathematics.

I must also acknowledge the help and support of fellow students and friends including;:

Anuj Srivastava, Dimitiris Hristu and Kristi Morgansen, who have always been generous
with advice and help.

Manuela Pereira, for being such a great and supportive friend.

Kathleen LaFrance, Hongyi Li, Magnus Egerstedt, Stan Jurga, Mark Hoefer and Sam
Pfister, for creating a great environment in the Robotics Lab.

Dan, Kommu, Amit, Rob Grothe, Shantanu, Joy, Abed, Nimmi, Sudhanshu, Pallavi
and Madhura for sharing some great times in and outside school.

Sarah Morelli, who has been so supportive of my efforts, whose friendship and support
was so important in navigating the ups and downs of graduate school.

Finally, I would like to thank my family, whose love and support have accompanied me
throughout my life. My grandparents, whose conviction in hard work and simple living
have always been such a source of inspiration. Rakhi, for all the great times we shared
together while growing up. My father, who has always managed to convince me that all
my failures are indeed such great opportunities. My mother, who loves me so much and
always makes me feel so special. Mom and Dad this thesis is dedicated to you.



Contents

1 Introduction
1.1 Goalsofthethesis . ... ... ... ... ... ... ... .. ... ..
1.2 Organization of the thesis . . . . . . ... .. ... ... ... .....

2 Control in Quantum Systems

2.1 Nuclear Spin and Resonance . . . . . . . . .. ... ... ...

2.1.1 Bloch Model and One Pulse NMR Experiment . . .. ... ... ..

2.1.2  Chemical Shift . . . .. ... ... ... ... o
2.2 Postulates of Quantum Mechanics . . . . ... ... ... 0oL
2.3 Spin, Magnetic Moment and Angular Momentum . . . . . . . ... ... ..
2.4 Quantum Ensembles . . . . . . . ... oo L
2.5 Quantum Mechanical NMR Spectroscopy - . . . . .. .. .. ... ... ..
2.6 Maximizing the Signal-to-Noise Ratio . ... ... ... ... ... .....
2.7 Optimal Propogator . . . . .. ... ... ... o
2.8  Unitary Controllability of Spin Systems . . . . . . .. ... .. ... ....
2.9 Conclusions . . . . . . . . L e e

3 Optimal Control in NMR
3.1 Time Optimal Control . . . . . . .. ... ... oL
3.2 Optimal Transfer Efficiency in Two-Spin Systems . . . . . . . ... ... ..
3.3 Optimal Control in NMR . . . . .. .. ... ... . . 0oL,
34 Conclusions . . . . . . . . L e e e

4 Feedback Stabilization of nonholonomic Systems
4.1 Stabilization of the nonholonomic integrator . . . . . . . ... ... .. ...
4.2 General position-area system . . . . ... ..o
4.3 Conclusions . . . . . . . .o e e

5 Dynamic Stabilization based on Gauge Extentions
5.1 Introduction. . . . . . . . . . . . Lo
5.2 Riemannian Regulator Problem . . . . . .. ... ... ... ... .....
5.3 Gauge Extension . . . . . .. . .. L e
5.3.1 Gauge Theories and Gauge Extension . . . ... ... ... .....
5.4 Stabilization of the Nonholonomic Integrator . . . ... ... ... ... ..
5.5 Stabilization of the General Position Area System . . . ... ... ... ..

(=]

11
13
17
18
20
23
26
31
34
36
38

40
44
53
58
62

65
74
7
85

86
86
87
89
92
94
96

vi



5.6 General sl(n) System . . . ... ... o o Lo 99

5.7 Lie Algebra Generalization . . . . ... ... ... ... ... ........ 102
5.8 Conclusions . . . . . . . . . . e e e e e e 106

A Riemannian Geometry of Lie Groups and Homogeneous Spaces 107
A.0.1 Lie Groups and Homogeneous Spaces . . . .. ... ... ...... 109

A1l Geometric Control . . . . . . . . . . . . . . e e 112
Bibliography 120

vii



List of Figures

1.1

21
2.2
2.3

3.1
3.2
3.3
3.4
3.5

4.1
4.2

Al
A2

Holonomy . . . . . . . o . o 3
Hydrogen spectrum . . . . . . . . . ..o 12
Precession of bulk magnetization . . . ... ... ... ... ... ..., 15
Single pulse experiment . . . . . . . ... Lo 17
Coset . . . . e e 45
Maximum Inphase Transfer . . . . . ... ... ... .. 00000 L. 56
Maximum antiphase transfer . . . . ... ... ... ... ... ..., 58
2 spin inphase transfer . . . . . ... ..o oo o Lo Lo 61
3 spin inphase transfer . . . . . ... ..o oo oL Lo 62
Stabilizing nonholonomic integrator . . . . .. .. ... ... ... ... .. 76
Stabilizing general position area system . . . . .. ... ..o L. 81
Unicycle . . . . o . o e 117
Ball Plate Mechanism . . . . . . .. ... . Lo o 119

viii



Chapter 1

Introduction

The central theme of the thesis is control and stabilization of nonholonomic systems arising
in classical and quantum mechanics, with applications to coherent spectroscopy, robotics,
and locomotion systems. Our concern will be with situations where one exploits geometry
to do control. A common scenario where this geometric structure occurs is in presence
of non-integrable constraints in the system, which cannot be written as time derivative
of some functions of the generalized coordinates. The constraints force the instantaneous
velocity of the bodies to live in a restricted set of directions, but this does not restrict
the reachable states of the system, as the movement in other directions can be achieved
by cyclical motions in directly accessible directions. A familiar example of this geometric
structure is exploited in parallel parking of an automobile, where periodic motion of the
driving speed and the steering angle can be used to achieve a net sideways motion.

These systems are examples of nonholonomic systems and have been studied in classical
mechanics for more than a century, but only recently has the study of control of such sys-
tems been initiated. These nonlinear systems are not generally amenable to the methods
of linear control theory and cannot be approximated by linear systems in any meaning-
ful way. Hence, these problems require fundamentally nonlinear approaches. Examples
of nonholonomic control systems have been studied in context of robotics manipulation,
mobile robots, wheeled vehicles, and space robotics. Specific examples of nonholonomic
control systems include sledges or knife edge systems that slide on a plane (A. BLOCH AND
M.REYHANOGLU (1992)), a simple wheel rolling without slipping on a plane, and spheres
rolling without slipping on a plane (BROCKETT AND L.DATI (1992)). There is now an ex-
tensive literature on control of mobile robots and wheeled vehicles (KOLMANOVSKY AND
McCLAMROCH (1995)).
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Another common setting where nonholonomic control systems arise is in mechanical
systems with symmetries. If the motion of a mechanical system exhibits certain symmetries
then there are always associated conserved quantities. If these conserved quantities are
not integrable then a nonholonomic system is obtained. Examples of such nonholonomic
control systems include actuated multi-body spacecraft and space robotics. A popular
example of this phenomenon, is the example of a falling cat (KANE AND SHUR (1969);
MONTGOMERY (1990); ENos (1993)), which can execute a 180°, rotation in space, even
though it has nothing to push against. This is achieved by executing a sequence of internal
shape changes. This phenomenon is ubiquitous in biological and robotic locomotion and
has been well studied. The general idea being that when one variable in the system moves
in a cyclical motion, other variables that could not be directly actuated can be effected.
Astronauts who wish to reorient themselves in space can similarly do so by means of shape
change. Similarly microorganisms swimming at low Reynolds numbers (SHAPERE AND
WILCZEK (1987)) can generate translations by specific cyclic manipulation of their internal
shape. The key geometric concept underlying all these examples is the notion of holonomy
of a connection also known in physics by the name of geometric phase. To get an intuitive
feel for the concept consider the following familiar Figure 1.1 often used to introduce the
concept of holonomy. We now interpret this from a control theory perspective. Suppose
the control task is to rotate the vector pointing down at the start position in the Figure
1.1, counterclockwise by 90°. Notice there exist no actuation mechanism for effecting this
change. However, if we translate this vector parallel to itself along a loop as shown in the
figure, on return we find the vector has rotated by 90°. This is what we mean by using
geometry to do control.

These rich geometric phenomenon are not just confined to classical domain. Since
the early days of quantum mechanics, it has always been man’s dream to manipulate
phenomenon at the molecular and atomic scale. Since the original inception of control over
quantum systems as a goal, the potential applications have grown. Over the last 50 years
quantum mechanical effects have come to be applied in very sophisticated ways, involving
the control and observation of quantum systems using subtle non-commutative effects.
Advances in the areas of nuclear and electron magnetic resonance spectroscopy, microwave
and optical spectroscopy, laser coherent control, solid state physics and quantum computing
involve active control of quantum dynamics (BROCKETT AND KHANEJA (1999), WARREN
ET AL. (1993), RABITZ (1993), SCHWEIGER (1990), LLOYD (1996), TAUBES (1997), CORY
ET AL. (1997), GLASER ET AL. (1998)). Analysis and study of control of quantum systems,



1.0 INTRODUCTION 3

Figure 1.1: The panel illustrates the concept of holonomy. The vector experiences a rotation
by 90 degrees, when moved around in a loop.

which form a major contribution of this thesis, provides an excellent opportunity to exercise
ideas from geometric control. Several experiments in optics have been performed, that
exhibit interference effects attributable to geometric phase or holonomy (SHAPERE AND
WILCZEK (1987)). Though our focus in this thesis is on geometric control problems arising
in the control of quantum systems, we give here a synopsis of the nature of problems
arising in control of quantum systems. In principal, quantum phenomenon of any sort can
be manipulated and controlled by optical or other means. These range from controlling
electrons in solid state multiple quantum wells. Encoding and decoding of information in the
wavepacket of moving electrons in semiconductors. Active control of molecular dynamics
to extract information about the underlying Hamiltonian of the system, resulting in wide
range of spectroscopy methods.

In particular, we are interested in looking at the control theoretic aspects of the phe-
nomenon characterized by atom radiation interactions. The interaction between atoms and
radiation have fascinated physicists for a long time. In fact, the interaction of light with
matter, in particular blackbody radiation and photo-electric effect, were among the major
experimental discoveries that initiated the development of quantum mechanics. In this in-
troductory chapter, we have made an attempt to give a synopsis of the nature of problems

arising in control of quantum systems. Towards this goal, we classify the problems we are
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interested in into four broad categories. This list is by no means exhaustive. Our attempt
has been to call out for attention some interesting problems involving control and manip-

ulation of phenomenon at molecular scale.

Mechanical Effects of Light

The idea that light carries momentum and can therefore exert pressure was proposed by
Kepler and later elaborated by Newton. But it was Maxwell’s 1873 theory of light that
consistently implied the existence of a radiation pressure. Indeed, Maxwell’s theory of elec-
tromagnetism provided the first classical expression for the momentum carried by radiation
field. Over the years, the concept of radiation pressure was used successfully in connection
with the physical problems as diverse as the internal stability of massive stars and orbital
motion of satellites. In quantum optics, the momentum carried by light becomes of central
importance. The possibility of using light for controlling the motion of atoms was realized
early and even observed experimentally in 1933. For visible light, this effect is too small as
the momentum transfer from a visible photon to an atom is orders of magnitude smaller
than the momentum of a thermal atom. The situation has changed with the introduction
of modern laser sources of high brightness. The use of laser sources leads to such high
pressure on macroscopic bodies that they can be utilized for actual manipulation of the
particles. It has been demonstrated that small neutral particles, dielectric balls can be
accelerated and trapped using the radiation pressure force. The repeated absorption of
photons from an intense laser beam can induce a force more than a million times as large
as earth’s gravity. The realization that these forces might be used to reduce atomic velocity
of atoms, thus cooling them to temperatures in milli and micro-kelvin scale range (S. CHU
AND ASHKIN (1985),C.COHEN-TANNOUDJI (1992)), has opened a new field in quantum
electronics. Besides the cooling, it is possible to store the atoms in traps whose wall consist
of potential energy from interaction with the electromagnetic field (W.D. PHILLIPS AND
METCALF (1985)). To summarize, these problems exploit the mechanical effects of radia-

tion to control phenomenon at atomic scale (SETO AND BROCKETT (1999)).

Spectroscopy

Chemists use a variety of spectroscopic methods to characterize and study their compounds,
to follow reactions, and to understand bonding. In each case, as indeed with any form of
spectroscopy, a system having various energy levels available to it, is probed. Some form

of electromagnetic radiation is provided which has energy in the range needed to excite
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transitions between the energy levels, following the normal resonance absorption conditions
AFE = hv, where h is the Planck’s constant and v is the frequency of the radiation. The
design of these electromagnetic pulse sequences that are needed to probe, the structure
of matter, provides us with many control theoretic problems. We will discuss the design
of pulse sequences in high-resolution Nuclear Magnetic Resonance Spectroscopy (NMR) in

detail in this thesis. Similar ideas find applications in the fields of:
1. Magnetic Resonance Imaging ;
2. Nuclear Quadrupole Resonance ;
3. Microwave Spectroscopy ;
4. Ultraviolet and visible Resonance ;
5. Infrared Spectroscopy ;
6. Electron Paramagnetic Resonance ;
7. Laser and Atomic Spectroscopy.

From a control theory perspective, we can classify these problems as system identification
or observability problems, where the task is to excite the system in an optimal way so as

to get maximum information out of it.

Reducing noise in quantum systems

A very interesting control problem of great practical importance is controlling noise level in
a quantum systems (BLOCH AND R0JO (2000)). Squeezing has been suggested as a mecha-
nism for reducing uncertainty in quantum systems below the standard quantum limit. The
realizations of sources of squeezed light opens exciting possibilities for precession measure-
ment, beyond the vacuum state or shot noise limit, including applications in interferometers,
optical communication, and ultrasenstive laser spectroscopy. Squeezed states of light have
phase dependent quantum fluctuations. In one quadrature, the quantum fluctuations are
reduced below the vacuum level, while the fluctuations in the other quadrature are in-
creased. Theoretical work in this area has appeared since 1960’s, however only recently
has the experimental realization of squeezed light with fewer quantum fluctuations than

vacuum achieved.
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Coherent Control of Chemical Reactions

Another exciting theoretical possibility of control of quantum phenomenon occurs in co-
herent control of chemical reactions (RABITZ (1993)). The main goal here is to selectively
break bonds in a polyatomic molecule, thereby giving the chemist the ability to alter and
control chemical reactions with high specificity. This is achieved by identifying the mode
frequency of the targeted bond and then irradiating the molecule with a high energy laser
at that frequency, till the bond breaks. Calculations suggest that appropriately shaped
laser pulses can break strong bonds, change reaction pathways and force molecules to climb
an harmonic ladders (WARREN ET AL. (1993)). From a control theory perspective, the goal
is to manipulate quantum interferences at a molecular scale. The major challenges in this
area being lack of precise knowledge of the molecular Hamiltonian and robustness issues
associated with the errors in laboratory implementation of controls. Nonetheless, the field

is a very active area of research from both chemistry and control theory perspective.

1.1 Goals of the thesis

The main contribution of the thesis is two-fold. We first study some typical problems
arising in the control of quantum systems, in the areas of Nuclear Magnetic Resonance,
Electron Magnetic Resonance, and Solid State Physics. These resemble the nonlinear con-
trol problems often studied in the context of nonlinear control as one only has very limited
control degree of freedom as compared to the state space of the system. However, as con-
trol problems, these are non-standard because one is controlling an ensemble of (nearly)
identical systems, using (nearly) the same control. Only certain aspects of the distribution
of the initial states are known and the goal is to temporarily alter this distribution. The
evolution of the individual elements of the ensemble is governed by Schrodinger’s equation
and the control is achieved by manipulating the potential energy term in the Hamiltonian.
In practical applications, the potential energy term is altered by irradiating the system
with sequences of radio frequency pulses of appropriate shape and frequency. Because the
potential energy term enters the Schrodinger equation as a multiplicative factor, the sys-
tem has the character of a bilinear system and non-commutative effects are important.
Thus, one might characterize these problems as involving the control of the distribution
associated with an ensemble of bilinear systems. Another important feature of such prob-
lems is that the time window in which one can execute a control is very small because

the interaction with external environment perturbs the system and forces it to return to
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the equilibrium state. Hence, time optimal control are absolutely essential requirement for
such problems. We will treat in detail the problem of design of pulse sequences in NMR
as a problem of control of systems on compact Lie groups. We will derive optimal control
laws for such system and show that they improve the sensitivity of NMR experiments as
compared with the one obtained using current techniques. We then look at the problem
of feedback stabilization in nonholonomic systems. Recently there has been lot of interest
in doing feedback control in quantum systems (WISEMAN AND MILBURN (1993); LLOYD
AND SLOTINE (1998)). The problem of feedback stabilization is one of the most frequently
studied problems in automatic control. Here, one has a desired value of a variable, say the
temperature in a room, and the task is to keep the temperature level constant in wake of
changing weather. This is a special case of the problem of tracking a desired signal, e.g.
keeping a camera focussed on a moving target. The design of stable regulators is one of the
oldest problems in control theory. Following the work of BROCKETT (1983), we will show
that the nonlinear control problems we are interested in, where not all degrees of freedom
are directly actuated and one needs to produce cycles in certain directions to effect control
in other directions, there are inherent problems with smooth feedback stabilization. We
will elaborate on all this in much more detail, however to fix ideas for now consider the

following system called the nonholonomic integrator:

56:1 = U
.'L:Q = U2
:L:3 = T1U2 — T2U1.-

Although the above system is controllable, i.e there exist control laws u; : [0,1] — R and
ug : [0, 1] — R which transfer the system state from given initial state (z1(0), z2(0), z3(0))
to some specified final state (z1(1), z2(1), z3(1)), there exists no continuous feedback
(BROCKETT (1983)) u1(z1, 22, x3) and us(z1, 2, x3) which asymptotically stabilize the sys-
tem trajectories to (z1,z2,z3) = 0. The nonexistence of a continuous feedback control law,
is a topological phenomenon. We will show how this problem can be circumvented by
constructing dynamic regulators. By adding additional degrees of freedom into system dy-
namics, we will show that these topological problems can be taken care of. We will look
at some nonholonomic systems with symmetry and show how the additional degrees of
freedom introduced in the system dynamics can be interpreted as a gauge. This will bring
us to an interesting mix of ideas between gauge theories in physics and stabilization of

nonholonomic systems.
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1.2 Organization of the thesis

The thesis is organized as follows

e In chapter 2 we recapitulate the fundamentals of quantum statistical mechanics and
look at the structure of a typical problem in control of quantum ensembles. We then
cast the design of pulse sequences in NMR as a problem of geometric control. Our
main goal in this chapter is to introduce and motivate the control theoretic aspects

of problems in coherent spectroscopy.

e In chapter 3 we focus on the design of shortest pulse sequences which accomplish
desired transfers in NMR spectroscopy. We will treat this problem as the problem of
time optimal control of systems on compact Lie groups. We give analytical character-
ization of the time optimal trajectories. We show how the optimal control formulation
improves the signal to noise ratio in coherence transfer experiments, obtained using

current techniques.

e In chapter 4 we introduce the problem of feedback stabilization in nonholonomic sys-
tems. It is shown how the topological obstruction encountered in smooth stabilization
of nonholonomic systems can be overcome by embedding the state space of the sys-
tem in a higher dimensional manifold. To demonstrate our approach we construct

dynamic feedback controllers for the first bracket controllable systems.

e In chapter 5 we derive smooth feedback control laws for stabilizing nonholonomic
systems as solutions to variational problems. In the process, we introduce the concept
of gauge extension, where additional controls are introduced in the system dynamics

by making the global symmetries of the system time varying.

In this, thesis we have assumed that the reader is familiar with the basic background
and notation from differential geometry. However for sake of completion, we have included

the essential material as an appendix chapter.



Chapter 2
Control in Quantum Systems

Over the last 50 years quantum mechanical effects have come to be applied in very sophis-
ticated ways. Some of these applications involve the control and observation of quantum
systems using subtle non-commutative effects. Advances in the areas of nuclear and elec-
tron magnetic resonance spectroscopy, microwave and optical spectroscopy, laser coherent
control, solid state physics and quantum computing involve active control of quantum
dynamics (WARREN ET AL. (1993), RABITZ (1993), SCHWEIGER (1990), LLOoYD (1996),
TAUBES (1997), CORY ET AL. (1997), GLASER ET AL. (1998)). However, only recently
has there been any attempt to look at these from a control theory perspective. As control
problems, these are nonstandard because one is controlling an ensemble of (nearly) identical
systems, using (nearly) the same control. Only certain aspects of the distribution of the
initial states are known and the goal is to temporarily alter this distribution. The evolution
of the individual elements of the ensemble is governed by the Schrodinger’s equation and
the control is achieved by manipulating the potential energy term in the Hamiltonian. In
practical applications, the potential energy term is altered by irradiating the system with a
sequence of electromagnetic pulses of appropriate shape and frequency. Because the poten-
tial energy term enters the Schrodinger equation as a multiplicative factor, the system has
the character of a bilinear system and non-commutative effects are important. Thus, one
might characterize these problems as involving the control of the (empirical) probability

distribution associated with an ensemble of bilinear systems.

In this chapter we cast some of the main ideas from NMR spectroscopy in a system the-
oretic framework. For example, NMR spectroscopy is taken to be a system identification

problem. Many key aspects of high-resolution NMR spectroscopy involve manipulating
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and controlling nuclear spins using radio frequency pulse sequences in such a way as to
generate a suitable signal for the identification problem. This active control of nuclear
spin is presented as a problem in the control of nonlinear systems. In the early work of
Hahn and Purcell (HAHN (1950b) and CARR AND PURCELL (1954)) on pulse sequences, it
was possible to obtain significant results using physical intuition to specify the nature of
the pulses. Subsequently, as more difficult experiments with more demanding performance
specifications have emerged, there have been attempts to model the problem using ideas
from optimal control theory. These problems are usually formulated as fixed time, state
to state transfer problems. Computer-controlled pulse shaping tools with resolution on
femtosecond time scales are becoming practical making theoretical designs closer to prac-
tice. In many practical situations of interest, the target state may not be accessible as the
evolution in quantum systems is necessarily unitary, then the question of interest is that
of finding a transfer between a initial and the final state that is as close to the desired
target as possible (GLASER ET AL. (1998)). Another important issue of great relevance is
the robustness of the control as all the internal parameters of the system encoded in the
Hamiltonian are not known completely and also the implementation of the control field is
not exact (WARREN ET AL. (1993)). This active control of nuclear spin is presented as a
problem in the control of nonlinear systems.

The chapter is organized as following. We begin with a brief introduction to the phe-
nomenon of NMR. This is followed by recapitulation of essential notions in the nonrela-
tivistic quantum mechanics which are most pertinent to the NMR problem. A full quantum
mechanical description of NMR leading to operator formalism and density matrix theory
will be given. Design of pulse sequences for NMR experiments is treated an optimal con-
trol problem of bilinear systems evolving on Lie groups. Algorithms based on gradient
flows on Lie Groups are presented for optimizing signal-to-noise ratio in NMR experiments.
The need for designing shorter pulse sequences which accomplish desired transfers cannot
be overemphasized, especially in spectroscopy of macromolecules where relaxation effects
might be important. Naturally, this will lead us to the subject of time optimal control in

spin systems, which is developed in detail in the Chapter 3.
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2.1 Nuclear Spin and Resonance

NMR in bulk condensed phase were detected in 1946 by BLOCH ET AL. (1946) and PURCELL
ET AL. (1946). Nuclear Magnetism is a manifestation of the quantum mechanical property
of nuclear spin angular momentum, a phenomenon that has no classical counterpart. We
will treat the spin angular momentum is great detail later on. At present, we just assume
that some atomic nuclei have an intrinsic spin which makes this nuclei behave as little
bar magnets. This angular momentum is characterized by an integer or half integer spin
quantum number /. Nuclei with odd mass number have half integral spin quantum number,
on the other hand nuclei with odd charge number and even mass number have integral
spin quantum numbers. The nuclear spin angular momentum I is a vector quantity with
the three components along the (z,y, z) direction specified by (I, I, I,). Because of the
Heisenberg’s uncertainty principle in quantum mechanics, only one of the three Cartesian
components of I can be specified. By convention, the value of the z component of I is
specified by the equation
I, =~mm,

where m = (=1, —I+1, ..., I —1, I) and 27h is the Planck’s constant. Thus, a nucleus
with spin I has (2] + 1) possible orientations specified by the value of magnetic quantum
number m. Nuclei that have nonzero spin angular momentum possess a magnetic moment.
The nuclear magnetic moment, y, is collinear with the vector representing the nuclear spin
angular momentum vector and is defined by u = I, where = is the gyromagnetic ratio and
is a characteristic for the given nucleus. In absence of an external magnetic field, all the
possible 21 4+ 1 orientations have the same energy and the spin angular momentum does

not have a preferred orientation. If a magnetic field By is applied say in z-direction, then

the energy of the various states are given by £ = —uBj or
E = —I,By
E = —yhmBy.

The energy separation between the levels is constant and is given by yABy. Thus, energy
is lower if the nuclear magnetic moment is aligned with the magnetic field and increases as
the magnetic moment is aligned opposite to the vector field. Analogous to other spectral
phenomenon, the presence of various states differing in energy provides for a situation where

interactions can take place with the electromagnetic radiations of the correct frequency and
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Ha Hg

Figure 2.1: The panel shows the NMR spectrum of hydrogen nuclei. The different peaks
in the frequency spectrum correspond to hydrogen nuclei resonating at slightly different
frequencies as they have different chemical environment.

can excite excitations between these states. The frequency is obtained from Bohr’s relation
hv = AFE.

For NMR, the energy separation is hv = yhBy. Due to the selection rules of quantum me-
chanics, transitions are only allowed between levels Am = +1. Thus, the nucleus interacts
with radiation whose frequency depends only on the applied magnetic field and the nature
of the nucleus. From now on, we will only consider spin % nuclei. We conclude from our
previous discussion that, for spin % nuclei, there are two spin states with spin quantum
number +% and —% which we call & and 3 states, respectively. In the absence of external
magnetic field, both the states are equally populated but, in the presence of a magnetic
field, the ratio between nuclei in low energy state N; and high energy state N}, is given by
the Maxwell-Boltzmann distribution

N, —AFE

N, = e:L‘p(W),

where AF is the energy separation between the levels, k is the Boltzmann constant, and 7T is
the absolute temperature. For a hydrogen nuclei in a field of 1.4 Tesla at room temperature
%—’l‘b ~ 107°. The excess population in the low energy state is extremely small. If this system
is pumped with an electromagnetic radiation of the right frequency, then the excess spin in
the lower energy state absorb energy and is excited to a higher energy state. However, this
excited state is unstable and the system relaxes to the original state, in the process gives
out radiations having a characteristic frequency which depends on the applied magnetic
field and the nature of the nuclei. This forms the basis of NMR spectroscopy.

Figure 2.1 shows the Fourier transform of a signal given out by the hydrogen nuclei.

The peaks in the spectrum correspond to the frequency corresponding to the energy gap
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between the two states of the hydrogen. However, in practice, the signal we observe is not

from an individual hydrogen spin but from an ensemble. Hence, what one observes can

then be described in a oversimplified way by a bulk magnetic moment, M and the bulk

angular momentum J, of a macroscopic sample. Theses are given by vector sum of the

corresponding quantities for individual nuclei, p and I, respectively. BLOCH ET AL. (1946)

formulated a simple semi-classical vector model to describe the behavior of a sample of
1

noninteracting spin 5 nuclei in a static magnetic field. We give a brief overview of the

model here as it captures the essential physics in a single spin-case.

2.1.1 Bloch Model and One Pulse NMR Experiment

We now describe the most basic of NMR experiments: the one pulse experiment in Bloch’s
framework. To understand spin dynamics in molecules with more that one spin, we will
need to resort to a quantum mechanical description, which we will develop in a subsequent
section. The evolution of a bulk magnetic moment vector M (¢) is central to the Bloch
formalism. In the presence of a magnetic field B(t), which may include components in
addition to the static field By, the magnetic moment vector M (t) experiences a torque,

which is equal to the time derivative of angular momentum

J(t) = M(t) x B(t).

Using M(t) = vJ(t), we can rewrite the above equation as
M(t) = M(t) x yB(t). (2.1)

If we make a change of coordinates to a frame rotating with respect to the fixed axis with
angular velocity represented by the vector &, the equation of motion in the rotating frame
takes the form

M(t) = M(t) x (vB(t) + @).

Thus, we observe that the motion of the magnetization in the rotating frame has the same
form as the laboratory frame if we replace the field B(t) by an effective field,

—

W
Begr = B(t) + —.
Y
Notice that for & = —yB(t), the effective field is zero so that M (¢) is time independent
in the rotating frame. As seen from the laboratory frame, M (t) precesses around B(t)

with frequency w = —vyB. Precession of the magnetization about the effective field in the
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rotating field is illustrated by in Figure 2.2. For a static field of strength By say along the

z-axis, the precessional frequency, or the Larmor frequency, is given by
wp = —")’B(). (22)

This frequency is precisely the resonant frequency needed to excite transitions between spin
states. Precession of the bulk magnetic moment around a static magnetic field constitutes
a time-varying magnetic field. By Faraday’s laws of induction, it will induce a current in a
nearby placed coil. This is the signal that is observed in a NMR experiment. In this chapter,
we will focus on pulsed NMR. This is characterized by a short burst of radiofrequency (rf)
electromagnetic radiation, typically of the order of several microseconds, which perturbs the
bulk magnetization from equilibrium. Such a burst of electromagnetic radiation is called a

pulse. The rf field or pulse takes then the following form
B, ;(t) = Bi{cos(w, st + ¢)i + sin(w, st + $)j}-

In equilibrium and in the presence of a static magnetic field By, the net bulk magnetization
points in the z-direction. Recall that the bulk magnetic moment is the vector sum of
magnetic moment of individual nuclei. Since there are excess of nuclei pointing in the
direction of magnetic field, we have a net z-component of bulk magnetic moment. Also,
because the z and y component of the angular momentum of these nuclei are uncorrelated,
they all add up to zero, leaving the net bulk magnetization pointing in the z direction.
If we transform to a rotating frame with angular velocity w, s about the z axis, the equation
of motion for the magnetization in the rotating frame, M"(t), is given by

dMT(t)

dt

= M"(t) x yB",
where the effective field, B", in the rotating frame takes the form
B" = Bicos¢i + Bisingj + (wo — wyp)k.

Where i, j and k are the unit vectors in z,y, z direction. By convention, we choose ¢ = 0.
If the transmitter frequency w,s is equal to wp, then the irradiation is said to be applied
on resonance and the effective magnetic field B” is Byi. This implies that the bulk mag-
netization M" will precess around a magnetic field pointing in z-direction with frequency
w" = —yB; = wy. If the duration of the pulse is such that the magnetization which was
initially pointing in the z direction is brought into the x — 4 plane, the pulse is called a 90°

or 5 pulse. A § pulse equalizes the populations of the a and /3 spin states.
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Figure 2.2: The panel shows the precession of the bulk magnetic moment around the net
magnetic field. NMR spectrum of hydrogen nuclei. The different nuclei in the spectrum
correspond to different chemical environment and scalar couplings the nuclei see.

Precession of the magnetization about the effective field in the rotating field is illus-
trated by in Figure 2.2. Following this rf pulse, the bulk magnetization precesses about
the static magnetic field with a Larmor frequency wy. This precessing magnetization dur-
ing the so called acquisition period t generates the signal that is recorded by the NMR
spectrometer. The signal is referred to as a free-induction decay (FID). The FID is not
just a purely oscillating signal as the magnetization will not evolve freely forever. Instead,
due to the relaxation phenomenon, returns to the equilibrium state. BLOCH ET AL. (1946)
provided two phenomological processes to account for this relaxation phenomenon. The
first relaxation mechanism which accounts for the return of population difference back to

the Boltzmann distribution level is called the spin-lattice relazation and is characterized by

W) _ pufaao(e) - M 0] (23)

and a second process which is responsible for decay of transverse magnetization in x-y plane
following a pulse is called the transverse or spin-spin relazation and is also characterized

by a first-order rate expression

dﬂfl“;(t) = —RM, (1) (2.4)
LT 3 A0) (2.5

where R, is the spin-spin relaxation rate constant and the corresponding time constant

Ty = R%. Combining the relaxation equations with equations of free magnetic precession
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2.1, we obtain the following equations also called the Bloch’s Model
dM, (1)

= = (M) x B()). — Ra[Mo(t) - M.(1)] (2.6)
‘”‘fft(t) — (M(t) x B(t))s — RoM, (%) (2.7)
DLE — 30a) x BW), - Ray (1), (28)

The free-precession Bloch equations in the rotating frame show that the FID can be

described in terms of two components

M,(t) = Mjsinécos(Qt) exp(—Rat)
My(t) = Mysin@sin(Qt)exp(—Rot),

which can be combined in complex notation as
MT(t) = Mg(t) + iMy(t) = Mo sinf exp(iQ2t — Rot).

As a consequence of relaxation, the components of the bulk magnetization vector precessing
in the transverse plane following a rf pulse are damped by the exponential factor exp(— Rat).
In practice, both parts of the complex signal are detected simultaneously by the NMR spec-
trometer as s (t) = AM ™ (¢). This complex time domain signal can be Fourier-transformed

to produce a complex frequency-domain spectrum

S(w) = /00 sT(t)exp(—iwt)dt (2.9)
0
= v(w) + iu(w), (2.10)
where
— R2
Q—w

The function v(w) represents an absorptive Lorentzian signal, and the function u(w) repre-
sents a dispersive Lorentzian signal. The real part of the complex spectrum v(w) is normally
displayed as the NMR spectrum. The one pulse experiment is displayed schematically in
Figure 2.3.
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N
\

Figure 2.3: The panel shows the one pulse experiment. (a) At equilibrium the bulk magne-
tization is oriented in the z direction. (b) The magnetization points along x axis following
a 90 degree pulse with y phase (c) The magnetization precesses in the x-y plane (d) The
FID signal (e) Real Part of the Fourier Transform of FID Signal.

2.1.2 Chemical Shift

The NMR spectrum not only depends on the applied magnetic field but also on the local
environments of individual nuclei and hence the resonance frequency € in the FID spectrum
(2.11) differs from the one predicted by (2.2). It is this difference in resonance frequencies
that helps us distinguish between spin in different environment and is called chemical shift.
The phenomenon of chemical shift arises because of motion of electrons induced by an
external magnetic field generate secondary magnetic fields. Thus, the net magnetic field at
the nucleus site is the result of applied magnetic field and the secondary fields produced
by electron currents. This effect of secondary fields called nuclear shielding can enhance or
oppose the main field. In general, the electronic charge distribution in a molecule is not
isotropic and this shielding effect is described by a second rank tensor. However, in isotropic
liquid solutions, collisions lead to rapid reorientation of the molecule, and consequently, of
the shielding tensor. Under these circumstances, the effect of shielding on a particular

nucleus can be accounted for by modifying (2.2) as

Q= —v(1 - 0)By, (2.13)
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where o is a measure of the shielding. Until now, we described the dynamics of ensemble of
isolated nuclear spins in external magnetic fields using the formalism developed by Bloch.
However, nuclei in an molecule are not isolated but interact with each other. To study
the evolution of coupled spin system one has to resort to tools from quantum statistical
mechanics, which involves the theory of density matrices. In the next few sections, we will
develop this theory. This formalism is also very important from control theoretic point
of view as the final control problems will involve steering the density matrix and related
questions. In the following section, we will review the basics of non-relativistic quantum

mechanics with special consideration to the spin dynamics.

2.2 Postulates of Quantum Mechanics

In quantum mechanics, the state of the system is defined by a vector in a Hilbert space H.
The vectors are denoted by the well known Dirac notation, |¢) >, and <, > is used to denote
the scalar product. The evolution in time of a quantum mechanical system is governed by

the non-relativistic Schrodinger equation.

dp(t) >
iR = Hp(t) > (2.14)

The operator H is the Hamiltonian of the system and incorporates the essential physics
determining the evolution of the system. The Hamiltonian may be time dependent or
independent. Units in which A = 1 will be assumed and factors of & will not be written;

thus
;@) >
dt

The solution to the above Schrodinger equation is called the wavefunction and it contains

= H|p(t) > .

all the knowledge about the state of the system of interest. If the wavefunction is known,
then all the observable properties of the system can be deduced. In language of quantum
mechanics, every physically observable quantity A, has associated with it a Hermitian

operator A which satisfies the eigenvalue equation
Al >= Ay >.

The values taken on by the observable quantity then corresponds to the eigenvalues of the
operator corresponding to the observable. Since the operators are Hermitian, the eigen-

values are always real and the eigenfunctions form a complete orthonormal set. Given the
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operator A, let {|¢, >} denote its eigenfunctions. Therefore, any vector in the Hilbert

space can be expanded in terms of these orthonormal eigenfunctions by

N
|¢(t) >= Z cn(t)hpn >,

in which the ¢, (t) are complex numbers and may depend on time. The expectation value of
the observable A is denoted < A >. It is defined as the scalar product of |1 > and Al >
and is written as

<A>=<9plAlp >.

Expanding the wavefunction in terms of eigenfunctions of A, |1 >= Ei:]:l Cpltpn >, we

have that,

N
<A>="leal®Mn, (2.15)
n=1

where )\, is the eigenvalue corresponding to the eigenfunction |4, >. In deriving (2.15),
we have used the orthonormality of the eigenvectors |1, >. The interpretation of the
expectation value of an operator is the following. Given an ensemble of quantum system,
with every element in state |¢) >, when a measurement is made on a member, the observed
value corresponds to one of the eigenvalues \; with probability ||c||?>. Therefore, when we
perform this measurement a sufficient number of times, the expected value will coincide
with the expectation of the operator as defined in (2.15).
Now, consider two observables A and B represented by operators A and B. Let the eigen-
functions and eigenvalues corresponding to A be denoted by {|4; >} and {a;}, respectively,
and let the eigenfunctions and eigenvalues corresponding to B be denoted by {|¢; >} and
{b;}, respectively. If the state of the system is denoted by the vector | >= Zf\il cili >,
then a measurement of the observable A will yield one of the eigenvalues a; and, after the
measurement the state of the system will collapse to the value |1y, >. We can now expand
this state in terms of eigenfunctions of B, i.e. |y >= Zf\;l d;|¢; >. Now a measurement
of the observable B will yield one of the eigenvalues by and after the measurement the state
of the system will collapse to the value |¢; >. Thus, a measurement of B disturbs the
eigenstate of A. This forms the basis of the Heisenberg’s uncertainty principle. Simultane-
ous measurement of A and B are only possible if they have the same eigenfunctions, that
is if AB = BA or equivalently [A, B]=0.

Until now, we focussed attention on description and evolution of a general quantum

state. In the next section, we describe the Hilbert state corresponding to spin % particles
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and the associated quantum mechanical operators for the angular momentum.

2.3 Spin, Magnetic Moment and Angular Momentum

Angular momentum plays an important role in many control problems that are adequately
described using classical dynamics. Bicycles and spinning projectiles are examples. Angular
momentum also plays a major role in the description of NMR spectroscopy, where the
central theme is the manipulation and detection of nuclear magnetic moments. It was
discovered early on the development of quantum mechanics that the nuclear magnetic
moments can be associated with operators occuring in the representation of the Lie algebra
corresponding to the group of two-by-two unitary operators of unit determinant. The
purpose of this section is to introduce and motivate the concept of spin operators and
present various techniques for their manipulation.

Before introducing the quantum mechanical operators for the characterization of the inter-
nal angular momentum of elementary particles, we review the quantum analog of classical
angular momentum and its operator description in quantum mechanics. For a particle of
mass m and position vector r = (z,y, z) with respect to a fixed origin and having linear
momentum p = mw, the angular momentum L about the fixed origin is L = r x p. The

components of the angular momentum are therefore related to the linear momentum by

L, = yp,—z2py
Ly = ZPgx — TPy
L, = zpy— yps.

In classical mechanics, angular momentum is a measure of rate of rotation with respect to
the origin, thus angular momentum can also be thought of as generator of the rotation of
the particle. In quantum mechanics, this angular momentum takes the form of an operator,

the three components of which are described by

0 0

l:c = _Z(ya - za_y)
., 0 0

ly = —z(z% — :1:%)
., 0 0

This operator formulation of angular momentum in quantum mechanics arose out of the

study of atoms which, in a simplistic view, can be described as a cloud of negatively charged
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electrons orbiting the positively charged nucleus. We now show this operator definition of
angular momentum has close connections with rotations and explain how it can be viewed as
a generator of rotation in the Hilbert space for the quantum mechanical system. If we denote
the state of the particle in three dimensional space by the wave function (z,y, z), then
the Hilbert state of the particle is an infinite-dimensional function space where 9 (z,y, z)
is a element. Let U(R) denote the operator that corresponds to a rotation R in this space.
U(R) can also be thought of as a representation of the rotation group in this space. One

would want U(R) to satisfy the following properties

UR)U(R2) = U(RiRo) (2.16)
Uva) = I (2.17)
UR)Y)(r) = (R 'r), (2.18)

where 1 is an element of the Hilbert space and I is the identity operator. Let us consider a

infinitesimal rotation R,(e) around the z-axis which transforms 7 = (£, 9, 2) to r = (z, y, 2)

given by
I = z+ey
J X y—ex
Z = z

Thus, from equation (2.18), U(R,(€))9(r) = v(7), which leads to

U(RZ(G))Q/) (:v,y,z) = ¢(§3a20a5’)
sz(x,y,z)_ 6¢(x,y,z)

U(RZ(E))¢ (:v,y,z) ~ ?ﬂ(ﬂ%yaz) + 6(.’1} 3y Y 3:v )
U(Rz(é))’l/) (l‘,y,Z) ~ (]- _idZ)/l/)('xayaz)a
where [, = —z'(:z:a% — ya%) is the angular momentum operator. Similarly [, and [, are gen-

erators for representation of rotations around z-and y-axis. Having motivated the operator
definition for the classical angular momentum we now come to the concept of spin. Besides
possessing an angular momentum associated with their orbital motions in space, most of the
elementary particles including electrons, protons, and neutrons have an intrinsic angular
momentum called spin in analogy with a spinning top. By convention, spin is measured in
units of A, for example electrons have spin % and hence an intrinsic angular momentum of
%. The right way to think about spin is by associating the particles with internal degrees of

freedom which comprise the spin space. The state of a particle with spin % is characterized
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by a vector in a two-dimensional Hilbert space. The spin angular momentum can then be
thought of as generator of rotations in this spin space. The particles of most interest to
us are the spin % particles, so we look in some depth at the form the angular momentum
operators take for this situation. By analogy with the orbital angular momentum we will
try to construct generators for irreducible representation of the rotation group on this two
dimensional Hilbert space.

The construction process is a standard one found in physics text. Identify the two
dimensional Hilbert space with the stereographic projection of a 2-sphere in R®. Let (z,, 2)
denote the coordinates of the point on the sphere in R3. Let us write its stereographic
projection on the plane as a complex number ( = a4+ ib. Express ( as ratio of two complex
numbers ( = g obeying the constraint ||]|? + ||£||> = 1. Thus, we have have the pair (1, &)
representing a unit vector in the two-dimensional Hilbert space. A easy calculation shows

that, under the infinitesimal rotation R,(e) around the z-axis , (z,y,z) — (£,7, 2),

I = z—ey
1 = y+ex
zZ = z

induces a transformation on the stereographic coordinates in accordance with

. zl—iEIZ n),
(e) ( 2)<£
Izzl(l 0)

2\ 0 -1

and 1 is the two-dimensional identity matrix. Thus, we see that o, is the generator of the

3>

where

representation of rotations around the z-axis on a two-dimensional Hilbert space. Similarly,

the generators for rotation around z and y axis are denoted by

101
I, = 5(1 O) (2.19)

I, = %(S :) (2.20)

The matrices (I, I, I,) are the famous Pauli matrices, a set of generators for rotation in

the two dimensional Hilbert space and basis for the Lie algebra of traceless skew Hermitian
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matrices su(2). They obey the following commutation relations
Uy Iy =4I, ; [Iy L] =il, ; [I, I;] =il,. (2.21)

By convention the eigenvectors of I, are chosen to be the basis for the two dimensional spin

space and correspond to spin % and —% respectively. These are the column vectors

1
Ia>=[ ] ;1B >=
0

We are now ready to give a quantum mechanical treatment of NMR, spectroscopy. First

0
X ] . (2.22)

notice that NMR is not performed on isolated quantum state but on ensembles consisting of
the order of Avagadro’s number. If all elements in that system have the same wavefunction,
the ensemble is said to be in pure state. However, in practical applications, not all elements
of the ensemble have the same wavefunction and, in that case, one says that the system
is in a mixed state. Study of such an ensemble is of primary interest to us and, in the
following section, we will develop the machinery of density matrices needed to treat such

ensembles.

2.4 Quantum Ensembles

The phenomena of interest in NMR involve both stochastic and quantum effects in an es-
sential way. Roughly speaking, stochastic effects, with limitations coming from quantum
mechanics, determine the steady-state distribution of the energies for the individual sub-
systems, while the time evolution equations of quantum mechanics determine the short
term transient effects seen when the distribution is not an equilibrium distribution. In this
section, we provide a brief introduction to certain aspects of quantum statistical mechanics,
culminating in the concept of a density matrix.

Suppose that we have an ensemble of identical, or nearly identical, systems satisfying
the same Schrodinger equation, and suppose we choose an orthonormal basis in terms of
which we expand the solutions of these equations. Then we can write the wave function for

the j** element of the ensemble as

M
9 >=_ cirlén > - (2.23)
k=1
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This same basis can be used for each element of the collection and we can take an empirical

average over the ensemble. Define the density matriz operator by
1 N
p=17 2 i ><wil',
j=1

where N represents the number of elements in the ensemble. If we express the operator in

the chosen orthonormal basis, it takes the form

1 N
PkL= 37 Z Cjkc;r'l-
i=1

The off-diagonal elements of the density matrix
prs =< rlp|s >= cr(t)c: (t)

represent the coherent superposition of the eigenstate |[r > and |s > in the sense that the
time dependence and phase of the elements of the ensemble are correlated with respect to
the orthogonal states |r > and |s >. It is obvious by definition that p is Hermitian. In
particular, the value of the diagonal element p;; is the probability that the system will be
found in state state j, consistent with the observation trp = 1. A value of p is said to
represent a pure state if p is of rank one. In this case, p is unitarily equivalent to a matrix
which is zero everywhere except for a one in the one-one entry and we may say that each
element of the ensemble is in the same state. This may also be stated as saying that the

system is in pure state if and only if
tTp2 =trp=1.

The density matrix for a pure state is like a projection operator. For a mixed state, we
have

trp2 <1

and the density matrix is no more a projection operator.
Starting from the evolution equation for v, we see immediately that the evolution equation

for p takes the isospectral form

p = —i[H, pl. (2.24)
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This differential equation, called Liouville-von Neumann equation or simply the density
matrix equation, is of central importance for studying the dynamics of the quantum me-

chanical systems. Its formal solution is
p(t) =U0p(O)U (1), (2.25)
where U(t) is the unitary matrix that specifies the evolution equation
U(t) = —iHU(t). (2.26)

We now compute the expected value of an arbitrary observable operator for an ensemble.

The expectation value < A > of an operator A is given by
1 N
<A>= ) < lAlgy >,
N 4
7j=1
which can also be written in terms of density matrix as
<A>="prs < | Al >,
TS
leading to the important expression
< A >=tr(Ap). (2.27)

Thus, the expectation value of an operator is found by taking the trace of the product of
the observable operator and the density operator.

The density matrix in thermal equilibrium, at a temperature 7', is given by

1 —Hh
po = Z3$p BT
where
—Hh
Z = tr(exp )

kT
is the partition function of the system. Because the Maxwell-Boltzmann analysis predicts
the distribution of energies that would be found in an ensemble, it is most informative
to organize the quantum superposition in terms of eigenstates associated with specific
energies. That is, we focus on the operator associated with the Hamiltonian and identify

the orthogonal basis as the orthonormal eigenfunctions i, satisfying

Hay, = Epipy,



§2.5 QUANTUM MECHANICAL NMR SPECTROSCOPY 26

where E) represents the observed eigenvalues. By evaluating py in the eigenbasis of the
Hamiltonian, one easily verifies that the probability distribution of the energy eigenstates

|k >, Py = pkk-, correctly describes the Boltzmann distribution

Py, = —exp (2.28)

Having reviewed the essentials of quantum statistical mechanics, we now start a quantum
mechanical treatment of the spin systems. Our final goal will be to view the problem
of control of spin systems as a problem in nonlinear control theory. We begin with a
single spin-system and present quantum mechanical version of Bloch equations and then

we generalize to the case of more than one mutually coupled spins.

2.5 Quantum Mechanical NMR Spectroscopy

We saw in section 2.1.1 that, classically, the Hamiltonian of a massless particle with mag-

netic moment g4 in a magnetic field Bis
H=—u- B.
A consequence of this form of energy is that the particle experiences a torque given by
T=uxB

and this torque is equal to the rate of change of angular momentum
dL

— =uxB
dt l’l' ?

where L is the angular momentum vector. The magnetic moment y = yL where 7 is the
gyromagnetic ratio for the particle

dL
& _yLxB
a -

We saw in the section 2.1 that if we have a magnetic field By pointing in the z-direction,
let the magnetic moment make an angle 6 with By and 6 # 0, then the above equation
describes the precession of p around the z axis with frequency wy = —yBy, also called the
Larmor frequency. In quantum mechanics, a particle with spin in presence of a magnetic

field evolves under the Hamiltonian operator

H = —yhB-I (2.29)
H = —yh(By-I,+B,-I,+B,-1I,), (2.30)
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where B = Byi —I—Byj—l—B Lk the externally applied magnetic field and I, I, I, are the Pauli
spin matrices. The usual setup for a NMR experiment consists of an ensemble of atomic
nuclei with spin subjected to a stationary field (longitudinal field) By in the z-direction and

an oscillating field By (transverse field) in the z — y plane, where
B) = Biu = Bj(cos(wt + ¢) & + sin(wt + ¢) §).

This term is to be thought of as a control term giving rise to a Hamiltonian operator of the

form
H = —v (Bol, + B cos(wt + ¢)I; + By sin(wt + ¢)1y),
which can be written as
H = wol, + wi(cos(wt + ¢)I; + sin(wt + ¢) 1),

where wg = —yBy and w; = —yBj. All together, then viewing the magnetic field as a

control in the system, we have
H = (wol, + uily + usly) = (wol, + wi(Iy cos(wt + ¢) + I, sin(wt + ¢)). (2.31)
The statistical description of the system given by the density matrix then evolves as

p = —ilH, p].

Until now, we have only described the Hamiltonian operator for a single % spin nuclei in an
external magnetic field. We will now describe the evolution equation for a N-spin system,
where these spins are coupled together. We present a quick review of the spin dynamics
as applied to coupled spin systems. For more details see the standard references ERNST
ET AL. (1987), GOLDMAN (1988), CAVANAGH ET AL. (1996).

In most applications of interest, NMR, experiments involve molecules with more than
one nuclei. Consider a molecule consisting of N nuclei each with spin 1. Then the joint

2
wavefunction of the NV spins takes the form

U =|m>®mg>--Q|my>

where each |m; > can be in one of 2 states a or f3, the eigenstates of the Pauli I, matrix
corresponding to spin % and —%. This results in 2V possible wavefunctions for the N spin

% nuclei. We will use the following notation for the direct product of the two matrices

Bi1 Bia
By; By

AuB A;yB

A A
A9 B — 11 A2

21 A
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The wavefunction for two spin system in the product basis is

1 1
P = |aa>= ®
-O— -O—
11 Tol
P = |af >= ®
_0_ _1_
01 T1]
P3 = |Ba>= ®
_1_ _0_
01 T1]
Ye = |BB>= ®
—1— —0—

Thus, the spin state space of a molecule with N nuclei is a complex Hilbert space of
dimension 2V. The state of the molecule is represented by a vector |y > in this Hilbert
space that evolves unitarily |¢(t) >= U(t)|4(0) > according to the Schrédinger equation,
where
U=—iHU, U e SU(2V).

Observe that iH € su(2"), the tangent space of SU(2"). There is a very natural choice
of basis for the su(2") algebra, for describing the evolution in NMR ( SORENSEN ET AL.
(1983)). This is the set {iBs} where

n
By = 27" [ (Txa) ™= (2.32)
k=1
a=uz,y,or z and
I,=1®---QI,®1, (2.33)

where I, the Pauli matrix appears in the above expression only at the k%" position, and 1
the two-dimensional identity matrix appears everywhere except at the k** position. ays is
1 for q of the indices and 0 for the remaining. Note that ¢ > 1 as ¢ = 0 corresponds to the
identity matrix and is not a part of the algebra. As an example, for n = 2, the basis for

su(4) takes the form
g=1 Iy Iy, Iy, Loy, Doy, 1o,
q=72 203 1oy, 2114 19y, 2111 12,
2y Ioy, 211y loy, 21141,
21,155,211, 19y, 217, 15,.
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It is important to note that these operators are only normalized for n = 2 as

tr(B,Bs) = 6,52" 2.

The Hamiltonian operator for the n-spin system can then be expressed in terms of this set
{Bs}. There are two parts to the Hamiltonian. The Zeeman part, which in the control
theory corresponds to a drift in the system due to internal spin dynamics, and the effect of

a static magnetic field. We write it as

n n
Hy =Y wpliz + Y JulTkeTiz + Ty liy + Tha i), (2.34)

k=1 k<l
where wy, = —,Bp is the Larmor frequency for the k' nucleus, -y, the gyromagnetic
ratio of the k** nucleus and Jj,; represent scalar couplings between the k' and I** spin.

These are interactions between nuclear spins that are mediated through the electron cloud.
The magnetic field that influences an individual nucleus is partly the result of an external
magnetic field and partly the result of the magnetic fields that are generated indirectly by
the other nuclei in the molecule, through a cloud of electrons. The indirect interaction
process occurs when the spin of the cloud of electrons is influenced by other nuclei and
whose own magnetic fields then influence the nucleus in question. There is also a direct
interaction between magnetic nuclei called the dipolar interaction which are relatively less
important in liquid phase NMR as these are averaged out to zero to first order in isotropic
solutions.

The other part of the Hamiltonian is the Rf Hamiltonian expressed as

N
H,y = Z w;f{I,m cos(wt + ¢) + Iy sin(wt + ¢)}, (2.35)
k=1
where w'/ = — rB1 where B, is the magnitude of the applied transverse field. By appro-
k Y g

priate choice of By, ¢ and w, this part of the Hamiltonian constitutes the control in the
system by appropriate choice of By, ¢ and w. Thus writing this part of the Hamiltonian in

a more control theoretic notation

n
Hpp =Y uiplye + topliy. (2.36)
k=1

The state of the molecule evolves according to the Schrédinger equation

% > = —i (Hg+ Hyp) |4 > . (2.37)
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If we consider the ensemble statistics described by the density matrix p, the evolution of p

is
p = —i[Hy+ Hyp, pl. (2.38)

Let us take an example and see how the various terms of the Hamiltonian look like. The
molecular systems we look at are the I,,S spin systems. Each I,,S spin system consists of n
similar nuclei of spin 5 L denoted, I, ---, I, (e.g 'H nuclear spins) and one different nuclei,
also of spin 5, denoted S (e.g 13C carbon nuclei). We now consider the concrete example, of
the IS system (CH, group). By abuse of notation, we use I to denote spin operators for
hydrogen and S to denote spin operators for carbon. From Equation 2.34, the Hamiltonian

H, for such a molecule is of the form

2 2
Hy=wr Y Ik +wsS: +J Y IxzSz,
i=1 k=1

where the following simplifying assumptions have been made: all coupling constants J;;
have been assumed to be equal to J, a characteristic of isotropic liquids and coupling
between equivalent spins 17, and I» have been neglected. The state space of this three spin
system is a 23-dimensional Hilbert space. As before, we choose the basis of this space the

elements e’ ® e/ ® e* where 4, j, k € {1,2} and e', e? are the eigenbasis of o,. In the above

111 0 10 10
Ilz:_ ® ® )
210 -1 0 1 0 1

chosen basis

where
(1000 0 0 0 0 |
01000 0 0 0
00100 0 0 0
1looo1 0 0o 0 o
I1z—§
0000 -1 0 0 0
0000 1 0 0
000 0 0 -1 0
(0000 0 0 0 -1

The part of the Hamiltonian which comes from the rf pulses takes the form H,; =

2
Z Iiy cos(wt + ¢p) + Ipy(sinwt + ¢r)) + wgf(Sz cos(wt + ¢s) + Sy sin(wt + ¢s)),
=1
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where for example

171 0 0 10
IQw—_ ®
2101 10 0 1
(0010000 0]
00010000
10000000
1101000000
IQ;U—
00000010
00000001
00001000
00000T100

A typical control task is to steer the density matrix from a given initial state p(0) to some
final state p(T"). The controls available for manipulating the the transition probabilities
are the electromagnetic fields. The observations are the ensemble statistics of spins. The
particular control pattern is the one that can control the Hamiltonian to the following
extent. There is a drift H; and the chance to alter it as H — H; +u Hy. The Lie algebra
generated by H, and H, defines the reachable state space.
There are a number of interesting system theoretic problems involving identification and
control of systems described by this model. We can lump these into problems of the
spectroscopic type in which the goal is to apply inputs that will allow the identification of
some aspects of Hy, Hy, ..., H,, and problems of the transfer type in which the object is to
apply an input which drives the mean of the ensemble from one value to another. The
general plan is to use Hy in equation (2.31) to create a nonzero average for the magnetic
moment and then to use H, to steer this average to a desired value.

We are now equipped with the necessary background to study the control problems
arising in NMR spectroscopy. We first begin with the problem of using ideas from gradient
flows on Lie Groups to compute bounds on best achievable signal to noise ratio in NMR

spectroscopy.

2.6 Maximizing the Signal-to-Noise Ratio

The most important issue for an experimental spectroscopist is that of getting the system

to generate a revealing signal having adequate signal-to-noise ratio. The starting point is
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a sample in thermal equilibrium. Using a suitable excitation, the sample is forced out of
equilibrium so that it will emit a useful signal during a subsequent relaxation process. A
measurement (observation), in situations described by basic quantum mechanics, results in

an evaluation of a terms of the form

y(t) =< 4|Cly >,

with C being the Hermitian operator that corresponds to the variable being measured. One

can not simultaneously measure both

y1(t) =< P|Ci¢p >

and
Ya(t) =< P|Calyp >,

unless the operators C7 and Co commute. On the other hand, when dealing with quantum
ensembles, the problems associated with noncommutivity largely go away. This means,
for example, it makes sense to measure simultaneously both the z-component and the y-
component of the angular momentum of a spin ensemble. This can be interpreted as saying

that one can measure the complex number
y(t) = tr(Iy +ily)p.

Observe that the matrix I, + il is not Hermitian. The problem of maximizing the signal
strength is then the problem of steering p to a value that maximizes the absolute value of
this trace. In NMR spectroscopy this is the problem of interest where operator I, + il
corresponds to the measurement obtained using a procedure called quadrature detection.
This problem is discussed at length in GLASER ET AL. (1998).

The process of forcing the sample out of its equilibrium state and into some state that
will generate a measurable signal can then be thought of as an control problem and, if one
is willing to be precise about the definition of the signal-to-noise ratio, an optimal control

problem. As such, it is a problem of control of density matrix with evolution equation
p=ilp, Hy + Hy), (2.39)

where Hy is the the same as in equation (2.34)

n n
Hy =Y wrlie+ Y Ju(TkaTiz + Ty Ty + Tkalin),
k=1 k<l
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similarly H, s from (2.35)

n
Hyp = {Ing wip + Iny usr},
k=1

where u1; and ugy are the controls which are generally chosen to be sinusoids of appropriate
frequency. In the language of control theory, H, is the drift field and H,; is the part
of Hamiltonian one has complete control. A typical task is to drive the system from
initial density matrix p(tg) to a final density matrix p(¢;) so that the expectation value

< A > (t) =tr (Ap(t)) of some observable A is maximized. This can be stated as following

Problem Statement 1 Find U* such that ||tr (ATp(t)) || is mazimized, i.e.
U* = argmaxy; ||[tr(ATUp(0)UT)].
There are three basic problems to solve here.

1. We need to determine the U*, also known as optimal propogator, that achieves the

maximum transfer.

2. Given U™, its need to be shown that that there exists controls in (2.39), which can
generate U*. This corresponds to the problem of controllability on the Lie Group
SU(2™).

3. Finally, find control laws that accomplish these transfers and are optimal under a

desired cost function.

The most pertinent cost function for NMR problems is the time of transfer because,
as we saw in Bloch equations, the system has relaxation and, if transfers are not
accomplished rapidly, the decoherence effects due to relaxation become predominant.
Thus, the need for shorter pulse sequences or in language of control theory, time
optimal control control laws cannot be overemphasized. Sometimes, the energy spent
in rf pulses during these transfers is also an important consideration, hence we will

also derive optimal control laws with energy as the cost.

In the following section, we show how ideas from gradient flows on Lie groups can be
used to solve the first problem. We will show later that, under appropriate conditions,
it is possible to generate any unitary U using the controls we have, The proof brings out
the non-commutative aspects of the problem with direct connections to non-linear control

theory.
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2.7 Optimal Propogator

The most general problem relevant to NMR spectroscopy is the following.

Problem Statement 2 Let A = A; +1A4y and B = B; +iB, be n x n complex matrices,
where A;, Ay, By, By are Hermitian. Find U € U (n) such that |[tr(AU BUY)|| is maximized.

Problem 2 can be solved exactly if A and B are Hermitian operator (VON NEUMANN
(1937), BROCKETT (1991), STOUSTRUP ET AL. (1995)). The solution is given by the

following theorem.

Theorem 1 Let A and B be n x n Hermitian operators, and let U € U(n) the space of

n X n unitary matrices. Let
A = vV.2.v1 (2.40)
B = W-%, Wi (2.41)
where 3; and 39 are the diagonal matrices with eigenvalues arranged in descending order.
Let U* = argmax tr(AUBU'). Then U* = V - W and tr(AU*BU*") = tr(Z; - £y).
We now present gradient flows on unitary group that maximizes the expression
f(U) = tr(AUBUY). (2.42)

For more details see BROCKETT (1991).
The gradient ascent flow U = Vf(U) for the above function takes the following form.
Observe that along the curve U=U,a change in f is given by
% = tr(AQUBU' — AUBU'Q)
— tr(Q7'[A, UBUT)

and, therefore, Vf(U) = [A,UBU'] U. The flow
U(t) = [A,UBUT U

is the then the gradient ascent flow for the function (2.42). The qualitative features of the

flow is summarized by the following theorem

Theorem 2 Let A and B be n xn Hermitian matrices with eigenvalues A1 > Ao > ... > A,
and g1 > po > ... > pp. Then the flow U(t) = [A,UBU'] U has 2"n! equilibrium points of
which exactly 2" are local maxima, at which points the function f(U) = tr(AU BU) takes
on the value A1 + oo + - .. + Apfin-
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We now look at the more general case of this problem when A and B in theorem are not

Hermitian. This is of most interest to us in the framework of NMR spectroscopy. Let us
9(U) = tr(ATUBUY)|1%, (2.43)
where as before U is unitary. We first present the gradient ascent equation for this function.

Theorem 3 Let U € U(n) the space of n x n unitary matrices, g(U) = |[tr(ATUBU)||?,
and p = UBU'. The gradient ascent flow for the function to within a scale factor is given

by
U = {tr(A'p) [p, AT+ tr(Ap") [p', A} U.

Proof: Observe that
g(U) = tr(A'TUBUYtr(AUBTU).

Along the curve U = QU, where Q is a skew Hermitian matrix, we have

d gd(tU) = tr(A'UBUT) { tr(ATQUBU") — tr(ATUBUTQ) }
+tr(AUBUT) {tr(AQUBTUY) — tr(AUBUTQ) }
L) — (e r(A0) [p, A1) + tr(Aph) [o1, AT)).
Therefore the gradient flow for g(U) is
U = QU (2.44)
Q = {tr(A%p) [p, AT +tr(Ap") [pf, Al}, (2.45)
where [, -] represents the commutator.

A concrete example of controlling density matrices is in coherence transfer in NMR, (WEIT-
EKAMP ET AL. (1982), GLASER AND QUANT (1996)) for the I,S, where a typical control

task is to transfer the initial density matrix
p(0) = Sy —iS,

to the final state
n
plty) = ZIkz — iy,
k=1

where the operators S, I, etc have the usual meaning as described earlier. Of course
the gradient flows will necessarily converge to a stationary value of the given function.
Moreover, given the realities of roundoff noise, the flow will converge to a local minimum.
Because there can be no assurance that any given local minimum occur, it may be necessary

to use some stochastic technique (such as simulated annealing) to find the true optimal U.
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2.8 Unitary Controllability of Spin Systems

The fundamental issue of controllability of quantum mechanical systems has been of great
interest (RAMAKRISHNA ET AL. (1995) BUTKOVSKIY AND SAMOILENKO (1990) HuANG
ET AL. (1983)). In this section, we address the problem of controllability of spin systems
in NMR. The question we want to answer is the following.

Question Given the unitary evolution of the density matrix p(t) = Up(0)UT, where

U = —i[Hy+ H,fU, U € SU(2"), (2.46)

is it possible to steer U from U(0) = I to some specified Uy in finite time, i.e. is it possible
to generate any unitary transformation?

It is shown that, under mild conditions, % spin systems have the nice property that any
unitary transformation can be generated or that the system (2.46) is controllable on the
group SU(2"). These conditions are given in the following theorem which appears in the

recent theses (HERBRUGGEN (1998)).

Proposition 1 Given a network of n mutually weakly coupled % spins, if the Hamiltonians

n n
Hy = uo Y wplie+ Y JuleTie
k=1 k<l

n
H,; = Zw;;f[kw U,
k=1
in Equation (2.46) satisfy the constraints
e all wy are nondegenerate;
e all couplings Ji; are resolved;
e each spin k is accessible to selective rf-pulses;

then the system (2.46) is controllable on the group SU(2").

The above proposition is a direct corollary of the following theorem. We firstpoint a few

well known facts

e First of all, observe that the Pauli matrices, iI;, ily, I, form an orthogonal basis

for su(2) with respect to scalar product, (-,-) = tr (-f,.).
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o Let {a, 8,7} € {z,y,2z}. The following relations hold for the Pauli spin matrices

1
Iy =1, ifa=p
IaI,B = ea,B’yI’ya ifa# B,

where €,4, = 1 if a8y are all different and are obtained from zyz by a even permu-

tation.

e Observe that if A, B, C, D are arbitrary matrices of the same dimension, then
[AQ B, C®D]=[A, C]®(B- D)+ (C- A)®[B, D]. This follows immediately
from the identity

(A B) (C@D)=(AC)® (B D).

Theorem 4 Let g, denote the set of@ skew-Hermitian matrices {ilyy, ily,, ilx,I,| k <
I, 1=1, 2,---, n}. The smallest Lie algebra containing the set gy, is su(2"), the Lie algebra

of all traceless skew-Hermitian 2" X 2™ matrices.

Proof: We show that all the 4" — 1 basis elements (2.32) of su(2") can be generated using

from the set
gn = {Ilcza Ik2:7 Iklez|k < la = la 27' Tty n}
by commutation. The proof is inductive and proceeds as follows

e For n = 1, Ij,I;, is absent. The proof is obvious and follows directly from the

commutation relations for Pauli matrices given above.

e The set of 4 x 4 traceless skew-Hermitian matrices defines a 15 dimensional space.
The “one spin” coherence terms (i.e. the elements realizable as one Pauli matrix
tensored with identity) are clearly present—four of them are already present in g, and
the remaining two of this type can be generated with a single bracket. The remaining
nine terms can also be generated with a single bracket but now involving I1,1,. Here
is an example

[IIZI2Z7 Ilw] = Z.IIyIQz-
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e By a r spin term we mean elements in the algebra which can be expressed as a tensor
product using exactly r Pauli matrices and n — r identity matrices. Our induction

hypothesis is that, for n=s, we can generate all 4° — 1 basis terms and that of these

()
T

terms of 7 spin type. We need to show that for n = s+ 1, we can generate all 4°T! —1

there are

basis terms and that of these 3" (s’;l) are of the r spin type. Observe the new basis

elements we add at this new stage are

9s+1 — 9s = {I(s—i—l)ma I(s+1)z> LT[k <1, l=s+1}

Thus, again using the same argument as for n = 2, we can generate all the terms

S

3" (2) of r spin type from 3" ( *,

) terms of r — 1 spin type already present in the

su(2%) algebra
s+1
1
23’(‘(“L ) —3.4°
r=1 "

adding these newly generated terms to terms previously present 3-45+4°5—1 = 4511

we see we obtain all the basis elements.

2.9 Conclusions

In this chapter, we have sought to bring the reader to the point he/she can appreciate the
control theoretic aspects in NMR. Our hope is that ideas from system theory can shed light
on the basic questions of interest when refining the current state of the art. Many interesting
techniques and phenomenon in NMR such as spin echoes, spin-spin decoupling, homonuclear
and heteronuclear transfers in multidimensional NMR spectroscopy (ERNST ET AL. (1987),
GLASER AND QUANT (1996)) have very interesting system theoretic interpretations. The
recent burst of interest in quantum computing involving delicate noncommutative effects
suggest the potential for developing a unified framework for thinking about more general
forms of computation as the output of a dynamical system.

Having demonstrated the unitary controllability of the spin % spin systems, we now address
the important question of synthesising a time-varying Hamiltonian which brings about the
desired change in the initial state of the system. From a control theory perspective, this is a

constructive controllability problem. During the last decade, the design of pulse sequences
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for coherence or polarization transfer in pulsed coherent spectroscopy has received lot of
attention. Algorithms for determining unitary bounds quantifying the maximum possible
efficiency of transfer between Hermitian and non-Hermitian operators have been determined
(GLASER ET AL. (1998)). There is therefore utmost need for design strategies for pulse
sequences that can achieve these bounds. It is also desirable that the pulse sequences
should be optimal with respect to some cost functions. The most pertinent cost function
for NMR problems is the time of transfer because, as we saw in Bloch equations, the system
has relaxation and if transfers are not accomplished rapidly, the decoherence effects due
to relaxation become predominant. Sometimes the energy spent in rf pulses during these
transfers is also an important consideration. Hence, we will also derive optimal control laws

with energy as the cost.



Chapter 3

Optimal Control in NMR

In this chapter, we study the design of pulse sequences in NMR spectroscopy as a time
optimal control problem on a compact Lie group. Though our primary interets lies in the
unitary group U(n), as the evolution in quantum mechanics is unitary, we have kept the dis-
cussion general enough to include other compact groups, including SO(n), as these results
are of interest from general control theory perspective. The need for shorter pulse sequences
which accomplish desired transfers cannot be overemphasized especially when relaxation
times are very short. The problems we want to look at have the following character. Sup-
pose we are given a controllable right-invariant system on a Lie group. The question that
we want to answer is, what is the minimum time required to steer the system from some
initial point to a specified final point. In NMR spectroscopy and quantum computing, this
translates to, what is the minimum time required to produce a unitary propogator. In
particular, we assume that our controls are unrestricted. This is a good approximation for
NMR spectroscopy as we can use high power hard NMR pulses. In some cases, we will try

to explicitly specify the shape of the reachable set.

Our main results have to do with the time optimal coherence transfer for multiple spin
systems. We give an analytical characterization of such time optimal pulse sequences in
variety of transfers involving two spin-systems and some generalizations. We show, for
example, what is the best possible inphase and antiphase coherence transfer possible in a
given time. We also demonstrate the optimal transfer sequence improves the efficiency of
the known isotropic mixing sequences by 40 percent. Also, we demonstrate the optimality
of some known pulse sequences.

In non-relativistic quantum mechanics, the time evolution of a quantum system is de-

40
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fined through the time dependent Schroedinger equation
U(t) = —H®U (1), U0) =1,

where H(t) and U(t) are the Hamiltonian and the unitary displacement operators, respec-

tively. Recall, we can split the Hamiltonian

m
H=Hg+ ) vi(t)H;,
i=1
where Hy is the part of Hamiltonian that is internal to the system, and we call it the drift
Hamiltonian and Y1 | v;(t)H;(t) is the part of Hamiltonian that can be externally changed
and is called the control or rf Hamiltonian. Equation for U(t) dictates then the evolution

of the density matrix according to

p(t) = U)p(0)U' (2).

The problem we are ultimately interested in is to find the minimum time required to transfer
the initial state pg to a final state pp. Thus we will be interested in computing the minimum

time required to steer the system
. m
U=—i(Ho+ Y wH)U (3.1)
i=1

from identity, U(0) = I, to a final state Up.

In the following section we establish a framework for studying such problems.
Preliminaries
Throughout this chapter, G will denote a compact Lie group with a bi-invariant metric
<, >¢ and e its identity element. Let K be a compact closed subgroup of G. We will denote
by L(G) the Lie algebra of the right-invariant vector fields on G' and similarly L(K) the
Lie algebra of the right-invariant vector fields on K. There is a one-to-one correspondence
between these vector fields and the tangent spaces T.(G) and T.(K), which we denote by
g and € respectively. Consider the direct sum decomposition g = m + £ such that m = ¢+
with respect to the metric.

To fix ideas, let G = SU(n) and g = su(n) its associated Lie algebra of n x n traceless
skew-Hermitian matrices. Then < A,B >g= tr(A'B), A,B € su(n), represents a bi-
invariant metric on SU (n).

If we consider the (right) coset space G/K = {KU : U € G}, then it is know that the

G/K (homogeneous space), admits the structure of a differentiable manifold. Define the
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origin of G/K by o = n(e). Given the decomposition g = m-+¢, there exists a neighborhood
of 0 € m which is mapped homeomorphically onto a neighborhood of the origin 0 € G/K by
the mapping 7 o exp|m. The tangent space T,(G/K) can be then identified with the vector
subspace m. The geometry of homogeneous space will play an essential part in determining
the shortest possible times for coherence transfers.

The Lie group G acts on its Lie algebra g by conjugation Adg : g — g. This is defined
as follows. Given U € G, X € g, then

dU texp(tX)U

Ady (X) 7 lt=0-

Once again to fix ideas if G = SU(n) and U € G, A € su(n), then Ady(A) = UT AU.
The homogeneous space G/K is a Riemannian Symmetric space, if the Lie algebra

decomposition g = m + ¢ satisfies the commutation relation,
[e,€] C € [m,€] Cm,[mm]CE

If b is a sub-algebra of g, which is contained in m, then § is abelian because [m,m] € g. It
is well known (WOLF (1984)) that

Theorem 5 If h and b’ be two maximal abelian sub-algebras of m. Then
1. There exists an element X € h whose centralizer in m is just §.

2. There is an element k& € K such that adg(h) = b'.

3. m = Upck adi(h)

Thus the maximal abelian sub-algebras of m are all adx conjugate, and in particular
they have the same dimension. The dimension will be called the rank of the symmetric
space G/K, and the maximal abelian sub-algebras of m is called the Cartan sub-algebras
of the pair (g, ¢).

Assumptions: Let U € G, and let the control system

U= [Hy + in:’uz‘Hi]U, U(0) =e, (3.2)

be given. We will assume that {Hy, H1,...,Hp}ra = g, and since G is compact, it follows
that the system (3.2), is controllable (JURDJEVIC AND SUSSMANN (313-329)). Let & =

{Hi}ra, and K = exp{H;}r4 be the closed compact group generated by {H;}. Given the
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direct decomposition g = m + £ where m = ' with respect to the bi-invariant metric <, >,
let Hy € m. We will assume that Adg(m) C m and we say that the homogeneous space
G/K is reductive. All our examples will fall into this category.

Notation: Let C denote the class of all locally bounded measurable functions defined on
the interval [0, 00) and taking value in R™. C[0,T] denotes its restriction on the interval
[0,T]. We will assume throughout that in equation (3.2), v = (v1,v2,...,vy,) € C. Given
v € C, we denote the solution of equation (3.2)by U(t) such that U(0) = e. If, for some
time ¢ > 0, U(t) = U’, we say that the control v steers U into U’, in ¢ units of time and U’

is attainable or reachable from U at time ¢.

Definition 1 (Reachable Set:) The set of all U’ € G attainable from Uj at time ¢ will
be denoted by R(Up,t). Also we use the following notation

R(Up,T) = |J R(U,1)
0<t<T

R(Uo) = |J R(Uo1).
0<t<oco

We will refer to R(Uy) as the reachable set of Uy.

Remark 1 From the right-invariance of control systems it follows that R(Uy,T') = R(e, T)Uy,
R(Uy,T) = R(e, T)Uy and R(Uy) = R(e)Uy. Note R(Uy,T) need not be a closed set, we

use R(Up,t) to denote its closure.

Definition 2 (Infimizing Time:) Given Ur € G, we will define

t'(Ur) = mf{U € R(e, )}

* K — . *

and t*(U) is called the infimizing time.
g

We have two goals in this chapter, to characterize R(e,t) and hence compute t*(Ur),
the infimizing time for Ur € G. To characterize the infimizing control sequence v* in (3.2),
which in the limit achieve the transfer time ¢t*(Ur) of steering the system (3.2) from identity
e to Up.

The Lie Group which we will be most interested is SU(2") the unitary group describing
the evolution of n coupled % spins. Its Lie algebra su(2") is the 4™ — 1 dimensional space

of traceless n x n skew-Hermitian matrices. Recall that the orthonormal basis which we
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will use for this space are expressed as tensor products of Pauli spin matrices. The basis

for su(2") takes the form {iB;}, where
n
By =271 T (Zka) ™, (3.3)
k=1
a =z,y,or z, and

Ii,.=1® - I,®1 (3.4)

where I, the Pauli matrix appears in the above expression only at the k** position, and
1 the two dimensional identity matrix, appears everywhere except at the k" position. aj
is 1 for ¢ of the indices and 0 for the remaining. Note ¢ > 1 as ¢ = 0 corresponds to
the identity matrix and is not a part of the algebra. With this background we discuss the

general optimal time control problem.

3.1 Time Optimal Control

Given the system

m
U=[Hg+ Y vH]U, U(0) =e.
i=1

Let ¢ = {H;}La denote the Lie Algebra generated by H;, and K = exp £ the compact
closed subgroup of G generated by the algebra €. The key observation is the following. If
Ur € K, then t*(Ug) = 0. To see this, note that by letting v in (3.2), be large, we can move
on the subgroup K, as fast as we wish. In the limit as v approaches infinity, we can come
arbitrarily close to any point in K in arbitrarily small time, with almost no effect from the
term H,y. By same reasoning ¢t*(U) = ¢*(kU) for k € K. Thus finding t*(Ur) boils down
to finding the minimum time to steer the system (3.2) between the cosets Ke and KUp.

This is illustrated in the Figure 3.1, where the cosets KU and KV are depicted as arcs
and the infimizing time path is shown with the dashed part of the curve depicting the fast
motion within the coset and solid curve showing the drift part of the flow, also known as the
evolution of couplings in NMR literature. The minimum time problem then corresponds
to finding shortest path between these cosets or, in other words, the shortest path in the
space G/K.

With this intuitive picture in mind, we now state a well known result.
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Start

Figure 3.1: The panel shows the time optimal path between elements U and V belonging to
G. The dashed line depicts the fast portion of the path corresponding to movement within
the coset KU and in traditional NMR language corresponds to the pulse and the solid line
corresponds to the slow portion of the curve connecting different cosets and corresponds to
evolution of the couplings.

Lemma 1 For the right-invariant control system (3.2), the mapping (v,t) — U(t) from
C(T) x [0,T] into G is continuous for each U and each T > 0, if C(T) is given the topology

of weak convergence.
We use this to show
Lemma 2 For the right invariant control system in equation (3.2), t*(Ur) = t*(KUr).

Proof: All that needs to be proved here is that, if Ur € K then t*(Ur) = 0. Since the
Lie algebra exp {H1,...,Hy}pa = K, given any T > 0, 3, © € C(T') such that the solution
U(t) to

U=[>_uH]U, U®)=e
1
satisfies U(T') = Up. Now consider the family of control system
. m
U=[Hy+a) vHU, U0)=e.
i=1

Rescaling time 7 = at, we obtain
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dU  H;
= = H, —e.
I " +i§:1 5 H;)U, U(0) = e

Observe that by Lemma (3.1) as o — oo, U(7)|;=r = Ur or limy,cU(t)|,_r = Up.

Therefore Ur € R(e, T), for all T > 0, implying t*(Up) = 0. Q.E.D

Remark 2 The above observation will help us make a bridge between the problem of
computing t*(U) and the problem of computing minimum length paths for a related problem
which we now explain. Let P € G. Associated with the control system (3.2), is the right

invariant control system
P=HP (3.5)

where the control H no longer belongs to the vector space but is restricted to an adjoint
orbit i.e. H € Ady(Hy) = {k 'Huk|k € K}.

For the control system (3.5), we say that KUp € B(Uy,t'), if there exists a control H|0,t'],
which steers P(0) = Uy to P(t') € KUp in t’ units of time. We use the notation

BU,T)= |J B(U,1).
0<t<T

From lemma , we see that B(U,T) is closed.
Definition 3 Define the Minimum coset time
L (KUr) = inf{KUp € B(U, 1)}

Theorem 6 (Equivalence theorem) The infimizing time ¢*(Up) of steering the system

. m

U=[Hs+ Y wH]U

i=1
from U(0) = e to Up is same as the minimum time L*(KUfp)of steering the system
P =HP, H € Adg(Hy)

from P(0) = e to KUp.

Proof: Let Q € K and let us consider the flow

Q=>_viH]Q, Q(0) =e. (3.6)
=1
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Furthermore, let P € G such that P evolves according to the equation
P=(Q7'H.Q) P, P(0) =e. (3.7)

Then, observe that

d(Q P)
dt

=[Hy+ > viHi(QP), Q(0)P(0) =e.
1

which is the same evolution equation as that of U and since U(0) = Q(0)P(0) = e, therefore
by the uniqueness theorem for the differential equations, U(t) = Q(t)P(t). Therefore, given
a solution U (t) of equation (3.2) with the initial condition U (0), there exists a unique curve
Py (t) defined through equations (3.6) and (3.7) as above. Observe that, if U(T) = Up then
it follows that Py (T) € KUp. Thus, if Up € R(e,T), then KUp € B(e,T) which implies
that t*(Up) > L*(KUp).
To prove the equality observe that if KUp € B(e,T) , there exists a control H[0,7] such
that the solution P(t) to (3.5) satisfies P(T') € KUr. Let v*(t) be a family of control laws
such that, for

m

Qr =D viH]Qk, Qi(0) =,

i=1
limy, o0 fOT |H — Q; ' HyQx||dt = 0. Hence, using Lemma 3.1, we claim that the family of
differential equations

Py = [Q), () HyQr(t)1Pr, Pe(0) =e

satisfies limy_, oo Pi(T') € KUp. Therefore, t*(KUp) < T. Since the choice of T' was arbi-
trary, it follows t*(KUr) < L*(KUr). Hence the proof. Q.E.D

Remark 3 Since ||H|| =1 in (3.5), we can also define L*(KUp) as the infimizing value of
fOT < P,P >3 dt of steering the system

P=~HP, v >0,
from P(0) = e to P(1) € KUF.

We will now compute the expression ¢t* based on the properties of the set Adx(Hg). To
recapitulate, we have a right invariant system (3.2) on the compact Lie group G which
admits a bi-invariant metric <,>g. K is a compact closed subgroup of G and g and

¢ represent the Lie-algebras of G and K, respectively. Let g = m + € be a direct sum
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decomposition, where m = ¢1 with respect to the the metric <, >¢. The action Adg(m) C
m and Hy € m. Let S, denote a unit sphere in m. We consider the following classification

based on the qualitative nature of time optimal control laws.

1. Riemannian Symmetric Case In addition to above assumptions if we have the restric-
tion [m,m] C € then we are in the Riemannian symmetric case as described in the
section 3. We make two distinctions here based on the qualitative nature of optimal

time trajectories.

o Pulse-drift-pulse sequence: This is the most simple case and a characteristic of

single spin systems. In this case, the rank of the symmetric space is G/K is 1.

e Chained Pulse-drift-pulse sequence: In this case, the rank of the symmetric space

G/K is more than 1. This is a characteristic of two spin systems.

2. Chatter sequence In this case we no more have G/K as a Riemannian symmetric

case, i.e. [m,m] ¢ €. This is a characteristic of more that two spin systems.

Pulse-drift-pulse sequence

We begin with the first case where rank of the symmetric space G/K is one. Let Sy, denote
a unit sphere in m, then it follows from theorem 5 that Adx(Hy) = Sm- In this case
computing t*(U) reduces to finding geodesic distance on the homogeneous space G/K. To
see this, consider the homogeneous space P = G/K and let w denote the natural projection
map 7 : G — P such that o = w(e). Given the bi-invariant metric <,> on G, there is a
corresponding left invariant metric, called the normal metric <, >,,, on the homogeneous
space G/K arising from the restriction of <,> to m. Let L,(y) represent the length
of a curve v € G/K under the normal metric. In case Adx(Hy) = m, there is one-to-one
correspondence between the curves {y(t) € G/K|v(0) =0, v(1) = n#(Ur), L,(7[0,1]) =T}
and the trajectories of system 3.5, satisfying {P = HP|P(0) = e, P(T) € KUr}. Therefore
L*(KU) is the Riemannian distance between o and 7(U) under the normal metric <, >,,.
This is then computed in the following theorem, which is essentially a restatement about

geodesics on the homogeneous space G/K, under the normal metric.

Theorem 7 Let G, be a compact Lie group with a bi-invariant metric <,>, and K be

a closed subgroup. Let g and € denote their Lie algebras with the direct decomposition
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g=m+ & m =%t Given the right invariant control system
. m
U=[Hs+ > vwH]U, U€eG, U®O) =e
1

where v; € R, Hy € m, {H;}p4 = ¢ and {Hy, H;}ra = g. Suppose G/K is a Riemannian
symmetric space of rank one, then t*(Up) is the smallest value of o > 0 such that we can
solve for Ur = Q1exp(aHy)Q2 with Q1,Q9 € K.

Proof: By the equivalence theorem t*(Up) = L*(KUp), the minimum time for steering
the system
P=HP, H € Adg(Hy),

from P(0) = e to KUp. Because G/K is a Riemannian symmetric space of rank one,
Adg (yHg)m,y > 0. Therefore L*(KUp), is the Riemannian distance between o and 7(U)
under the normal metric <, >,. From KOBAYASHI AND NomIzZU (1969), the geodesics un-
der the normal metric <, >, originating from o, take the form n(exp(rH)) for H € m.
If U = Qiexp(tHy)Q2 for Q1, Q2 € K, then w(U) = w(exp(t QQ_IHng)). To see this
note that U = (Qng)QQ_Iewp(tHd)Qg = (Q1Q2)exp(t QQ_IHng). Thus , from the above
assertion, the geodesic connecting o to m(U) takes the form 7(ezp(t Qy'HyQ2)) and has
the length L = t. Hence the proof. Q.E.D

We now use illustrate these ideas through some examples

0 0 -1
the Pauli spin matrices. Consider the unitary evolution of single spin system

01 1 0
Corollary 1 Let U € G = SU(2) and let I, = % |: ) ] , I, = % [ ] represent

U = —i[l, + ul,)JU

where the control v € R Let U, = exp(—il,t) represent the one parameter subgroup

generated by I, and Up = Uyexp[—ial,)Us where Uy, U, € U,, then
£(Ur) = o mod [, ).

Proof: First note that the Lie algebra g = su(2) has the decomposition m = {il,,il,},
¢t = {iI,}, and Ady,(I,) = m. Observe that, if Upr = Uyexp[a,|Us, where Uy,Us € Uy,
then Up = Uyexp[B€2,)Us, where 8 = a mod [—7,w]. The proof then follows directly from
the Theorem 7 Q.E.D.
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0 -1 0 00 O
Corollary 2 Let © € G = SO(3), and let Q, = |1 0 0|, =10 0 -1
0 0 O 01 0
represent the generators of rotation around the z— and z—axis. Consider the control
system
0 = [Q, + uQ,)0,
where the control u € R. Let O, = exp(;t) represent the one parameter subgroup

generated by , and let ©5 = ©1ezp[a;]O2 where ©1,0, € O, then
t*(Ur) = ||l mod [—m, 7]|.

Proof: First note that the Lie algebra g = s0(3) has the decomposition m = {€,,Q,},
t = {Q;} and Adg,(2;) = m. Observe that if O = Qexp[af2;]Q2, where Q1,Q2 € O,
then O = O1exp[B2,]O2 where B = a mod [—m,7]. The proof then follows directly from
the Theorem 7. Q.E.D
We now generalize the above example to the following case where G = SO(n), the group
of n x n orthogonal matrices. The Lie algebra g = so(n), is the the set of n x n skew
symmetric matrices. The bi-invariant metric on G is < ,Q >= tr(Q27Q). Consider the
following decomposition of g = m + €, where m consists of skew-symmetric matrices which
are zero except the first row and column and ¢ consists of skew-symmetric matrices which
are zero in the first row and column. Observe that € generates the subgroup SO(n — 1).

Then we have the following corollary

Corollary 3 Let © € G = SO(n) and let the control system

O =[Q¢+ > u]O, 00) =1
1

be given, where Q4 € m, ; € ¢, and u; € R Suppose that K = exp{Q;}ra = SO(n —1).
Given O = O1exp(afdy)O2, where ©1, ©y € K, then

t*(0y) = |la mod [—m, =]||.
Proof: Observe that Adk (£24) = m and hence the proof is on the same lines as Corollary 2.
Chained Pulse-drift-pulse sequence

Let us now consider the second case in our classification scheme. Now we assume that the

rank of the Riemannian symmetric space G/K is greater than one.
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Notation: Given the decomposition g = m + €, let h C m be the maximal abelian sub-
algebra containing H;. We use the notation Ay, = h() € Adx(Hy) to denote the maximal

commuting set contained in the adjoint orbit of H;. We denote the span of this set by
Sp(Am,) = {32721 BiXilBi 2 0,X; € Ap,}.

Theorem 8 Let G, be a compact matrix Lie group and K be a closed subgroup with g
and ¢ their Lie algebras with the direct decomposition g = m + ¢, m = ¢+. Given the right

invariant system

U=[Hs+ Y viH)JU, UeG, U0)=e
1

where v; € R, Hy € m, {H;}4 = £ Suppose G/K is a Riemannian symmetric space and
Sp(Apn,) = b, then t*(Ur) is the smallest value of ), §;, for §; > 0, such that we can solve

m

Ur = Q1 exp(Dd_ BiX:)Q2,

=1

where @1, Q2 € K and X; € Ay,.

Proof: Recall, from Theorem 6, that if we consider the control system pP= vyHP, P € G,
where H € Adg (H,), and let L*(KUr) be the optimal cost f; < P, P >2 dt of steering the
system from P(0) = e to P(1) € KUp, then t*(Ur) = L*(KUp). To compute L*(KUF), we
derive the first order necessary conditions by applying the maximum principle of Pontryagin.
We represent the linear functional on P as ¢y (P) = tr(Y P) with PY € m. The Hamiltonian
is then

W(P,Y, H,~) = ~vtr(Y HP) + %’yztr(HT(t)H(t)).

Since |H|| = 1, the Hamiltonian takes the form
h(P,Y,H,~) = vtr(YHP) + %72.
Then Y satisfies the equation
Y(t) = -Y(O)(H®)

tr(dH PY) = 0
v = —tr(YHP).
Observe that H = Q 'H,Q, where Q € K and, therefore dH = [A, H], where A € §,

implying that
tr(A[H,PY]) = 0.
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Since A € ¢, is arbitrary we have
[H,PY] € m. (3.8)
Let M = PY. The differential equation for M is
M =~*[H, M]. (3.9)

Since H € m and M € m the condition [m, m] € € implies that if (3.8) holds then [H, M] =0
and, from (3.9), M = 0. Therefore the optimal H(t) satisfies [H(t), M(0)] = 0 with
v =tr(H(t)M(0)) a constant. Let us now characterize the optimal H(t).

Observe from the theorem 5 that Ur = Qrexp(} ;- a;Y;), where Q1 € K and Y; €
Adg(Ap,), for some Q € K. Note for M(0) = >, Y; and H(t) = Y ;v b;i(¢)Y;, where
at any time ¢, all but one b; (nonzero b; is equal to one), are zero, all the optimality
conditions are met. The corresponding time optimal trajectory takes the form P(t) =
H;’;lexp(fg bi()Y;). For T = Y7 | ai, and fg b;(t) = a;, the time optimal curve satisfies
P(T) € KUp. Hence the proof follows. Q.E.D
We now consider the application of the above theorem to find optimum time optimal pulse
sequence for generating a unitary propogator in the 2 spin system. We consider the het-

eronuclear two spin case where by going in a rotating frame we can reduce the free precession

part of the Hamiltonian to a coupling evolution.

Theorem 9 Let U € SU(4). Consider the evolution of heteronuclear IS spin system
described by the following equation

4
U = —i( Hd + Z’UIZHZ )U,
=1

where

Hd = 27TJIZSZ

H, = 2rnl,
Hy = 27l
Hs = 278,
H, = 2785,

Let K = SU(2) x SU(2) be the subgroup generated by {H;}}_;. Given Ur € SU(4), if

T(Up) = arg min {Ur = Qrexp(anIzSz + axlzSz + a3lySy)Qa| Q1, Q2 € K, a; > 0}.

i=1
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Proof: Consider the decomposition of g = m+¢, where m = span{l,Sg}, ¢t = span{l,, Sg},
and (o, ) € (z,y,z). Then, observe that [m,m] € ¢ [m,€ € m, and [¢, €] € ¢. Further-
more, since Ar,s, = {IzSz,[zSz, IySy}, and also Adg(Sp(Arzs,)) = m. Thus the above
example satisfies all the conditions of the theorem, and hence the proof follows. Q.E.D

Now we address the question of maximum possible achievable transfer in some given
time T'. We will look at the inphase and antipahse transfers in the two-spin systems and

give expressions for maximum transfer efficiencies.

3.2 Optimal Transfer Efficiency in Two-Spin Systems

In this section, we will focus on the following question. Given a spin system with a known
internal Hamiltonian, what is the maximum transfer possible between a given initial and
final state, in some specified time T' and what is the pulse sequence that accomplishes
this transfer. Our results will be the consequence of previous theorems. In the following
theorems we give fundamental bounds on transfer efficiencies for inphase and antiphase

transfer experiments in heteronuclear two-spin system. We start by some definitions
Definition 4 Transfer EfficiencyConsider the evolution of the density matrix

p(t) = U)p(0)U' (2),

where

U=—i( Hi+ iquz YU, U(0) = I.
i=1
Define the transfer efficiency 7(t) to someZ given target operator F' as
n(t) = |tr(FTU@)p(0)UT (1))
The questions we are interested in answering are the following

Problem Statement 3 Maximum Inphase TransferGiven the unitary evolution of

the heteronuclear two spin system,
. 4
U=—i( Hy+ ) uH; U, U(0) =1,
i=1

where Hy = 2nJ1,S,, Hy = 2nl,, Hy = 2nl,, H3 = 218y, Hy = 27S,. Let p(0) = S;+iS,
and the target operator be F' = I, + il,. Find the maximum achievable transfer efficiency
" (t)-
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Problem Statement 4 Maximum Antiphase Transfer Consider the unitary evolu-

tion of the heteronuclear two spin system,
. 4
U=—i( Hg+» wH; )U, U®0) =1,
i=1

where Hy = 2nJ1,S,, Hy = 2nl;, Hy = 2nly, H3 = 2nS;, Hy = 27Sy. Let p(0) = Sy +1Sy
and the target operator be F' = S,(I; + ily). Find the maximum achievable transfer

efficiency n*(t).

1
Lemma 3 Given the vector p= | i | and let ¥ be a real diagonal matrix
0
aj 0 0
¥ = 0 a9 0 ;
0 0 ag

If a; > a; > ay, where {3, 5,k} € {1,2,3} and let U,V € SO(3). The maximum value of
IpTUSVp|? = a? + a2.

Proof: Let XVp = b+ ic where b,c € R3. First observe that the maximum value of
lptU (b + ic)||? is obtained when bLc and the maximum value is ||b||> + ||c||>. Now observe
that maximum value of ||[SVp||?2 = ||b]|2 + ||c||? is a? + a? and when this is obtained b_Lc.

Hence the proof follows Q.E.D.

Theorem 10 Consider the density matrix evolution for the heteronuclear 1.5, spin system

4
p= _Z[ Hy +ZuiHiap]a

i=1
where Hy = 2nJ1,S,, H, = 2nl,, Hy = 2nl,, H3 = 2nS,, Hy = 27S,. Let p(0) = S;+iS,
and F' = I + il then the maximum achievable transfer
() = [tr(FTU ()p(0)UT (t))[| = sin(Jmwar)sin(Jmras),

where a1 + 2a9 =t and tan(Jwa;) = 2 tan(Jras).

Proof: Let
A(t) = exp(i2nJ (11252 + aglzSz + a3lySy).
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From theorem 8
3
U(t) € {Q1A(t)Q2| Q1, Q2 € K oy >0, Zai <t}
i=1
Let S = exp{iS;,iSy,iS,} and I = exp{il,,ily,il,}. By definition K = § x I. In the

expression for

0" (t) = |ltr (FTU ) p(0)UT (1)),

since p(0) commutes with I and F commutes with S, it suffices to restrict @1 and Q-
to S and I respectively. Let P; denote the projection on the subspace generated by
{I4,Iy,I,},then a simple computation yields that

Pr(AS;) = sin(Jrag)sin(Jras)l,
Pr(ASy) = sin(Jway)sin(Jraz)ly,
Pr(AS,) = sin(Jwag)sin(Jras)l,

Since {Iz,I,,I,} forms an orthogonal pair, we can rewrite
n(t) = Itr(F'Q1AQp(0)Q5ATQY) .

as
n(t) = |p'USVp|?,

where p = [1 i 0]7, and

sin(Jrag) sin(Jmas) 0 0
¥ = 0 sin(Jmway ) sin(Jrag) 0
0 0 sin(Jmay ) sin(Jrag)

and U and V are real orthogonal matrices. Using the result of lemma (3) we get that if

sin(Jway) > sin(Jrag) > sin(Jwas), then the maximum value of
n(t) = sin(Jray) sin(Jrag) + sin(Jwaq ) sin(Jras).

Now maximize the above expression with respect to aj, s, a3 to get the above result.
Q.E.D
The optimal transfer curve is plotted in comparison with the transfer achieved using

the isotropic mixing Hamiltonian in the figure 3.2
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Figure 3.2: The panel shows the comparison between the best achievable transfer and
the transfer achieved using the isotropic mixing Hamiltonian (bold curve) for the inphase
transfer in 2 spin case. On X axis is plotted time in units of 1/J.

Theorem 11 Consider the density matrix evolution for the heteronuclear IS, spin system

4
p= _Z[ Hy +ZuiHi7p]a

=1
where Hy = 2nJ1,S,, Hy = 2nl;, Hy = 2nl,, H3 = 2nS;, Hy = 27S,. Let p(0) =
F,St = F,(S; +iSy) and F = I'™ = I, + il then the maximum achievable transfer for
t<1/2J,is
7" (t) = |tr(FIU()p(0)U ()| = sin(Jnt).
Proof: Let
A(t) = exp(i2nJ (11252 + aglzSz + a3lySy).

From theorem 8

3

U(t) € {QlA(t)Q2| Ql, Q2 e K a; > 0, Zai < t}.

i=1
Let S = exp{iS;,15y,1S,} and I = exp{il,,il,,il,}. By definition K = S x I. In the
expression for

n(T) = tr(F1Q1AQ2p(0)QIAQ)) |

let Q2 = Qo1 X Q25, where Qo5 € I and Qa5 € S. Let the optimum @Q95*, be such that

Q25"p(0)Q25™" = Q25" LS Qos*! = 0, IS + ay I, S + a1, ST
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Denote
n. = |tr(FTQuAQu(I,ST)QIATQY)]
m = Itr(FTQiAQu(I,ST)QIATQN)
ne = |[tr(FTQiAQ(I,ST)QIATQY))

Then observe

ﬁ(t) <a,n, + ayMy + azz-

We now claim that maximum value of 7, (t) is sin(Jnt) for ¢t < 1/(2J). Let P, s denote
the projection on the subspace generated by {I,S;,1,Sy,I,S,},then a simple computation
yields that

Pr,s(ASz) = —cos(Jmag)sin(Jmaz)l,Sy
Pr,5(ASy) = sin(Jmwas)cos(Jron)l,S,
Pr,s(AS,) = 0

Since {I,S;,1,Sy,1,S,} forms an orthogonal pair, we can rewrite
[t (F1Q1AQx(1.SH)QIATQY).

as

n(t) = lp'UZVp|?,

where p = [1 i 0]7, and

—sin(Jrag) cos(Jmwas) 0 0
X = 0 sin(Jras) cos(Jrai) 0
0 0

and U and V are real orthogonal matrices. Using the result of lemma (3) we get that the

maximum value of 7, is

Vsin(Jmaz)?(cos(Jras)? + cos(Jmay)?),

for oy +ao+as =t < 1/(2J), which is maximized for a; = ag = 0 and a3 = t and the value
is sin(J7rt). Similarly the maximum value of 7, and 7, is sin(Jnt). Since a? + a3 + a3 =1,
we get 7(t) < sin(Jnt).

The optimal transfer curve for the antiphase transfer plotted as a function of time

measured in units of 1/.J is shown in the figure 3.3
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Figure 3.3: The panel shows the best achievable transfer as a function of time measured in
units of 1/.J for the antiphase transfer in 2 spin case.

3.3 Optimal Control in NMR

In this section we treat the problem of design of a time varying Hamiltonian in a a more
general setting. Our goal is the design pulse sequences which not only produce efficient
transfers but are economical in terms of the energy they spent and robust with respect to
uncertainties about the complete knowledge of the system. Thus we would like to design
control laws, which optimize more general cost functions.
To fix ideas we set up the following prototypical control problem. Consider the control
system

n

p=—i[Hg+ Z u;Hj, p)-

=1

Where H; and H;, belong to the space of n X n hermitian matrices denotes by HE(n).

Consider the cost function
T n
T =l @E)P+a [ >
0 =1

The task is to find measurable control laws 4; : [0,7] — R, which minimize the cost J. We
treat this as an optimal control problem. We will use maximum principle to find control

laws which render the cost function J stationary along the system trajectories.

Theorem 12 Given the control system p = —i[Hy + Y ;| u;iH;, p]. where Hy and H; €
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HE(n), Let A = Az + i)y, where Az, \y € HE(n) and let

n

j\ = _i[Hd+ZuiHia)\]
i=1
MNT) = 2r(p'F)F

The control laws u; : [0, T] — R given by u;(t) = a~'Re{tr(\(t), [~iH;, p(t)])} renders the
cost function J = ||tr(pf (T)F)||? + « foT %, u?, stationary along the system trajectories.

Proof: Observe we can decompose p as p = p; + ipy, where p,, p, € HE(n) and

n
pr = —i[Hq+ ZUiHi,Pz]

=1

n
py = —ilHa+ ) uilipy)
=1

Consider the Hamiltonian function
n n n
h(p, A\, u;) = tr(Ag[Hy + ZuiHi, —ipg]) +tr(Ay [Hq + ZuiHi, —ipy]) + « Z u?.
i=1 i=1 i=1

Using the maximum principle we obtain that optimal control equations are given by

S
A1) = 3pi(JT )
M) = 39(3{T)
j_z ~ 0

Substituting for A and J in the above equation gives us the required equations as in the

statement of the theorem. Q.E.D

Remark 4 Observe the variational equations for the optimal control constitute a two point
boundary value problem. The system state equation given by the density matrix evolution
has the boundary condition specified at the initial time ¢ = 0 and the evolution of the co-

state equation given by the evolution of A has its boundary value specified at time ¢t = T'.
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It is difficult to find a closed form solutions to these equations. We therefore suggest here
two algorithms to compute the solution to the optimal control problem. We first present

the algorithm based on gradient flows in control space.
Algorithm 1 Descent in Function Space

1. Guess a starting value for u;(t).

2. Integrate the equation for p(t) to get p(T).

3. Evaluate th value of A\(T") from p(T).

4. Integrate the equation for A(¢) backward.

5. Evaluate g—i for all t.

6. Update u;(t) — w;(t) + eg—i(t).

7. Repeat till all ||g—£(t)|| < ¢, for some prescribed tolerance e.

We know present some concrete examples, where the above algorithm can be used to

find optimal control laws.

Example 1 Inphase Coherence TransferConsider the heteronuclear I,,S, spin system

described by the following equation

4
p=—ilHa+ Y uiH;,p].
=1
where

n

Hy = 21 IS,
k=1
n

H1 = 27‘(’2[]”
k=1

n
Hy = 2r) Iy

k=1
H3 = 27TSw
H4 = 27T'Sy

The cost J = ||tr(p(T) F)||?, p(0) = Sy —iSy and F = >"7_, Iry — iljy-
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Figure 3.4: The top panels show the optimal control function u(t), u2(t), us(t) respectively
for the example 1 for n = 1. The bottom panel show u4(t), and the cost J(t) as function

of time. The time is plotted in seconds.

The result of the algorithm for n = 1, n = 2 is shown in figure 3.4 and 3.5 respectively.

Example 2 : Antiphase Coherence Transfer Consider the heteronuclear I,S, spin

system described by the following equation

4
p=—i[Hq+ Z uiH, p).
=1

where
n
H() = QWZIszz
k=1
n
H = 21 Ii
k=1
n
H2 = QWZIky
k=1
H3 = 27I'Sw
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Rf pulse wavefor as funciion of ime Rf pulse waveform as function of time Rf pulse waveform as function of time

Rf pulse wavefor as funciion of ime

Transfer Efficiency

Figure 3.5: The top panels show the optimal control function us (), ua(t), us(t) respectively
for the example 1 for n = 1. The bottom panel show u4(t), and the cost J(t) as function
of time. The time is plotted in seconds.

and F, = Y3 _, I,. The cost J = ||tr(p(T)F)||2, p(0) = 2F,(S;—iSy) and F = > p_; Trp—

iTgy.-

The result of the algorithm for n = 1, n = 2 are shown in figures.

3.4 Conclusions

Our main contribution in this chapter has been to put the design of pulse sequences in coher-
ent spectroscopy on solid geometrical foundations. Problems of design of control sequences
in high resolution NMR has been formulated and solved as optimal control problems on
compact Lie groups. We have computed fundamental bounds for coherence transfer in 2
spin system. Our equivalence theorem gives a analytical characterization of the minimum
time required to implement any unitary transformation in a quantum system. We believe
this work will give a new viewpoint and tools to treat other problems in NMR and control
of quantum systems.

We here enumerate some of the directions for future work in this area which we believe
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can benefit a lot from the system theory point of view.

1. Relazation and Dissipative Effects: In all our optimal control formulations, we ne-
glected the relaxation effects which lead to decoherence in the system. We assumed
that if control is implemented fast enough then we can make appropriate transfers in
times short enough for decoherence to be significant. However this is not a valid as-
sumption in spectroscopy of macromolecules like proteins, as these molecules tumble
slowly in the solution and hence relaxation effects are very important. Therefore we
need to include these effects into the evolution which gives us the Master Equation of

evolution of density matrix
p=—ilH, p] + (o (t) — 00) (3.10)

in which the relaxation superoperator I' can be expressed as a double commutator

~

D(o(t) —o0) =Y > §%wp)[A5[4, 9]
p g

This is where the power of system theoretic approach to these problems really comes
in. We can invoke maximum principle again to find optimal control laws for such

equations. We plan to incorporate such dissipative terms in our future study.

2. Robust control: Till now we assumed that the Hamiltonian was known exactly and is
same for all the molecules. This is far from true. The two most important deviations

are

e Deviation in Larmor Frequencies: The Zeeman or the drift Hamiltonian for all
spins is not the same, and there is a spread in the Larmor frequency, even if we
have the same nuclei type. Therefore pulse sequences that will perform optimally
for one set of nuclei will not be best for the others. Thus we need to design pulse
sequences that optimize the expected transfers. The other source of uncertainty
is

e RF inhomogeneity: We assumed throughout that all spins see the same control,
that is control field is homogeneous throughout the sample, but that is not true

at all. In fact there may be deviation in amplitude ranging from 5 to 10 percent.

System theory provides a framework for dealing with such problems.
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3. Selective Transfers: Till now we worked on problems where we wanted to optimize
certain transfers. In some cases, not only are we interested in maximizing certain
transfers, but at the same time we are interested in minimizing or suppressing other
transfers, as this increases the resolution of the spectra. In a control theory framework,
we can associate appropriate costs to the transfer and design pulse sequences to

optimize these costs.



Chapter 4

Feedback Stabilization of

nonholonomic Systems

In this chapter, we introduce the problem of feedback stabilization of nonholonomic control
systems. Owur main result in this chapter is the construction of feedback control laws
which asymptotically stabilize first brackett controllable systems. Feedback stabilization
problems are concerned with obtaining feedback laws which guarantee that an equilibrium
of the closed-loop system is asymptotically stable. The formal problem statement is as
follows.

Problem: Let the control system in local coordinates be given by
z = f(z,u) ; f(z0,0) =0,z € R", ueR".

Find a smooth function u(x) such that the equilibrium point x = z is asymptotically stable.

For a linear time-invariant system, if all unstable eigenvalues of the system are controllable,
then the system can be stabilized by a linear time-invariant static state feedback. For non-
holonomic systems the situation is more complex. The linearization of nonholonomic system
about any equilibrium point is not asymptotically stabilizable. There are fundamental topo-
logical problems associated with the existence of continuous time-invariant feedback laws
for nonholonomic systems. Before we delve into these issues any deeper, we will introduce

basic definitions and results from classical stability theory.

Definition 5 Given the vector differential equation

z = f(z,t), (4.1)

65
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we say that f € E, if f is continuous and satisfies the Lipschitz condition such that existence
and uniqueness of solution to the differential Equation (4.1) is guaranteed. We use z(t) to
denote that well-defined solution, which takes on value z(0) = zo at ¢ = 0. A constant
solution, z(t) = xo, is said to be an equilibrium solution, or a equilibrium point, of the

differential equation.

Definition 6 The equilibrium solution of the differential Equation (4.1) is said to be stable
if there exists, for each € > 0, a number § > 0 such that the inequality ||z¢|| < § implies
lz(@)] <e.

The equilibrium is said to be quasi-asymptotically stable if there is a number §; > 0 such
that, from ||z¢|| < do, the relation lim; ooz (t) = 0 follows.

The equilibrium is said to be asymptotically stable if it is both stable and quasi-asymptotically
stable.

We can extend this concept of stability to a point to stability to a submanifold.

Definition 7 Let z € R" and 8§ € M be a compact differentiable manifold. Following
ZuBovV (1957), we define the submanifold N = 0 x M to be a asymptotically stable sub-

manifold of the differential equations

if there exists, for each € > 0, a scalar § > 0 such that the inequality ||z(0)|| < § implies
that the solution (z(t),6(t)), corresponding to the initial condition (x(0),60(0)), satisfies
llz(t)|| < d, V& > 0 and if there is a scalar §o > 0 such that, for ||z(0)| < do,

lim z(t) = 0. (4.2)

t—00

If equation (4.2) is satisfied for all z(0), we say that submanifold N is asymptotically stable

in the large.

Having reviewed the basic definitions from stability theory, let us first recapitulate what

we know about the stabilization problem for a linear system.

Linear System
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Theorem 13 Consider the standard linear system
z=Az+ Bu, 1 €R" (4.3)

where A and B are constant matrices. The null solution of (4.3) is stabilizable if and only

if all the modes associated with eigenvalues with non-negative real parts are controllable.
Proof: By change of basis, we can write (4.3), as

i Ty Ty n

with range (By, A11Buy,---,A]] 'B,) = dim x,. Observe that the eigenvalues of Ay must

A Agg
0 A

By
0

have negative real parts if z; is to go to zero as ¢t goes to co. It is well known that if
(B,AB,... A" 1) is of rank n then there exists a m x n matrix K such that (A + BK) has

its eigenvalues in the open left-half plane. Thus the assertion follows.

Remark 5 A systematic approach to the design of feedback controller can be based on the
minimization of the integral of some positive function of the error and the control effort.
For the linear systems, this might take the following well known form. Let the linear system
& = Az + Bu be controllable, then the control law u(z) which stabilizes the null solution

and among all stabilizing feedback control laws minimizes the cost function
o
/ (27 Qz + u'w)dt
0
is given by u(r) = —BT Kz, where K is the solution to the quadratic matrix equation
ATK + KA-KBBTK+Q =0.

In light of the above discussion, we might expect that for a general affine control system
n
&= f(z)+ ) wigi(z),
=1

we might accept similar behavior, in particular we can ask that if every initial state in the
neighborhood of z( can be steered to z(, then does there exist a feedback control law which
makes z( asymptotically stable. It was shown by BROCKETT (1983) that the answer to
this question is no provided we want a continuous feedback control law. Before we state
the theorem we would like to take one more detail into account.

If we have
.’L':f(iL',’U,) ,f(.’Eo,O) :Oa
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with f(.,.) continuously differentiable with respect to both arguments, and if we define
A= (%)wo and B = (g—i)o, then the control system = = Az + Bu represents the linearized
system at (zg,0). From the Theorem 13, we can infer that there exists a stabilizing control
law for £ = f(z,u) with f(0,0) = 0 provided the unstable modes of the linearized system
are controllable and there exists no stabilizing control law if the linearized system has an
unstable mode which is uncontrollable. The interesting phenomenon begins if the linearized
system has uncontrollable purely imaginary eigenvalues. The following theorem gives a
necessary condition for existence of stabilizing control law, which is decisive for a large

class of problems of interest in nonlinear control.

Theorem 14 (Brockett:) Let & = f(z,u) be given with f(z¢,0) = 0 and f(.,.) contin-
uously differentiable in a neighborhood of (z¢,0). A necessary condition for the existence
of a continuously differentiable control law u(z) such that u(zg) = 0, which makes zg

asymptotically stable is that

e The linearized system should have no uncontrollable modes associated with eigenval-

ues whose real part is positive.

e There exists a neighborhood of (z¢, 0) such that, for each y € N, there exists a control
uy(.) defined on [0, 00) such that the control steers the solution of & = f(xz,u,) from

z=yatt=0toz =0 at t =o00.

e The mapping f maps every neighborhood of zy onto some neighborhood of zero.

Proof: The necessity of the first two conditions follow from the previous discussion. To
prove the last condition, observe that, if z¢ is an equilibrium point of & = f(z), which is
asymptotically stable, then there exists a Lyapunov function V (z) such that V (z) is positive
for = # 0 and vanishes at z, is continuously differentiable, and has level sets V=1 («) which
are homotopy spheres. Observe that the vector field f(z) is normal to the homotopy sphere
V (), is nonzero on V~1(«a), and always points inwards. Compactness of V~!(«) implies
that, if ||£|| is sufficiently small, the vector field associated with & = f(z) + £ also points
inwards on V~!(a). By evaluating at time ¢ = 1 the solution of & = f(x) + £ which passes
through z at ¢ = 0, we get a continuous map of {z|V(z) < a} into itself. Applying the

Lefschetz fixed-point theorem, we see that this map has a fixed point which must be the
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equilibrium point of £ = f(z)+¢&. This implies we can solve for f(z) = ¢ for all £ sufficiently
small. Hence the proof.

Remark If we have the control system
n
&= f(z)+ Y uigi(z) ; v R,
i=1

then the above theorem implies that the stabilization cannot have a solution if there is
a smooth distribution D which contains f(.) and ¢1(.),..., gm(.) with dimD < n. In

particular, there exist no continuous stabilizing control law for

1 = wu
Tog = U
.’L:3 = I1U2 — TU1-

We will now like to rephrase the necessary onto condition of Theorem 14 in more degree
theoretic language, which in fact gives us stronger necessary condition for stability. For
this, we state the following theorem due to KRASNOSELSKII AND ZABREIKO (1983). We

first define the notion of of a singular point.

Definition 8 Let zy be a isolated zero of a continuous vector field f(z) € R*, z € R”,
and let S"~!(zp,r) denote a sphere of radius r around zy. The degree of the Gauss map

H : §" Yzo,r) — S"10,1), H(z) = % for sufficiently small radius r is called the

index of the singular point x,.
Theorem 15 If the equilibrium point 0 of

& = f(z)
is asymptotically stable then the index of the singular point zero of the vector field f(z) is
(—1)m.

This theorem implies that near the equilibrium point zg, the Gauss map h(z) = %

e

]
homotopic to the antipodal map. In particular this implies that the Gauss map h(z) =

% is onto S™ ! (as it has nonzero degree). This immediately implies that, for the system
1 = up
Ty = U

I3 = Z1U2 — TaUi,
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there exists no continuous feedback law because the map h : S»~! — S™~! is not onto as we
cannot reach the point (0,0,£1). Thus we see that feedback stabilization of nonholonomic
systems can be seen as a topological problem.

A number of approaches have been proposed for the stabilization of nonholonomic systems.
These approaches can be broadly classified into three categories (KOLMANOVSKY AND Mc-
CLAMROCH (1995)).

Discontinuous time-invariant control laws

Discontinuous time-invariant control laws for stabilization of nonholonomic systems have
been used by many researchers, ( ASTOLFI (1994); SUSSMANN (1979); LAFFERRIERE AND
SONTAG (1991); BLOCH AND S.DRAKUNOV (1996); GULDNER AND UTKIN (1994); SAMSON
AND AIT-ABDERRAHIM (1991); BLOCH ET AL. (1998)). These control laws are either piece-
wise continuous functions of state or sliding mode controllers. An example for stabilization
of nonholonomic integrator using the sliding mode approach is given by the following control

law (BLOCH AND S.DRAKUNOV (1996))

up = —x1+ 2x9 sign(zs — :c12x2)
12
uy = —x9+ 2x1 sign(zs — %),

where sign(.) denotes the signum function. The disadvantage of these controllers is that

they may cause chattering.

Time-Varying Stabilization

The use of time-varying feedbacks originated in the mobile robot work by SAMSON AND
A1T- ABDERRAHIM (1991). CORON (1991) showed any driftless controllable system can
be asymptotically stabilized to a equilibrium point using smooth time-periodic static-state
feedback. Various methods for designing time-varying controllers have been proposed in
literature ( CORON AND POMET (1992); POMET (1992); MURRAY AND SASTRY (1993);
BROCKETT (1996); MORGANSEN AND BROCKETT (1999)). As an illustration consider the

following time-varying smooth feedback law for the nonholonomic integrator

up = —x1 — x3cos(t)

up = —xy — T5sin(t).
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Hybrid Feedback Laws

Typically, hybrid controllers combine continuous time features with discrete event features.
These have been used by BLOCH AND S.DRAKUNOV (1996); I. KOLMANOVSKY AND McC-
CLAMROCH (1994). The essential feature of these controllers is that there is a low level
time invariant feedback controller supervised by discrete event system. The supervisor con-

figures the low level feedback controllers and switches between them to provide stability.

We instead take a approach motivated by the following question.

Problem Statement 5 Consider a control system © = f(z,u), z € R*,u € R ™, which
cannot be stabilized by a continuous static feedback control u : R* — R™. Is it possible to
embed this system in a higher dimensional manifold R x N and find smooth static feedback
laws u(z,0) and g(x,0), (z,0) € R* x N, such that, for any initial condition (z(0), (0)),

the solution of

T = f(z,u(z,0)) (4.4)
0 = g(z,0) (4.5)

satisfies limy_, o (2(¢),0(t)) € 0 x N

Observe that, by finding such a system, we would have achieved the goal of stabilizing the
original system # = f(z,u). Thus, the problem of stabilization to a point in the original
space has been transformed to the problem of stabilization to a submanifold in the enlarged

state space.

Remark 6 Stabilization of nonholonomic systems by time-varying feedback is a special
case of the above described situation, where the dynamical system & = f(z,u(z,t)), z € M,

where M is some manifold, can be seen as embedded in the larger space M x R with

z = f(z,u(x,8))

6=1,

where 6 € R. Also, stabilization of z to some point zy in the manifold M can be thought

of as stabilization of (z,0) to the submanifold zy X R in the enlarged state space M x R.
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As shown by CORON (1991), it is always possible to stabilize a driftless, controllable system
by a smooth periodic time-varying control law. However, time-varying control laws make
two special choices in the above raised Problem 5 by choosing N = R and g(z,0) = 1. We
will show that by embedding the system in a higher dimensional space and finding control
laws in the enlarged space, we can find simpler feedback control laws.

Before we illustrate some simple dynamic feedback laws for nonholonomic systems, we
present a generalization of Brockett’s theorem on asymptotic stability (BROCKETT (1983))

by smooth periodic time varying control laws.

Theorem 16 Let & = f(z,t) be given with f(zo,t) = 0, where z € R" and t € R. In
addition, let f(x,t) be periodic with period T

flz,t) = f(z,t+T).

Let ¢q(x,t) denote the unique solution to &z = f(z,t) + a. If x = ¢ is an asymptotically
stable point for the above system, then it must hold true that, for every nghd Q of xq, there
exist a neighborhood Q1 of 0 such that, for all a € 1, the equation

x = ¢o(z,T) z€Q
has a solution.

Proof: We first observe that the above set of differential equations can be written as an

autonomous system

i= f(z,0) (4.6)
6=1, (4.7)

where (z,0) € R® x S'. If zq is a asymptotically stable point of original system, then
N = zy x S! is asymptotically stable submanifold of the autonomous system (4.6). Hence,
there exists a Lyapunov function v, such that v(p) > 0 for all p € R™ x S' and vanishes
only at p € N, is continuously differentiable and has level sets M, = v~(c), ¢ > 0, which
are homotopy tubes such that the vector field f(z,#) points inward at all points on M, (for
more details see WILSON (1967)).

Compactness of N implies the compactness of M, which further entails that, if a is suffi-

ciently small, say |la|| < € for some € > 0, then the vector fields associated with
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points inward on M,. Thus, the flow ¢4(z,6,t) induces a continuous map of {p|v(p) < ¢}
into itself. In particular, ¢,(.,60y,7T) is a continuous map of the homotopy ball {(z, 8y)|v(z,0y) <
c} into itself. Applying the Lefschetz fixed-point formula, we see that the map ¢q(., 6o, T)
has a fixed point. Thus there exits a £ € Q = v(z,0y) < ¢ such that

(f’ 00) = ¢T(§a 90)

Hence the proof. Q.E.D.
In the limit 7" — 0 we recover the well known onto condition.

In the remaining part of this chapter, we will illustrate our approach by constructing
smooth dynamic feedback laws for nonholonomic systems. The main result in this chapter is
the constructive solution to the problem of feedback stabilization of nonholonomic systems
which are first bracket controllable. We will approach this problem by first constructing
feedback laws for the generalization of nonholonomic integrator, called the general position

area system or the so(n) system. The system is described by the equations BROCKETT
(1981)

T = u (4.10)

g = zu’ —uxT, (4.11)

where z, u are column vectors in R” and y € so(n), n > 2. Here, so(n) is the Lie algebra

of the n x n skew-symmetric matrices: 37 = —y.

The importance of the so(n) system is that it is the canonical form of a class of driftless

. n(n+1) .
controllable systems of the form & = B(z)u, u € R*, z € R~ 2 | whose first derived

algebra spans the tangent space TR% at any point (Recall that if E° is a sub-bundle
of the tangent bundle spanned by the control fields, then the first derived algebra is given
by E! = E° +[E°E"]). BROCKETT (1981) showed that such a systems can be transformed
to the form of (4.10-4.11) up to a suitable order in the neighborhood of a given point such

as the origin.

To fix ideas, we first analyze in detail the dynamic stabilization for the nonholonomic

integrator.
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4.1 Stabilization of the nonholonomic integrator

We will motivate our stabilization approach by the following discussion. Consider the

nonholonomic integrator

i‘l = ui (4.12)
To = U
.’i)3 = 21U — T2U1-

Observe that by choosing uy = —z1 and uy = —z9, one can exponentially stabilize x1

and z2 to zero. Motion in the x5 direction is produced by generating areas in the x1 — o
plane. Is there a natural way to stabilize 3 to zero? Let us add another dimension to the
above system by introducing the variable § € R. In the (z1, z2,x3,0) space consider a one-
parameter family of embedded submanifolds {S,}, r > 0, defined by S, = {(z1, z2, z3,0) €
R : z; = rcosf, zy = rsinf}. Observe that if (z1,70,23,0) € Sg, R > 0, then
i3(t) = z1dy — mody = R2 O(t). If we let (t) = —z3, then i3(t) = —R? z3 and hence w3 is
exponentially stabilized to zero. Thus, in the enhanced space parametrized by (1, z2, x3,0),
we have identified a family of submanifolds {S, } on which there is a natural way to stabilize
z3.

Our control strategy will be to design u1 and us to stabilize (z1, z2, z3,0) to the submanifold
Sq(t) and let 0 = —x3 to stabilize z3 as explained above. q(t) is such that it goes to zero as
z3 goes to zero, thereby stabilizing all 1, z2,x3 to zero. This can be achieved in different
ways, and we will present two simple ways of accomplishing the above in the following

theorems.

Theorem 17 Let & € R and (v1,72,23) € R®. If uy = —x1 + 30860 and ug = —x9 —
x38in @, then there exists € > 0 such that, for any initial condition ||( z1(0), z2(0),z3(0) )| <

€, the solution of

.’i‘l = U

.’i)g = U2

.’i‘g = T1U2 — TU1
é = I3

satisfies limy_y o (21(t), z2(t), z3(t)) = (0,0,0).
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Proof: In terms of the variables

Y1 cosf —sinf 0 1
Yo = sin@ cos@ 0 zo |, (4.13)
Y3 0 0 1 T3

the above equations take the form

(1 -1 —ys 1 (1
Yo | = y3 -1 0 (P (4.14)
U3 0 0 -u Y3

0 = ys. (4.15)

Observe that the equations for (yi1,y2,y3) do not depend on 6, so they can be treated as

an autonomous system of equations in R3. Define the Lyapunov function

V(y1,y2,y3) = (y1 — y3)> + 3 + 3.

From the equations (4.14)

: (y1—y3) v2 ] -2 -ys Y1 — Y3

V(y1,y2,93) = [ ( s (4.16)
—y3 —2 Y2

Notice that if ||ys]| < 1, then V (y1,y2,y3) < 0. Let

B = {(y1,y2,y3) € R : V(y1,y2,y3) < 1}.

Observe that B € {||lys|| < 1} is therefore a positively invariant set. Let

S = {(y1,92,y3) € B: V(y1,92,y3) = 0}

From equation (4.16), if (y1,y2,y3) € S, then y; = yszand yo = 0. Substituting this in
equation (4.14) we conclude that if (y1,y2,y3) € S, then g1 = 0, 9o = y3, and g3 = 0. Tt
follows that the largest invariant set contained in S is {0}. Hence, by LaSalle’s stability

theorem, if (y1(0),y2(0),ys(0)) € B, then limy_, oo(y1(t), y2(t), y3(t)) = 0.

Let Q(e) = {(z1, 72, 73) € R®|z? + 22 + 23 < €}, € > 0. By equation (4.13), we have

yi (1) + 43 (1) = 21(t) + 23(1) , wa(t) = w3(t),
from which we can deduce that, if (z1,z2,23) € Q(%), then (y1,y2,y3) € B. This shows that
if ($1(0),$2(0),$3(0)) € Q(%)a then hmt—) o] (yl(t)ayQ(t)ayfl(t)) = (OaOaO) and therefore
limg, o (21(2), 22(t), z3(t)) = (0,0,0). Q.E.D.
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Figure 4.1: The above panels show the result of stabilization of nonholonomic system,
with the graphs showing the evolution of 1, z2, z3 from left to right for the set of initial
conditions z1 = 10, x5 = 20, z3 = 10.

Remark 7 We only proved asymptotic stability here, With little more work it can be
shown that the above system of equations also globally stabilize x1,z2,z3 to the origin.
Let el =[1,0] € R%, 27 = [z1,25] € R%, and u” = [uy,us] € R%. Let

0 z3 cosf —sinf
—-z3 0 sinf cos@

then observe

ol — uzT — [ 0 (z1u2 — Tou1) ‘
—(z1ug — T2u1) 0
Hence the control law in Theorem 17 can be rewritten as u = —x + y©e , and
& = u ; zeR
g = zul —uzT ; yes0(2)
0 = yO.

The results of simulations for stabilizing the above system is shown in Figure 4.1.

Remark 8 The main point we want to emphasize here is that the topological restriction
imposed by Brockett’s necessary condition for feedback stabilization can be overcome by
embedding the system in some higher-dimensional space, which provides a lot of flexibility

in the choice of control.

We can now extend this viewpoint to find stabilizing control laws for the general

position-area system.
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4.2 General position-area system

Recall that the system is described by the following set of equations,

T = u (4.17)

g = zul —uzT, (4.18)

where z and u are column vectors in R"” and y € so(n), n > 2. We will find smooth
stabilizing control laws for the above system by embedding it in R"*! x so(n) x O(n). We
motivate the choice of O(n) by the following discussion. To understand how the general
problem has an additional level of complexity with respect to the special case of n = 2,
we start by looking at the qualitative nature of the trajectories that need to be generated
in order to stabilize y. For n = 2, we saw that motion in z3 direction was produced
by generating areas in the z; — zo plane. Now, we need to generate n(n — 1)/2 areas
(dyij = zidr; — xjdz;) for stabilizing y € so(n). This can be achieved as follows. Let
e € R" be a unit vector which evolves as é(t) = ye. Suppose we can make z(t) = ge(t),
where q is a positive constant, then the norm of y(¢) from equation (4.18) evolves as

d tr(yy")
dt

=-2¢" |lyell?,

which suggests that norm of y will decrease until e begins to lie in the null space of y.
Essentially, what is happening is that the vector e is generating areas in R" to stabilize
a subspace of yy?. To stabilize all n orthogonal subspaces of yy’, we will evolve n or-
thonormal vectors in R™, each of which will generate areas to stabilizes a subspace of yy’.
This is naturally achieved by introducing © € O(n) such that © = y©. The columns of
O then form the desired orthonormal frame. We arrange matters so that we can switch
between these orthonormal vectors in a smooth way. This is done using a selector function

introduced in the following definition. Now by letting ¢ gradually go to zero as y goes to

zero, we can stabilize both x and y.

Definition 9 (Selector Function:)Let e(t) = (e1(t), ea(t), -+, e,(t)) € R™ be a C*
function of time. We will call e(t) a selector function of period T' and strength € > 0 if it

satisfies the following properties

e ¢(t) =e(t + T) such that ||e(t)|| < 1 and ||é(¢)]| is bounded,

* ftt+T||€i(T)|| dT 2 €, Vta a‘nd el(t) e](t) :0 lfz #.7’ Z7] € 1’ » T
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We then say that e € SF(n,T,¢).
Lemma 4 Suppose e(t) € R” is a selector function and y € so(n), then
el'(t) y é(t) = 0.

Proof: If e(t) = 0, then the proposition is trivial. Suppose e;(t) # 0 for some i € 1,...,n,
then, by the definition of selector function, e;(t) = 0 if i # j. Differentiating e;(t)-e;(t) = 0,
we conclude that e;(t) - ¢;(t) = 0 if 4 # j. This shows that e’ (¢) y é(t) = yii ei(t)éi(t), but

y;; = 0 because y is skew-symmetric. Q.E.D.

Lemma 5 Let e € SF(n,T,¢), y(t) € so(n), and © € O(n) such that © = w(t)©, where
w(t) € so(n). Suppose [y(t), w(t)] = 0 Vi, then

t+T HT 1 (r
/ lyOe(r)] dr > ¢ / LU _ 1500y ar.
t t

nT
Proof: Let z = ©TyO, then it follows that ||z|| = |ly|| and ||y©Oe| = ||ze||. Because
[y(t),w(t)] = 0, it follows that ||2(¢)|| = ||y(¢)||. Let u] = (0,...,1,...0) with 1 in the i
position. Let A(t) = tt+T IZ2(7)|| dr. Observe that ||z(t) ug|| > ”Z;—t)” for some k € 1,...,n.
Then,

t+T T
/t lze(r)ll dr > / lez (D lllzug] dr

t+T
Z/t leg (M) I([[zug ()] = A)
> e [[zug(t)]| —A) (4.19)
> ¢ ”'ZS)” —A), (4.20)

where (4.19) follows from the definition of selector function. Also notice that

[ et ar

IN

/f (=@l + A ) dr
T (0 +A). (21)

IN

Combining inequalities (4.20)-(4.21) we get the desired result. Notice in particular that if

y(7) = yo a constant, then

t+T €
/ l9o@e(r)]| dr > g0l
t n

Q.E.D.

We now present a feedback stabilization law for the position-area system.
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Theorem 18 Let S be a subspace of so(n) and P : so(n) — so(n) be a projection operator
onto this subspace. Let z € R*, g € R, © € O(n), y € S, and e € SF(n,T,¢). If

u=—z+ ||y||@e + q(yOe + O¢),

then for
T = u (4.22)
g = Plzu” —uz") (4.23)
g = —(g—Ilwl) (4.24)
6 = yo, (4.25)

the submanifold N = { (z,y,¢,0) € R" x so(n) x Rx O(n) : z = 0,y = 0,¢q = 0 } is
asymptotically stable in the large.

Proof: First notice that, for § = so(n) and P the identity operator, equations (4.22)-(4.23)
reduce to the position-area system. Let (z(t),y(t), ©(t), q(t)) be the solution of equations
(4.22)-(4.24) for a given initial condition (z(0),y(0),©(0),¢(0)). To simplify notation, we
will often drop the time index ¢ and just write the solution as (z,y,0,q). Let p = ©Oe,
p=0¢, and r =z —gp. Then u = —z + ||y||p + qyp + gp. From equations (4.22)-(4.24), we
get 7 = —r. Notice that

d tr(y’y)

p = 2 tr(y" Plzu’ — uz']) (4.26)

= 2 tr(y [zu” — uz™)), (4.27)

where equation (4.27) follows from the fact y € S and P is a projection on S. Substituting
for z(t) and u(t) we get

d||yl|? _
W™ — _ g { Par(pTys) + T y)

dt
+ llylltr("yr) + qtr(p"yr)
+ qtr(pTnyr)}. (4.28)
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First, observe that tr(p”yp) = 0 from Lemma (4). Now using tr(AB) < ||Al|||B||, from
equation (4.28), we get

MW < _agypl? + 4 Nl Il el I
dt
Ll Il + el gl ) e (4.29)
W< 2 (gl twwll Il 171)? — 242l
2l I +4 gl ol ]
+ 4 gl 13] iyl ] (4.30)
W< 1yl 1 +2 Ll Wl +2 gl gl e (4.31)

Because ||p(t)|| and ||p(t)|| is bounded by the definition of selector function and r(t) =

r(0)e~?, equation (4.31) can be written as

d||ly _ _
W < 4 e + B ke (432

for positive constants A and B. From equations (4.32) and (4.24), we can deduce that ||y(¢)||
is bounded and ¢(t) is bounded. Therefore, for the given initial condition (y(0), ¢(0)), there
exists M < oo such that ||y(¢)|| < M and ||q(t)|| < M,Vt. Hence, we can rewrite equation
(4.29) as

dllyl

G- S A el + MyeT (4.33)

for some positive constant M; which depends on the initial condition (z(0),y(0),q(0)).

Defining V (t) = ||y(¢)||2+ M e ?, observe that we have V() < —4 ¢2 ||lyp||*> < 0. As V(¢) >
g

0 and non-increasing, it follows that lim; V(t) = 0, implying that lim;_, W =0, i.e.

limy 00 y(t) = yo for some yo € so(n). Therefore, by equation (4.24), limy_, g(t) = ||yo||-

We now argue that ||yo|| = 0.

As limy_, o W = 0, from equation (4.33), we obtain lim_co|lyol|? |[yop(t)

p(t) = ©(t)e(t), where e(t) is a selector function, we conclude, from Lemma, 5 that ||yo|| = 0.

Therefore, lim; .« ¢(t) = 0 and, from z(t) = gp + ae™, it follows lim;_,o z(¢) = 0. Q.E.D.

|2 = 0. Since

A simulation of the stabilization of the general position-area system, using the feedback

control law given in Theorem 18 is shown in Figure 4.2, where the following selector
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120

Figure 4.2: The panel shows the result of stabilization of the position-area system for
n = 10, with the graphs showing the evolution of ||y|| plotted against time.

function e(t) € R™ with period T' = 1 was used in the simulations

nt T
t) = sin?(—); 0<t< =
e1(t) szn(T), <t<

T

= 0, —<t<T
n
T

6k+1(t) = ek(t — E) ) k}{e 1’)’7,}

We now extend the result of Theorem 18 to the class of drift-free systems z = B(z)u,
which are first bracket controllable. As shown in BROCKETT (1981), for such systems,
we can choose coordinates in a neighborhood of a point, say z = 0, so that equations of
motion take the form (4.39)-(4.40). In the following theorem, we present feedback laws
that asymptotically stabilize such systems. First, we state a modification of the result due

to Krasovskii. For details see HAHN (1950a).
Theorem 19 Let M be a compact differentiable manifold, z € R™, and § € M. Let

z = f(z,0,t) (f€E)
0 = g(z,0,t) (gekE).

The existence of a Lyapunov function v(z, 6,t) satisfying inequalities of the form

v <ai|z||”, < —az|z||"" (4.34)
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for sufficiently small ||z|| is necessary and sufficient for the solution (z(t),6(t)) of the dif-

ferential equation (4.34) to satisfy an estimate of the form
@I = Bl > a2, V20, (4.35)

for small initial values ||z(0)||. Here, a1, a2, 1, v, @ and [ are positive constants.
In case an estimate of the type (4.35) is satisfied, then v € C can be determined such that,
in addition to (4.34), the inequality

|?|| <agllz|"™" (i=1,...,n5a3 >0,y > 1) (4.36)
is valid. As a result, the solutions of the modified differential equation

i = f(z,0,t)+h(z,0,t) (f+heE) (4.37)
6 = g(z,0,1) (4.38)

with sufficiently small initial values ||z(0)|| also satisfy an estimate of the form (4.35) if

: lA{z,0,0)]] _
limy )50 eyt = 0-

Remark 9 We now present a constructive solution to feedback stabilization of a system
of the form

z=DB(z)u ,z € R",

which is first bracket controllable. It was shown by BROCKETT (1981) that such a system

can be approximated near origin by a system

& = u+R(z,y,u)
Yy = P[a:uT — uwT] + Rl(w,y,u),

where R(z,y,u) € R and R!(z,y,u) € so(n) have vanishing first partials with respect
to = and y at the origin and be linear in u, such that R(z,y,0) = 0, and R'(z,y,0) =
0. Therefore, we will find stabilizing feedback law for this system and, if the rate of
convergence is large enough, we can claim asymptotic stability of the original system by

invoking Theorem 19.

Theorem 20 Let S be a subspace of so(n) and P : so(n) — so(n) be a projection operator
onto this subspace. Let z e R", u € R", g € R, ©® € O(n), y € S, and e € SF(n,T,¢). Let
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R(z,y,u) € R® and R'(x,y,u) € S have vanishing first partials with respect to z and y at
the origin and be linear in w, such that R(z,y,0) =0, and R'(z,y,0) = 0. If

u=—x+ ||ly]|®e+q(|ly]| "yOe+0O¢) , 0<v<1

then, for
z = u+ R(z,y,u) (4.39)
g = Plzul —uz?] + RY(z,y,u) (4.40)
¢ = —(a—1yl) (4.41)
6 = ﬁ e, (4.42)

the submanifold N = { (z,y,¢,0) € R” x so(n) x Rx O(n) : z = 0,y = 0,¢q = 0 } is
asymptotically stable.

Proof: First notice that, by definition, R and R! satisfy

R R!

— lim ——
Nzyall -0 |2, y, >

lim @—m——= =0. 4.43
||:c,y,q|\—>0 ||~TayaQ||3_V ( )

We will show that, for small initial values ||z(0),y(0), ¢(0)|| < do, the solutions to equations

i = u (4.44)
gy = Plzu” —uz’) (4.45)
¢ = —(g—1lylD (4.46)
6 = e, ,0<v<i (4.47)
[y

satisfy, for @ > 0, f > 0 and ¢ > 0, an estimate of the form
(2), y (1), a®) | 7> — Bllz(0), y(0),q(0)[7** > ot (4.48)

which, using the result (19) and (4.43), proves the theorem.

Let p = ©Oe, and 7 = = — gp. From equations (4.44), (4.46), and (4.47), we get

P—— (4.49)

From equations (4.49) and (4.45), we obtain

d |ly|?

o = ~M I el + Dyl (" yr) +

q |yl tr@"yy"r) + g tr(" yr)} (4.50)
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d |lyll -

= 2 lylm ypl? + o(ry,9) (4.51)
where o(r,y,q) < b||r,y,q|| for some positive b. Observe that for r = 0, equation (4.50)
reduces to % = —4¢? |ly[| 7 |lyp||?>. We will first show that the solutions to the system

of reduced equations

d [ly|? -
W~ s i (1.52)
i = Iyl (4.53)
: Y
® = <206 4.54
PR .

satisfy, for a1 > 0, f1 > 0 and ¢t > 0, an estimate of the form

ly(@), a1 = Billy(0), a(O)I7*+ > e (4.55)
for sufficiently small ||y(0),¢(0)||. Observe that, from equation (4.45), if » = 0 then,
Il < 24” Iyl lipll llypl- (4.56)
From equation (4.53), we have
t
) = q@c+ [ e Dlyr)ar (4.57)
0
> (q(0) = lly(O)I) e~ +ly@)

where the last inequality follows from the fact that ||y(¢)|| is non-increasing function of time
(equation (4.52)). Let M = ¢(0) — ||y(0)||, from (4.52) and (4.57), we have

d ||y||2 4 —v M —t t 2 2
—ar S AIITHMeT + ly @] 3 llyel
dlly _ L,
T < apypl2ylr = + 4 1011 )2 e

+2 M? ||y (0)||'7" e 2t (4.58)

We first show that solutions to
d |yl 2 1—
- _ v 4.
it el [yl (4.59)

satisfy for ap > 0, fo > 0 and t > 0,

ly@17> = Bally(0)[ 7+ > ast. (4.60)
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From equation (4.56) and Lemma 5, it follows that

T t+T
/t lyp()| dr > / ly(o)| dr

for some positive constant , implying that

t+T ) L t+T
/t lyp(DII” [yl dr Zﬁ/t ly(r)IP~ dr (4.61)

for some positive constant 3. Therefore (4.60) follows, and we can deduce (4.55) from
(4.58) and (4.53). Using Result 19, there exists a Lyapunov function v(y, q,®) satisfying
(4.34) and (4.36) for v = 2 and n = 2 — v, where vy, 7 as defined in Result 19. Consider the
Lyapunov function

v1(r,y,4,0) = v(y,q,0) + r.

Observe from equations (4.49), (4.51), (4.46) and (4.47), v; satisfies estimates of the form
(4.34), for sufficiently small ||r,vy,q||, hence by Result 19, we conclude that the assertion
(4.48) is valid and thus the proof of the theorem follows. Q.E.D.

4.3 Conclusions

Our main purpose of this chapter was to motivate the idea of dynamic feedback stabilization
for nonholonomic systems in order to circumvent topological problems associated with
smooth feedback stabilization of nonholonomic systems. We then illustrated our approach
by giving a constructive solution to the unsolved problem of stabilizing a general first
bracket controllable system. Our approach is natural as it addresses the topological issues
directly. In this chapter, the choice of the auxiliary manifold and design of feedback laws
were motivated by qualitative arguments. In the following chapter, we derive (in analogy
to the LQG controller for linear systems) the dynamic feedback control laws as solutions
to a variational problem, we call the Riemannian Regulator problem. This will give us a

systematic way for designing feedback control laws.



Chapter 5

Dynamic Stabilization based on

Gauge Extentions

5.1 Introduction

In this chapter, we introduce the concept of a control system, by which additional control
degrees of freedom are introduced into the system dynamics by embedding the state space
of the system in a higher dimensional manifold. The choice of higher dimensional space is
dictated by the symmetries of the system. Our approach is analogous to, and inspired by,
gauge transformations in physics, where interactions are brought into the system dynamics
by lifting the global symmetries to local symmetries via introduction of a gauge group.
We will discuss at some length the analogies between our approach and gauge theories in
physics. We then study the problem of optimal feedback stabilization of nonholonomic
systems, and we show that after we have make a suitable gauge extension, smooth feedback
control for stabilizing nonholonomic systems can be obtained as solutions to variational
problems, which we call the Riemannian regulator problem BROCKETT (2000). The chapter
is organized as follows, we first introduce the Riemannian regulator problem and derive
optimal control laws for stabilizing system trajectories. We then show how problems of
stabilizing nonholonomic systems can be reduced to the above case by the process of gauge
extension. To fix ideas, we analyze the stabilization of the nonholonomic integrator in this
setting. Finally we extend the results to two important generalizations of the nonholonomic
integrator. We present a variational solution to the problem of feedback stabilization of
the general position area system or the so(n) system. We also present another important

generalization of the nonholonomic integrator, the sl(n) system described by

86
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Yy = zu—uz, (5.2)

where z, u € sym(n), the space of n X n symmetric matrices and y € so(n), n > 2.

Finally we will present our results in more generality, by considering a Lie algebra general-

ization of these two cases.

Notation: We will use O(n) to denote the group of n-dimensional real orthogonal matrices,
so(n) the Lie algebra of n x n skew symmetric matrices, and sym(n) the space of n x n
symmetric matrices. We use the symbols [. , .] to denote the commutator and {. , .}

the anticommutator between the matrices. Given the vector space V' with a Riemannian

metric G on it, we denote by < -, - > the scalar product between the elements. If
z=[z1,...,2,] € R" and ¢ : R — R is a differentiable function, we use ¢, to denote the
gradient with respect to the standard Euclidean metric, ¢, = [aa—fl, e %]T eR

5.2 Riemannian Regulator Problem

Let the control system & = B(z)u be given, where z € X, a Riemannian manifold with
metric G. Suppose for now, B(z), is full rank Vz, and the metric G on M is defined by
G~ !(z) = B(z)BT(z). Let ¢ : M — R, be a differentiable function. Consider the infinite

time optimization problem of finding u(z,t) which minimizes
o
77:/ wl'u + < V¢,V > dt,
0

and stabilizes the system to zg. Please note V¢ is the gradient with respect to the metric
G, i.e Vé = G '¢,. We call this the Riemannian regulator problem. The solution is given
by the following theorem BROCKETT (2000)

Theorem 21 (Brockett:) Let (X,G) be a Riemannian manifold and ¢ : X — R a
positive definite differentiable function. Let the control system & = B(z)u, z € X be given
and let G~(z) = B(z)B”(z). Suppose ¢, = 0 if and only if z = z¢, then the feedback
control law

u = _BT('T)(}S:C
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stabilizes the system to zg and among all stabilizing feedback laws it minimizes the cost

function
n= / vlut < Vé, Ve >q dt
0

Proof: We first prove stability of the control law. Let ¢ be the Lyapunov function, then

d¢

& = —(Bla)ga)" (B(z)e).
Therefore % < 0 and hence by La Salle’s invariance principle all trajectories of the above
control system go to the set § = {% = 0}. Observe B(z) is full rank as the Riemannian
metric G = (BBT)~! is nonsingular. Therefore % = 0 if and only if ¢, = 0, hence all

trajectories are stabilized to xzg.

To prove optimality observe the cost function

o
n = / wfut < V$, Ve >¢ dt
OOO
:/ <z, x>+ <V, Vo >q dt
0
:/ <E4+Vh,i+Vop>q—-2<z,Vd>qdt
0

_ Am<¢+V¢i+V¢>G#+ﬂW®®D—M%»

where in deriving the last equality we have used the fact that < ,V¢ >g dt = d¢ and
being a perfect differential just integrates out. As the system trajectories approach zy, we
have ¢(z(00)) = ¢(z0). Now observe the integral [;° < &+ V¢, 4+ V¢ >¢ dt is minimized
for © = —V ¢ and therefore the optimal feedback control law is u = —B7T ¢, and the return
function for the feedback control law is [ 2¢(z) — 2¢(xo) ] Q.E.D

We now state a slight modification of the above theorem, which addresses the case when

the metric G is singular.

Theorem 22 Let X be a differentiable manifold and ¢ : X — R a positive definite differen-
tiable function. Let the control system & = B(z)u, z € X be given. Let G(z) = B(z)B ()
be a quadratic form on X. Let N(B%(z)) denote the null space of BT (x). Suppose
be &€ N (BT (x)), VT # z0, and ¢, = 0 if = z, then the feedback control law

u = _BT(x)QSz
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stabilizes the system to zg and among all stabilizing feedback laws it minimizes the cost

function

n= /oo ulu + ¢L G (x)pydt
0

Proof: The proof of stability is exactly along the same lines as theorem 21, by use of
LaSalle’s invariance and with ¢ as the the Lyapunov function, we get the result. To prove
optimality, let K = (BT B) 'BT and let V¢ = B(z) B (z)¢, and express u = Ki. Observe
that

1= [T GG bt

0

= / < Ki, Ki > +¢LG(z)pgdt
0

_ /OO < Ki+ KV, Ki+ KV$> -2 < Kit, KV > di
0

= /Oo <Ki+KVp,Ki+KVp>dt +2(p(z(0) — ¢(z0))
0

where in deriving the last equality we have used the fact that < K&, KV¢ > dt =<
u, BTd¢ > dt =< i,d¢ > dt, and being a perfect differential just integrates out and because
of stability ¢(z(00)) = ¢(xo). Now observe the integral fooo < Ki+KV¢, K+ KV¢ > dt
is minimized for # = —V¢ and therefore the optimal feedback control law is u = —BT ¢,
and the return function for the feedback control law is [ 2¢(z) — 2¢(zg) ]. Q.E.D

Remark 10 In keeping with the notation of theorem 21, we will use the notation
<V$,V$ >6= 3, G(2) s
for the remainder of the chapter.

We now show how the above theorems can be used to find optimal stabilizing laws for the

nonholonomic systems.

5.3 Gauge Extension

In this section we introduce the concept of gauge extension of nonholonomic systems. The

biggest challenge in smooth feedback stabilization of nonholonomic systems comes from the
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problem of fewer control degrees of freedom than the dimension of the state space of the
system. We will show that by embedding the state space in a higher dimensional manifold,
additional control degrees of freedom can be introduced in the system dynamics, so that
we have as many controls as the state space dimension. We will call this approach gauge
completion of nonholonomic systems. We will show that by using gauge completion, we
can find optimal stabilization laws as solutions to Riemannian regulator type problems.
This approach has striking parallelism to gauge theories in physics, where interactions are
introduced into the free system dynamics by lifting local symmetries to global symmetries,
thereby introducing a gauge potential, which transforms according to the gauge transforma-
tion laws. General relativity, Electromagnetism, and Yang Mills theories are some familiar
examples. We will elaborate on this line of thought more, once the basic mathematical

paradigm is established. We begin with some definitions

Definition 10 Symmetry Group: Let X = R"™ and U = R™ represent the state and
control space of the control system & = f(z,u), where z € X and u € U. Let H be a matrix
lie group that acts on X x U effectively via group actions 9 = (¢1,12) : Hx X xU — X xU.
We call H to be a symmetry group of the control system # = f(z,u), if the action of

the group leaves the control system invariant, i.e if h € H, and (p,v) = 9(h,z,u) then
p = f(p,v).

With the control system & = f(z,u) and the action of the symmetry group H on the space

X x U, we can associate a flow on X, we call the symmetry flow. This is defined as follows

Definition 11 Gauge Extension and Gauge Controls: Let X = R" and U = R™
represent the state and control space of the control system & = f(z,u), where z € X and
u € U. Let H be a symmetry group for this control system and let 7 denote the Lie
algebra of left invariant vector fields on the lie group H. Each & € H corresponds to a
w € b where h represents the tangent space T, at the identity element e of the group.
Corresponding to each w € b, there is an induced vector field ¢g(Z,w) on X defined as
follows. If = 11 (h,x,u), then g(Z,w) is obtained by differentiating v (h exp(tw), z,u)
with respect to ¢ at ¢ = 0. Therefore the flow & = f(z,u) and h = £(h), under the mapping
& = 1p1(h,z,u) and v = 9a(h, z,u), induces a flow on X of the form z = f(%,v) + g(&, w).
This defines a new control system Z = f (Z,v,w), and we call this the gauge extension of
the system & = f(z,u). The additional controls w, we get in the system dynamics will be

referred to as gauge controls.
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Thus observe that we have introduced additional control degrees of freedom w in the control

system, using the flow h = £(h).

Example 3 Consider the so(n) system defined in Section 5.1. For this system, the state
space is X = R" x so(n) and the control space is U = R™. Let © € O(n), then observe that
the orthogonal group acts on X x U via the group action 4(0, z,y,u) = (O, OyOT Ou).
If (p, z,v) = (Ox,0yOT, Ou) then observe that

p =

z = pvl —vpt

Therefore H = O(n) is a symmetry group of the above system. If © = wO then the map
(p, z,v) = (Ox,0yOT, Ou) gives the gauge extended system

p = v+ wp

2 = pvl —vp! + [w, 2]
We now define gauge completion.

Definition 12 Gauge Completion: Let X = R"™ and U = R™ represent the state and
control space of the control system & = f(z,u), where z € X and v € U and m < n. Let
H be a symmetry group for the control system. The gauge extension Z = f (Z,v,w), is said
to be a gauge completion of & = f(z,u), if the mapping f : R x R™ x T,H — R"™ maps
some nghd of (0,0,0) € R" x R™ x T.H onto some nghd of 0 in R".

To illustrate this concept we look at some examples

Example 4 Recall the nonholonomic integrator is defined by the system of equations

.'Ifl = U (53)
.'L:2 = U2 (54)
.’I,:3 = T1U2 — IT2U] (55)

Let £ = [z1,22,73)7 and u = [u1,u2]”, then the above equations 5.3-5.5 can also be written

as £ = B(z)u where
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Observe that the orthogonal group SO(2) is a symmetry group for the system under the
action defined as follows. Let ©® € SO(2), writing © as

cos@ —sinf ]

sinf cosf

Consider the group action 9 : SO(2) x R?* — R? defined by f : (0, z1, 2, %3) — (y1,y2,y3)

171 _ cosf —sind 1 (5.6)
Yo sinf cos@ T

Y3 = I3 (5.7)

1 B cosf —sinf
V9 sinf cos@

The flow defined by the following differential equation on R x SO(2)

where

and let v = [v1, v9]T

“ ] (5.8)

U2

z = B(z)u (5.9)
é = U3 (510)
induces the flow on R? defined by
Y1 I 0 —u U1
Y2 | = 0 1 Vg (5.11)
Y3 -y 0 U3

By 4, we denote the augmented control vector ¥ = [v1,v2,v3]7. Equation 5.11 can then be
written as § = C(y)?. Observe that the matrix C(y) is full rank except when y; = yo = 0.
Thus the flow y = C(y)? is a gauge completion of the flow & = B(z)u.

We will now show how the gauge extension and results of the Theorem 22 can be used
to find optimal feedback laws for stabilization of nonholonomic systems. Before doing that

we first discuss some connections between our approach and gauge theories in physics.

5.3.1 Gauge Theories and Gauge Extension

We now try to elaborate on the analogies between gauge theories in physics and gauge
completion. To elaborate our point we will treat in some detail the example from electro-

magnetism. The main principle that forms the basis of these theories is that by making
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global symmetries of the system, local symmetries, one incorporates an interacting po-
tential also known as the gauge potential in the system dynamics, which transforms in a
prescribed way to insure local invariance of the theory. This transformation law is also
known as the gauge transformation. We elaborate on this using the following example from

electromagnetism.

Example 5 (U(1) gauge of Electromagnetism:)Let z € R? and ¢t € R, and let 9 :
R* — C'. We use 9 to denote the wavefunction of a particle in quantum mechanics which

evolves according to the well known Schroedinger equation

Op(z,t) 1.
i~ = %(—'LV)QQIJ(w,t). (5.12)

Observe that equation 5.12 has a U(1) symmetry group that is if we let 1 — ¢’ = e'®4p,

where « is a constant, then the equation for ¢/’ remains unchanged

anl(-'Eat) o [ !
o %(V)%ﬁ (z,1).

Now lets see what happens when we want this global phase invariance to be a local invari-
ance, that is we now want the above equation to remain unchanged under a space-time

ia(z,t

dependent phase transformation ¢ — 7' = e )4p. Tt is easy to see that this local phase
change is not an invariance of the free particle wave equation 5.12. If we wish to satisfy
the demands of local phase invariance then we need-alter this free equation 5.12. It can be
easily shown that the modified equation takes the form

10

(57 — aV)(,0) = 5 (=iV — gAP(z, 1 (5.13)

where (A, V) are the gauge potentials which transform in the following way

A=A = A+q 'Va(z,t) (5.14)
_1 0a(z, t)

Vov = voordst
7 75

(5.15)

when we modify ¢ — 9’ = '@t This modified equation has the right local invariance

properties and this transformation law is called the gauge transformation.

Let us look at the concept of gauge completion from this perspective. We again investigate

the general position area example and interpret it from the gauge theory point of view.
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Example 6 (O(n) gauge of position-area system:)Recall that the so(n) system is
defined by

zZ = u ;z€R" ueR"

g = zul —uz” ; y e so(n)
We have seen that O(n) is a symmetry group of the above system. Lets see how does
this equation needs to be changed if we relax this global rotation, and let it be a local
symmetry of the system, i.e if we want the system to be invariant under a coordinate
change z — p = O(t)z, u — v = O(t)u, and y — z = O(t)zOT (¢). For this to be true one

can verify that the modified equation takes the form

T = u-+wz

g = zu’ —uz” +[w,y]
where w € so(n) is analogous to the gauge potential and transforms as w — w' = ©OT (t) +
O(t)wOT (). Under this gauge transformation law O(n) is a local symmetry group of the
above system. Observe that this modified equation is the gauge extension of the so(n)

system under the symmetry group O(n).

We will now present smooth optimal feedback laws for stabilization of a class of nonholo-
nomic systems, where the first derived algebra of vector fields span the tangent space at all

points of the state space. We begin with the stabilization of nonholonomic integrator.

5.4 Stabilization of the Nonholonomic Integrator

Recall from Example 4 that the nonholonomic integrator defined by

.1:1 = U
:I,:Q = U2
T3 = T1U2 — ToUy

has SO(2) as a symmetry group and the gauge extension was shown to be

Y1 10 —uy V1
- — 1
ai | v2 0 Y1 V9
Y3 -y y1 O U3
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Our strategy will be the following. We will find the stabilizing control v = [v1, ve,v3] for
the gauge extended system as a solution to the Riemannian regulator problem. Since the
symmetry group SO(2) preserves norms under the group action, this flow lifts to a unique

flow on SO(2) x R? and stabilizes [z1, 2o, z3].

Theorem 23 Let y = [y1,y2,43]T € R3, and v = [v1,v9,v3]T € R3. Let the control
system y = C(y)v be given, where

1 0 —y
Cly) = 0 1 wu
-y y1 0

Consider the quadratic G on R? defined by G(y) = C(y)C"(y). Let ¢ : R® = R, be a
positive definite differentiable function. Let S = {(y1,v2,3) € R? : y1 = 0,2 = 0,93 # 0}.
If ¢2, + ¢2, > 0 for y € S, then the feedback control law v(y) = —C”(y)d,, stabilizes the
system, and among all stabilizing control laws for the system ¢ = C(y)v, it minimizes the

cost functional defined by
o
n:/ viv + <Vé, Vo >¢g dt.
0

Proof: Optimality of the control follows from Theorem 22. To prove stability observe that
C(y) is full rank except on the set S, and the null space is spanned by the vector [0,0,1]7.
Therefore if ¢§1 + ¢§2 > 0 for y € S, then ¢, ¢ N(CT(y)) for y # 0 and therefore by
Theorem 22, we get stability. Q.E.D.

Corollary 4 Let y = [y1,92,y3]" € R3, and v = [v1,v9,v3]7 € R3. Let the control system
9y = C(y)v, where

1 0 —yo
Cly) = 0 1
-y y1 0

Consider the quadratic form G on R? be defined by G(y) = C(y)C” (). Let ¢(y1,12,y3) =
S(y2 4+ v3 +y3) + y1ys + yoys. The feedback control law

I 0 -y Y1 + Y3
v(y) = — 0 1 wy Y2 + Y3
—-y2 y1 O y1+y2 +ys3
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stabilizes the system trajectories, and among all stabilizing control laws for the system

7 = C(y)v, it minimizes the cost functional defined by
o
n= / viv+ <V, Vo > .
0

Proof: ¢ satisfies all the conditions in theorem 23. Q.E.D.

We now extend the stabilization results to the general position area system.

5.5 Stabilization of the General Position Area System

Recall, as shown in Example 4, that the general position area system defined by

zT=u ; z€R"

g =azul —uz’ ; yeso®

has O(n) as symmetry group. Recall that the action of O(n) on the above system is as
follows. Let © € O(n), then z — p = Oz, y — z = OyOT, and v — v = Ou. Recall that

under this symmetry group action, the flow © = w0, induces the gauge extension

p = v4+wp ; peR” (5.16)

5 = pol —wp! +[w,2]; z € 50" (5.17)

Thus we observe that by making the symmetries of the system time varying, we have in-
troduced additional @ controls into the system dynamics, through the skew symmetric
matrix w. Thus we have transformed the problem of controlling @ state variable with
just n controls, to a problem with as many controls (v, w) as the number of state variables
(p,z). We now show that analogous to the case of the nonholonomic integrator, we can

carry out the gauge completion program for the general position area system.

Lemma 6 The gauge extension

p = vtwp ; peR” ; weso"
2 = pol —upl +[w,2]; z € so"
is a gauge completion of
p = v;peR”

2 = pvl —vpl; z € 50"
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Proof : For the case n = 2, the system is reduced to the nonholonomic integrator case,
and we saw there that the above assertion was true. For n > 2, it suffices to observe
that £ = so(n) for n > 2 is a semi-simple Lie algebra. Therefore the first derived algebra
[£,L] = L, and hence we can find z and w such that [z, w] = w' for some given w'. Let
p = 0 and then we are free to choose v. Hence equations 5.16-5.17 satisfy the onto condition

for stability, which concludes the proof

We will now present gradient flows for the stabilization of the above system (5.16)-(5.17).
Let L = (p,z) € R" x so(n) and r = (v,w) € R" x so(n), then the system (5.16)-(5.17)
can be compactly written as L = C (L)r. In the spirit of theorem 22, we now want to find a
positive definite function ¢ : R" x so(n) — R, such that the control law (L) = —C”T (L)

stabilizes the system. This is done in the following theorem.

Theorem 24 Let L = (p,z) € R" x so(n) and r = (v,w) € R" x so(n). Let the control
system L = C(L)r be defined by

p = vtwp (5.18)
5 = pol —vpl + [w, 2] (5.19)
Let ¢ : R™ x so(n) = R be ¢(p,z) = ||p + ze||* + tr(zz" N), where e = ﬁ[l, 1 ..., 1)
is a unit vector and N is a diagonal matrix, N = diag(1,2,... ,n). Consider the quadratic

form G(L) = C(L)CT (L) on R™ x so(n). Then the feedback control law (L) = —CT(L)¢,
stabilizes the system to (p = 0,z = 0) and among all feedback laws that stabilize system

trajectories to (p = 0,z = 0), it minimizes the cost function
2 2
n= [ ol + fwlP+ < V6,99 >
0

Proof: We first prove stability. First observe that
T_ T
CT (v, w) = (v — 2wp, ~Z—— — [w,2]).

Let ¢ be the lyapunov function, then

% = — < ¢, C(L)CT(L)p1 >,

which allows us to rewrite the above equation as

dp 1
i ICT (L)Ll
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All we need to show is that ¢z, € N(CT (L)) only if L = 0. Observe that

T . .T
CT (L) = (dy — 2p, (LRI (g, 1) (5.20
Note, if ¢1, € N'(CT(L)), then
bp = 2¢.p (5.21)
T . .T
M +[pnz]l = 0 (5.22)

Observe that from Equations (5.21)-(5.22), we obtain that if ¢; € N'(CT (L)) then

pp dL — bpp” + [h2,2] =0 (5.23)

from which follows that
¢op = 0 (5.24)
[¢pz,2] = 0 (5.25)

To see this multiply both sides of Equation 5.23 by ¢, and take the trace. Therefore from
Equation (5.21), ¢, = 0. Notice that ¢, = 2(p + ze), therefore if ¢, = 0 then p = —ze.
Notice that

b, = pel —ep? + {N +eel, z}.

Substituting for p = —ze we obtain ¢, = {NN, z}. Substituting in 5.23, [¢,, z] = 0, we obtain
[{N,z},z] = 0 implying [N, 22] = 0, and therefore 22 is a diagonal matrix. Therefore if
$.p = 0 then {N,z}ze = 0. Since 22 is diagonal, we obtain {N,z}ze = 0 if and only if
z = 0 and hence p = 0. Hence the proof. The optimality of the control law for the given
cost function follows from theorem (22). Q.E.D.

We can now lift this flow to R™ x so(n) x O(n) and since |[p|| = ||©z| = ||z|| and ||z|| =
1©yOT|| = ||ly||, the control law u(z,y) = OTv(Oz, OyOT) stabilizes the trajectories of the

system
T = u (5.26)
g = zul —uz’ (5.27)
0 = w(0z,0907)0 (5.28)

to z =0,y = 0. We now extend the stabilization results to the general sl(n) system.
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5.6 General sl(n) System
Recall that the sl(n) system is defined by

t=u ; z € sym(n)

Yy=xu—ur ; Yy € so"

Consider the map F mapping M = sym(n) x so(n) x O(n) to N = sym(n) x so(n) , defined
as (p,r) = F(z,y,0), where

p = 0207 ; pesym(n)

z = ©yol ; zeso"
Let v = © uOT, and@zw@, then we have

p = v+ [w,p| ; p€ sym(n) (5.29)
z = [pv]+[w,z]; z€s0" (5.30)

We now proceed as in the previous section to find optimal feedback laws that stabilize the

system of Equations 5.29-5.30.

Theorem 25 Let L = (z,2) € sym(n) X so(n) and v = (u,w) € sym(n) x so(n). Let
the control system L = C(L)v be defined by

T = u+w,z] (5.31)
z = [z,u] + [w,z] (5.32)
(5.33)

Let R be a n x n real matrix defined as

1
R—%

and N a diagonal matrix, N = diag(1,2,... ,n). Let ¢ : sym(n) x so(n) — R be ¢(z,z) =
|z + [z, R]||> + tr(zz" N). Let G(L) = C(L)CT(L) be a quadratic form on sym(n) x so(n).
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Then the feedback control law v(L) = —CT(L)¢., stabilizes the system to (z = 0,z = 0)

and minimizes the cost function

o0
n=A lull® + lwl]?+ < Vo, Ve > .

Proof: We first prove stability. Let ¢ be the Lyapunov function, then

% = — < ¢r,C(L)CT(L)¢r >

which allows us to rewrite the above equation as

d
W = N @

All we need to show is that ¢, € N (CT(L)) only if L = 0. Observe
CT(LD)gr, = (2 — ¢, 7], — ([, $a] + [b2:2]))
Note if ¢7, € N(CT(L)) then

¢z = [¢z,x]
[.T,¢$]+[¢Z,Z] =0

Observe that from Equation (5.55)-(5.56), it follows that

[33, [¢za$]] + [¢z,z] =0

(5.34)

(5.35)
(5.36)
(5.37)

implying that [¢,,z] = 0 (multiply both sides of equation by ¢, and take the trace and
therefore [¢,,z] = 0.) Therefore from Equation (5.55), we obtain ¢, = 0. Notice that

¢z = 2(z + [z, R]), therefore if ¢, = 0 then z = —[z, R]. Also it holds that

¢, = [z, R] + [[2, R], R] + {N, z}.

Substituting for x = —[z, R], we get ¢, = {N, z}. Since [¢,, z] = 0 implies that [{N, z}, z] =

0, which is [N, z2] = 0, that is 22 is diagonal. 2%z is diagonal implies that

0 X\
-1 0

—X2 0
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from which follows that

A0
0 -\
[Z,R] = )\2 0
0 =X
Therefore ||[z, R]|| = Lzl Note [¢.,z] = [{N, z},[2, R]], therefore if [¢,,z] = 0, implies

vn
llz]| = 0 and hence ||z|| = 0. Thus the proof. The optimality of the control law for the

given cost function follows from Theorem (22). Q.E.D.
We now extend the results for the above system to systems which have higher degree of
nonholonomy. We first introduce the following notation.

Notation: Let z, u € sym(n). By [zF,u], we will denote the k* order lie bracket
[z, [z, ... [z, K]

Consider the following generalization of the sl(n) system. Let

T = wu;z€sym(n)

U [z~ Lu] s yeso™, kel,...,n

Consider the map F mapping M = sym(n) x so(n) x O(n) to N = sym(n) x so(n) ,

(p,r) = F(z,y,0)

p = 0201 ; pcsym(n)

z = Oyoel ; zcso"
Let v = © wOT, and@zw@, then we have

p = v+t[wp];p€sym(n) (5.38)
3 = [p* vl +[w,z2]; z€s0", kel,...,n (5.39)

We now proceed as in previous section to find optimal feedback laws that stabilize the

system of Equations 5.38-5.39.
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Theorem 26 Let L = (z,2z) € sym(n) X so(n) and v = (u,w) € sym(n) x so(n). Let
the control system L = C(L)v be defined by

T = u+[w,z] (5.40)
5 o= [ u)+ w2 kel,...,n (5.41)
(5.42)

Let R be a n x n real matrix defined as

1
R—%

and N a diagonal matrix, N = diag(1,2,... ,n). Let ¢ : sym(n) x so(n) = R be ¢(z,z) =
|z + [z, R]||? + tr(z2T N). Let G(L) = C(L)CT(L) be a quadratic form on sym(n) x so(n).
Then the feedback control law v(L) = —CT (L) ¢y, stabilizes the system to (z = 0,z = 0) and
among all feedback laws that stabilize system trajectories to (z = 0,z = 0), it minimizes

the cost function -
5= /0 [l + ]2+ < V4, V4 > |

The proof is on exactly same lines as theorem (25).
We now present the above results in much more generality. We will look at a Lie

algebraic generalization of so(n) and the sl(n,R) systems.

5.7 Lie Algebra Generalization

We now present a Lie algebra generalization of the previous results for the so(n) and the
sl(n,R) systems (BLOCH ET AL. (1998)).

Let g be a real semisimple Lie algebra, and let B : g X g — R be the killing form on g.
Furthermore assume that g has a direct decomposition g = b + m, where b is a compactly
embedded sub-algebra and the subspace m is the orthogonal complement of k relative to
B. Under these assumptions, the commutation relations [h, m] C m and [m,m] C b, and the
restriction By, of the killing form B to h x b, is negative definite. In addition we assume

that no ideal of g, is contained in f. This assumption, together with the commutation
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relations for h and m, imply that [m,m] = h. In particular the representation of f on m is
faithful as the kernel of this representation is B orthogonal in b to [m, m]. We now consider

the stabilization of the following system

T = u (5.43)
y = [uq] (5.44)

where z,u € m, y € h. It is possible to analyze this system without any loss of generality
by considering more specialized types of Lie algebra. Using the hypotheses on g, there exist

B orthogonal ideals g4 and g_, with the following properties.

e g=g, + g (direct sum)

e hy = g1 ()b is compactly embedded in g1 and contains no ideal of g .

e g, = hy + my is of non-compact type and g_ = h_ + m_ is of compact type where

my =gy |m.

Ifwelet t=24 +2_, u =us +u_ and y = y4+ + y— denote the corresponding decompo-

sitions, then the system 5.43 decomposes into the systems

ry = us (5.45)
Y = [us,Ti] (5.46)

It follows to stabilize the system 5.43 in g it is enough to stabilize simultaneously the
systems 5.45. It will thus be assumed from now that g is either of non-compact type or of
compact type. This implies that the restriction B|mxm of B to m is positive definite if g is
of non-compact type and negative definite if g is of compact type.

In order to discuss the compact and non-compact cases simultaneously, let € = 1 if g is of
non-compact type and ¢ = —1 if g is of compact type. We will use the inner product on g
defined by the Killing form:

<z +y1, 22 + Y2 >= €B(z1,22) — B(y1,y2) (5.47)

for z1,z9 € m, y1,y2 € h. The corresponding norm will be denoted by ||.||.
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Let © € Aut(g), the group of automorphisms of the Lie algebra g. Let ©(0) = I the identity
map and let 0 = adw ©, where w € . Observe that under this flow, © is constrained to

live in Aut(g). Note the norm (p, z) = O(z,y) preserves the norm of (z,y) and under the

map
(p, 2) = L(z,y),
we obtain from equation 5.43, that
p = v+ [w,p (5.49)
5= [po] +[w,2] (5.50)

We will now present feedback control laws v(p, z) and w(p, z), which asymptotically stabilize
the above system.
For Y € b, let

D(Y) = —(ady)*Im

denote a nonnegative symmetric operator, acting on m. It can be easily shown that there

exists a constant 0 < n < 1, such that
tr(C(Y)) > n[Y]?,

for allY € h (BLOCH ET AL. (1998)). If we choose a basis for m, then let n € h denote the
unique element, such that the operator D(n) corresponds to N = diag(1,1,2,2,...,m/2).

Also Let r € m represent the unique vector that has the representation ﬁ[l, 1, ..., 1%

Remark 11 As in theorem 24, it follows, that for Y € b, if ad?ad? | = ad?ad? |y, then
ady,y)lm = 0. Also, if D(Y)D(n)r = 0 then it follows that ¥ = 0.

Theorem 27 Let L = (z,2) € m+bhand v = (u,w) € m+bh. Let the control system
L = C(L)v be defined by

T = u+ w1 (5.51)
z = [z,ul+[w,2]; kel,...,n (5.52)
(5.53)

Let n € h and 7 € m. Let ¢ :— R be ¢(z,2) = ||z + [2,7]||> + tr(ad?ad?). Let G(L) =
C(L)CT(L),X,Y € g be a quadratic form on g. Then the feedback control law v(L) =
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—CT (L) ¢y, stabilizes the system to (z = 0,z = 0) and among all feedback laws that stabilize

system trajectories to (z = 0,z = 0), it minimizes the cost

o0
n = /0 [l + lwl]2+ < Vo, Vé >

Proof: We first prove stability. Let ¢ be the Lyapunov function, then

d
d—f =— < ¢1,C(L)CT(L)¢1, >
rewriting the above equation as
d¢ T 2
— =— L .
L = oW

All we need to show is that ¢, € N(CT (L)) only if L = 0. Observe
CT(L)pr = (2 — ¢ 7], — ([, ¢a] + [$2:2]))
Note if ¢7, € N(CT(L)) then

b = [¢zax]
[z, bz] + [P2,2] = O

Observe from equation (5.55)-(5.56) it follows that

[33, [¢za$]] + [¢z,z] =0

(5.54)

(5.55)
(5.56)
(5.57)

implying that [¢,,z] = 0 (multiply both sides of equation by ¢, and take the trace and
therefore [¢,,2z] = 0. Therefore from equation (5.55), we obtain ¢, = 0. Notice that

¢z = 2(z + [2,7]), therefore if ¢, = 0 then z = —[z,r]. Also

¢, = [z,7] + [[2,7], 7] + Q.

where adg = ad,ad?+ad?ad,. Substituting for z = —[z, 7], we get ¢, = Q. Since [¢,,2] =0

implies [@Q, 2] = 0. Thus ad|g ,) = [adg, ad,] = 0. Substituting for Q we get

[ad?,ad?] = 0.

which implies [z,n] = 0. Note [¢,,z] = [@, [, 7]], which implies that

[2[n[n[z, r]]]] + [n[n[z[z, 7]l = 0
[2lz[n[n, 7]l = 0.

where (5.59) follows from equation (5.58)by repeated use of Jacobi identity. From the

remark 11 and equation (5.59) it follows that z = 0, implying p is zero. The proof for

optimality directly follows from theorem (25)

Q.E.D.
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5.8 Conclusions

Our major contribution in this chapter was to derive feedback stabilization laws for a
class of nonholonomic systems as solutions to variational problems. It was shown that by
introducing dynamics in the symmetry group of the system, we can introduce additional
controls in the system dynamics. We presented smooth feedback stabilization laws for
systems more general than considered before. Similarities between our approach and gauge
theories in physics, were pointed out. The future work in this area involves next extending

these variational methods to systems which require higher brackets for controllability.



Appendix A

Riemannian Geometry of Lie

Groups and Homogeneous Spaces

In this chapter, we recapitulate the basics of differential geometry and geometric control.
We follow SMITH (1993) and BROCKETT (1979) in our exposition. We assume that the
reader knows, or will find out elsewhere the definition of a manifold. vector field etc
BOOTHBY (1976); KOBAYASHI AND NOMIZU (1969). Let M be a C* differentiable mani-
fold. Denote the set of C* functions on M by C*°(M), the tangent plane at p in M by T,
or T, M, and the set of C* vector fields on M by X(M).

Riemannian structures

Definition 13 Let M be a differentiable manifold. A Riemannian structure on M, is a
tensor field g of type (0,2), which for all X,Y € X(M) and p € M satisfies g(X,Y) =
g(Y, X) and g, : T, x T, = R is positive definite. We use the notation < X,Y >= ¢,(X,Y)
and | X|| = gp(X,X)%, where XY € T), is often used. Let t — 7(¢), t € [a,b] be a curve
segment in M. The length of 7 is defined by

b 1
L(y) = / 00 (3(8), 7 () .

A Riemannian manifold is a connected differentiable manifold with a Riemannian structure.
Because M is connected, any two points can be joined by a curve. The infimum of length
of all curve segments joining p and ¢ yields a metric on M, called the Riemannian metric
denoted by d(p, q).

Affine connections

107
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Let M be a differentiable manifold. An affine connection on M is a function V which

assigns to each vector X € X(M) an R-linear map V : X(M) — X(M), which satisfies

Vixigv = fVx+gVy
Vx(fY) = fVx(Y)+ (X[,

for all f,g € C®(M), X,Y € X(M). The expression of these ideas using coordinates
is very useful. Let M be an n-dimensional differentiable manifold with affine connec-

tion V, and (U,x1,...,2,) a coordinate chart on M. These coordinates induce a basis

s
ETRRRE

0o % = Zi’j,k 'yfj%. The vfj are called the Christoffel symbol of the connection.

,% on x(U). Then there exists n® functions 7%, 1<4,5,k <n, on U such that

Geodesics and parallelism

Let M be a differentiable manifold with affine connection V. Let v : I — M be a smooth
curve with tangent vectors X (¢) = 4(¢), where I € R is an open interval. The curve 7 is
called a geodesic if Vx X =0, for all £ € I. Let Y () € Ty, (t € I) be a smooth family of
tangent vectors defined along . The family Y (¢) is said to be parallel along v if VxY =0
forallt e I.

For every p € M and X # 0 in T}, there exists a unique geodesic t — yx(t) such
that vx(0) = p and ¥x(0) = X. We define the exponential map exp, : T, - M by
expp(X)yx (1) for all X € T,. Oftentimes the map exp, will be denoted by exp(tX). A
neighborhood N, of p is a normal neighborhood if N;,, = expNy, where Nj is a star-shaped
neighborhood of the origin in 7}, and exp maps Ny diffeomorphically onto N,.

Let (U, x1,...,2,) be a coordinate chart on an n-dimensional differentiable manifold with
affine connection V. Geodesics in U satisfy the n second order nonlinear differential equa-

tions
day | §~doide;
a2 " Z2adr dr v

3

=0.

Riemannian connections
Given a Riemannian structure g on a differentiable manifold M, there exists a unique
connection V on M, called the Riemannian or Levi — Civita connection, which for X, Y €
X(M) satisfies
VxY -VyX = [X,|Y]
Vg = 0
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Length minimizing curves on M are geodesics of the Levi-Civita connection. We shall use
this connection throughout this thesis. For every p € M, there exists a normal neighborhood
N, = expNj of p such that d(p, exp, X) = || X|| for all X € Ny, where d is the Riemannian

metric corresponding to g.

A.0.1 Lie Groups and Homogeneous Spaces

We review the basic structure of Lie Groups and homogeneous spaces in this section.

Lie Groups

Definition 14 A Lie Group G is a differentiable manifold and a group such that the map
G x G — G defined by (g, k) — gk~! is C*°.

Definition 15 A Lie Algebra g over R is a vector space over R with a bilinear operation

[.,.] : g x g — g(called the bracket)such that for all z,y, 2 € g,

[z,z] = 0

[LL‘, [y7 z]]+[y, [Za -Z‘]]‘f‘[z, [LE, y]] =0

Let G be a Lie Group and g € G. Left multiplication is denoted by the map I/, : G —
G,k — gk, and similarly for right multiplication 74 : & — kg. Let X be a vector field on
G. X is said to be left invariant if for each g € G,

Iy* (X) =X ol

The notation f,, is used here and elsewhere to denote df, the differential of a map f.
Specifically, note that if X is a left invariant vector field on G' then X, = [, X, i.e, the
value of X at any point g € G is determined by its value at the identity e. Thus there is a
one to one correspondence between the left invariant fields on G and tangent vectors T.G.
We shall define gto be the vector space T.G, and for X € g, denote the corresponding left
invariant vector field by X.

For every X in g, there is a unique homomorphism ¢ : R — G, called the one parameter
subgroup of G generated by X, such that ¢(0) = X. Define the exponential map exp :
g — G, by setting expX = ¢(1). The one-parameter subgroup ¢t — ¢(t) generated by X
is denoted by t — exptX. For matrix groups, this exponential map corresponds to matrix
exponentials, i.e., exptX = eX! = [ +tX + (£2/21) X2 +....

Let G be a Lie Group with Lie algebra g. Consider the action of G on itself by conjugation,

-1

ie., a: (g,k) = gkg~'. Denote the automorphism k& — gkg~' of G by ag. Define the
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adjoint representation Ad : G — Aut(g) by the map g — (dag)., where Aut(g) is the group
of automorphisms of a Lie algebra g. If G is a matrix group with g € G and w € g, we have
Adgy(w) = gwg™!. Denote the differential of Ad at the identity by ad, i.e.,

ad = dAd,,

so that ad : ¢ — End(g), is a map from the Lie algebra g to its vector space of endomor-
phisms End(g). It may be verified that adxY = [X,Y], for X and Y in g. The functions
Ad : G — Aut(g) and ad : g — End(g) are related by

Adoexp =expoad,
ie, for X € g, Adegpx = edx

Definition 16 Let g be a Lie algebra. The killing form of g is the bilinear form ¢ on g x g
defined by
B(X,Y) = tr(adx o ady).

Definition 17 A lie algebra g is called semisimple if g # 0 and has no Abelian ideals # 0.

Theorem 28 (Cartan)A lie algebra g is semisimple if and only if its killing form, B(.,.)

is non-degenerate.

Homogeneous Spaces Let G be a Lie group and H a closed subgroup of G. Then the
(right) coset space G/H = {Hg : g € G}, admits the structure of a differentiable manifold
such that the natural projection 7 : G — G/H, ¢ — Hg, and the action of G on G/H
defined by (Hk,g) — Hkg, are C*°. The dimension of G/H is given by dim G - dim H.
Define the origin of G/H, by o = 7(e).

Definition 18 Let G be a Lie Group and H a closed subgroup of G. The differentiable

manifold G/H is called a homogeneous space.

Let g and b be the Lie algebras of G and H, respectively, and let m be a vector subspace
of g such that g = m+ b is a direct sum. Then there exists a neighborhood of 0 € m, which
is mapped homeomorhically onto a neighborhood of the origin o € G/H by the mapping
7 o explm.- The tangent plane T,(G/H) at the origin can be identified with the vector

subspace m.
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Definition 19 Let G be a connected Lie Group, H a closed subgroup of G, and g and b
be the Lie algebras of G and H, respectively. The homogeneous space G/H is said to be
reductive if there exists a vector subspace m of g such that g = m + b (direct sum), and m

is Adg-invariant, i.e., Adg(m) € m.

For example the homogeneous space G/H, is reductive if H is compact. We will solely
be interested in examples where H is compact and so all the homogeneous spaces, we will
be working with will be reductive.

Invariant affine connections

Definition 20 Let G be a Lie transformation group acting on a differentiable manifold M.
An affine connection V on M is said to be G —invariant if for allg € G , X, Y, € X(M),

lg«(VxY) =V . x)(lg-Y).

If M = G is a Lie group we have the following classification. Let X and Y be left
invariant vector fields on G corresponding to X and Y € g, respectively. There is a one
to one correspondence between invariant affine connections on G and the set of bilinear

function a : g x g — g given by the formula
a(X,Y) = (VzY)..

Geodesics on G coincide with one-parameter subgroups if and only if a(X, X) = 0 for all
X € g. The classical Cartan-Schouten invariant affine connections on G correspond to
a(X,Y) =0, a(X,Y) = 3[X,Y] and o(X,Y) = [X,Y].

Let G/H be a reductive homogeneous space with a fixed decomposition of the Lie
algebra, g = m + b, Adg(m) C m, and 7 : G — G/H the natural projection. Any
element X € g can then be uniquely decomposed into the sum of the elements in m and b
respectively. There is one to one correspondence between affine connections on G/H and
set of bilinear functions « : m X m — m which are Ady invariant.

Now we state a theorem, which characterizes the form of geodesics and parallel trans-

lation in homogeneous space G/H.

Theorem 29 (Nomizu)On the reductive homogeneous space G/H, there exists a unique
invariant connection which is torsion free and satisfies that the curve t — yx(t) € G/H,
defined by vx(t) = w(exptX), is a geodesic in G/H. It is defined by the function a(X,Y) =

(X, Y]m on m x m.
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This connection is called the canonical torsion free connection on G/H. In case G/H is a

symmetric homogeneous space, that is [m,m] € h, then we have a(X,Y) =0

Invariant Riemannian metrics

Definition 21 A Riemannian structure g on G/H is said to be (right) invariant if
okl X, 1Y) = gp(X,Y)

forallpe G/H, k € G and X,Y € T).

Let G be a Lie group which admits a bi-invariant metric <, >. Then there is a corresponding
left invariant metric, called the normal metric, on the homogeneous space G/H with fixed
decomposition g = m + b, arising from the restriction of <,> to m. The Levi-Civita
connection of this metric is the canonical torsion free connection on G/H. Hence geodesics
under this connection are locally length minimizing under the normal metric.

We have given a brief overview of the geometrical structure we would need in this thesis. We
now look at the formalism of geometric control and recapitulate some of the the examples
from robotics where one makes use of such a formalism to make assertions about the

controllability of the systems.

A.1 Geometric Control

By a control system we will mean a dynamical system whose laws unlike the laws of classical
physics are not completely specified but depend on choice of certain parameters, called
controls, that can vary and by which one can control the behavior of the system . In
this manuscript we will assume the space of all configurations of the system to be an n
dimensional manifold M and the dynamics of the system described by vector fields on this
manifold. The control parameters are assumed to take values in an arbitrary subset U € R™

and the dynamics is described by a mapping
F:MxU—TM,

such that for each u € U, F,, : M — T'M defined by F,(z) = F(z,u) for  in M is a smooth

vector field. The system then evolves according to the differential equation

z = F(z,u).
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The control functions can be of several types. A control u is called a feedback control, or
a closed loop control, if u : M — U. When u is a smooth map, and when F' is smooth, the
corresponding vector field x — F(z,u(z)) is a smooth vector field. Any integral curve of
this vector field is called a closed-loop trajectory.
A control u is called an open loop control if u : Rt — U. Also a control can be a combination
of both types, that is a mapping v : M x R — U. The trajectories corresponding to this
choice of control are the solutions of the time-varying differential system

dx

i F(z,u(z,t)).
If we choose a co-ordinate system for the manifold M, then the vector field F' can be written

as

and then in local coordinates the system evolution takes the form

In this manuscript we will only be interested in a special class of control systems called
the “Affine Control System”. If {Xy, X;,---, X, } denote a family of smooth vector fields

on the manifold M, then the control system we are interested in takes the form
n
& =Xo(z) + Y uiX(w). (A1)
=1

Given a system of the above form, the questions we will be interested in addressing in

various specific scenarios take the following form.

e The existence of a measurable control function v = (u1, ...um) : R = U, which
can transfer the state from some given initial configuration z(0) to some terminal

configuration z(T).

e The minimum time required to reach the terminal state and the existence and unique-
ness of control laws which accomplish transfer in minimum time (time optimal con-

trol).
e The existence and uniqueness of control laws which minimize a given cost function.

e Existence and properties of feedback control w : M — R, which stabilizes the trajec-

tories of the closed loop system & = F'(z,u), to some given point zg € M.
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Accessibility

We begin by addressing the first question, the problem of controllability and accessibility
for a nonlinear control system. The mathematical concept that lies at the heart of the
matter is the concept of a lie bracket. Smooth vector fields act as derivations on the
space of smooth functions. If X denotes a vector field and f a smooth function on M |,
then X (f) will denote the function z — X (z)(f). There is a very important algebraic
construction associated with vector fields on a manifold, namely the construction of a lie
bracket. If F' and G represent smooth vector fields on the manifold M, then their lie
bracket [F, G] is defined by its action [F, G|(f) = G(F(f)) — F(G(f)). In local coordinates,
fF=5%", f,-(:v)a%i, and G =", g,-(x)a%i then the lie bracket [F, G] takes the form

" afi dgi , 0
[F,G] = ZZ(QJ' oz; B fzaivj)a—xz

i=1 j=1

The lie bracket of vector fields satisfy the following properties

[F, G] = —[G, F]
[F, |G, H]+ G, [H, Fl]+[H, [G, F]] = 0 (A.2)

Let {f;}, be a collection of smooth vector fields on the manifold M. Then the distribu-
tion A = span{f;} assigns a subspace of the tangent space to each point in M in a smooth

way. At any point the distribution is a linear subspace of the tangent space

A, = span{fi(x),..., fm(z)} C Tu(M).

A distribution is involutive if it is closed under the Lie bracket, that is iff f, g € A, [f,g] €
A.

Consider a class of Affine control system, called the drift free or driftless control systems,
which take the form

m
x:Zquz(w) , T € M; u=(u1,...,um) €U € R™. (A.3)
i=1

We assume that that f; are smooth, linearly independent vector fields on M. The

accessibility properties of this system can be inferred by looking at the distribution A =

span{fi}.

Theorem 30 (Versions of Frobenius Theorem) Let A = span{ fi}, be an involutive collec-

tion of vector fields which are
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e Analytic on a analytic manifold M. Then given any point g € M, there exists a
maximal submanifold N containing zy such that A, spans the tangent space of N

at each point £ € N.

e (' on a C* manifold M with dim A,, being constant. Then given any point zy € M,
there exists a maximal submanifold N containing g, such that A,, spans the tangent

space of N at each point = € N.

We denote the manifold N by exp{f;}zo. Thus for the control system (A.3), the dis-
tribution A = span{f;} is involutive, then N precisely characterizes the reachable set.
However if A = span{f;} is not involutive then the reachable set is bigger and is charac-
terized by the following theorem of Chow.

Given, a collection of vector fields, {f;}, we denote the smallest Lie algebra of vector

fields which contain them by {f;}r4.

Theorem 31 (Versions of Chow’s Theorem) Let A = span{f;}, be a collection of vector
fields on the manifold M, such that {f;}r4 is

e analytic on a analytic manifold M. Then given any point £y € M, there exists a maxi-

mal submanifold N € M containing z¢ such that {exp{fi}}zo = {exp{fi}ratzo = N.

e C* on a C*™ manifold M with dim(span{fi}ra) constant on M. Then given any

point zg € M, there exists a maximal submanifold N containing zy, such that

{exp{fi}}zo = {exp{fi}ra}tzo = N

Chow’s Theorem goes a long way, in answering the controllability question for driftless

control systems,
m
a:zZusz(m) , T € M; u=(ug,...,uy) €U € R™.
i=1

We assume that that the vector fields f; are smooth, linearly independent vector fields
on M. We say that the system A.3 is controllable if for any xzo, z; € M there exists a
T > 0 and a measurable u : [0,7] — U, such that for the system A.3, z(0) = z¢ and
z(T) = z1. M dim({fi}ra(z)) = dim T,(M), for all x € M, then by chow’s theorem the
system is controllable and the points on the manifold M can be reached by letting u}s take
on the values zero and one.

The situation is more complex, if we have drift in the system. If we now consider the

general affine control system, & = f(z) + )i~ u;gi(z). Then we have
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Theorem 32 (Krener, Lobry, Sussman-Jurdjevic) Suppose f and {g;};~, are vector fields
on the manifold M, and suppose {f,g;} meets either of the conditions of the Chow's
theorem. Then the reachable set for & = f(z) + Y ;" u;gi(z), contains an open subset of

the manifold N = exp{f, gi}Lazo-

We consider a special case of this situation, when the drift generates periodic orbits. In

this case more can be said about the reachable set.

Theorem 33 Suppose f and {g;};*, are vector fields on the manifold M, and suppose
{f,9i} meets either of the conditions of the Chow's theorem. Suppose for each z¢, the

solution of & = f(x), is periodic with a least period T'(zy) < M, Then the reachable set for
&= f(z) + 321, wigi(z), is {exp{f, g}ra}azo.

We now consider a special case which will help us prove controllability in quantum
systems. In case the state space of the control system & = f(z)+Y ;" ; u;gi(z) is a compact
Lie Group G and {f,g;} are right invariant vector fields on G then we can make a strong

assertion about controllabilityJURDJEVIC AND SUSSMANN (313-329).

Theorem 34 (Jurdjevic-Sussmann) Given the right invariant control system
m
&= f@)+ ) uigi(x).
i=1

on a compact connected Lie group G. If {f, g;} 14 = L(G), the lie algebra of right invariant
vector fields on G. The reachable set exp{f, gi}razo = G.

Nonholonomic Control Systems
We now look up at some nonholonomic systems and the equations that model there dy-
namics. These examples which will reappear during the thesis. We present them here to

illustrate the concepts of controllability we described above.

Example 7 A simple example of a nonholonomic control systems is provided by a wheeled
mobile robot called unicycle as shown in the figure A.1. The system consists of a platform
on a wheel that can only roll on the ground. There are two control inputs to the system.
Let u denote the driving velocity and v the steering velocity, and let z,y, ¢, denote the

position of the center of mass of the robot and the angle the wheeled robot makes with the
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YA

X

Figure A.1: The panel shows a unicycle the simplest form of a mobile robot.

z axis. Then the kinematics of the system takes the form

T = wucos(9)
§ = usin(g)
b= v

By suitable transformation of state and control variables, the equations can be transformed

to the familiar nonholonomic integrator,

d I 1 0
ar | 2 = U 0 +uz | 1 = u1g1 + U292
3 —I2 Z1

Observe g; = 3%1 — acga%g and gy = 6%2 — mlﬁ, and [g1,92] = 26%3, spans the tangent

space at each point in R?. Hence the nonholonomic system is controllable.

Now consider a generalization of this system, called the general position area system.

The system takes the following form

Example 8 Let z € R", u € R” and y € so(n) the space of n xn skew symmetric matrices.
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Then

T = u

g = zul —uz?

Observe the system can be written in a standard canonical form X = 3% | u;g;(X), where
n(n+1) . n(n+1)
u = [u1,..-,up]’. and X € R~ 2 . It is easy to see that span {g;}r4 = R~ 2  and

therefore the general position area system is controllable. The importance of this system

is that it is the canonical form of first brackett controllable systems.

Till now we considered examples where the first brackets of the vector fields are enough to
span the whole space, now we look at a nonholonomic systems system that needs higher
order of brackets of the vector fields to generate the lie algebra, that spans the tangent

space of the state space.

Example 9 Consider the system shown in figure A.2. The system is useful for illustrating
manipulation of spherical objects between two fingers. The system consists of a sphere
between two parallel plates. The lower plate is fixed, and the upper plate is allowed to
move in X — Y plane with velocities u; in X direction and v; in the Y direction. However
by just using two controls we can move the sphere anywhere in the plane with any given
orientation, that is the system is controllable. By suitable change of coordinates BROCKETT

AND L.DATI (1992), the state of the system can be written in terms of (z,vy,z,m,n) € R

I = u
Yy = v

Z = zv—yu
m = z%v

n = yu

T 1 0
Y 0
d = + = +
7ol B il B v| z | =ug +vge.
m 0 z2
L 7] L y* [ 0



§A.1 GEOMETRIC CONTROL 119

Figure A.2: The panel above, illustrates the ball and plate mechanism.

Observe g1 = & — yg: + U750 02 = 3 + 255 + 250, [91,92] = 25 + 2050 — 2y,
[91,[91,92]] = 2% and [go, [91,92]] = —28% spans the tangent space at each point in R®.

Hence the above system is controllable.

Till now we only looked at examples of drift free system, lets take the example of systems

with drift to see the consequence of theorems on controllability of systems with drift.

0 -1 0 0 0 O
Example 10 Let © € SO(3),andletQ, =1 0 0 |,Q2 =0 0 —1 | represent
0 0 O 01 0

the generators of rotation around x and z axis. Let the control system
0 =9, + uQ,)0

be given. Since the group SO(3) is compact, and {Q, Q,}14 = s0(3), the Lie algebra of
the group SO(3). The above system is controllable by theorem (34).

The above examples illustrate the usefulness of certain controllability theorems for nonlinear
system stated above and provide motivation for adopting a differential geometric framework

for studying such problems.
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