
Experimenting with
Hybrid Control

By Dimitrios Hristu-Varsakelis and Roger W. Brockett

Recently developed experimental and numeri-
cal environments have helped breathe life
into the various control theories found in
textbooks and have thereby greatly changed
the educational experience of students of au-
tomatic control. Nonlinear balance beams,

inverted pendulums, and distributed parameter thermal
systems are now widely available for hands-on experimenta-
tion. Many students react quite positively to this additional

dose of realism. Because the models selected for such ex-
periments are usually accurately described by relatively
simple differential equations, the laboratory experience re-
inforces both the textbook analysis and the value of numeri-
cal simulation.

At the same time, there is a growing realization among ed-
ucators and employers that students of automatic control
should be encouraged to think of the subject in broader
terms. The systems approach should embrace communica-
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tion requirements, signal processing, data logging, and so
on, all the way up to and including the level of complexity
suggested by the phrase “enterprise control.” Designing a
control experiment that is illustrative and instructional in
this broader sense presents several challenges beyond
those discussed above. The systems under consideration
must be very flexible. They should also re-
flect the complexity of purpose and the pos-
sibility of multimodal operation that one
expects to find in complex systems. Of
course, the hardware must continue to be re-
liable and relatively easy to understand at an
intuitive level.

With these qualities in mind, we have as-
sembled and extensively exercised an exper-
imental hybrid control system for use in an
instructional/research laboratory at Har-
vard. Our goal in this article is to describe
the structure of the system and to present a sample of the
experiments that were facilitated by it.

An important feature of the facility we describe is that it
uses several types of sensing modalities, including position
sensing, tactile sensing, and more conventional vision sens-
ing. It can interact with objects of different complexity and is
subject to communication constraints arising in a com-
pletely natural and generic way. In constructing it, we have
used off-the-shelf components wherever possible and made
choices with an eye toward flexibility and reliability.

Electromechanical Hardware
The manipulator pictured in Fig. 1 is a two-fingered hand
that was developed in the Harvard Robotics Lab (HRL). The
manipulator consists of a pair of fingers, made as “mirror im-
ages” of one another, mounted 5.4 cm apart over a desktop.
Each finger has two rotational degrees of freedom, allowing
for planar motion parallel to the desktop. A third degree of
freedom allows for vertical motion of the entire finger. The
proximal and distal links have lengths of 12.9 and 5.6 cm, re-
spectively. A fingertip-like tactile sensor is attached to a
mounting plate at the end of each distal link. The total length
of the distal link and fingertip assembly is approximately
11.8 cm. The finger workspace is approximately 10 cm tall
with an elliptical base whose major and minor axes are 15
cm and 12 cm long. That workspace is imaged by a camera
mounted above the manipulator. The images obtained from
the overhead camera are similar to the one shown in Fig. 1
and can be used to track objects during manipulation tasks.

Finger joints are driven by brushless dc motors located
behind the fingers. The maximum continuous torque output
for each motor is 25 oz-in (100 oz-in peak) with a motor con-
stant of 10.8 oz-in/A. Each motor contains integrated A/D
and D/A electronics, as well as shaft encoders (2000
counts/rev) for position and velocity measurements. An
onboard microprocessor implements a proportional-inte-
gral-derivative (PID) controller that can servo on the shaft

position or velocity with programmable feedback and
feedforward gains. This internal controller accepts user-
supplied commands that are used to determine the motor
current at a rate of 4 kHz. The motors include a dc power
connector and an RS-232 port. Communication with the mo-
tors is achieved by transmitting ASCII text using a special-

purpose instruction set (see Fig. 2). All motors are con-
nected in a “daisy-chain” configuration, sharing a common
serial cable that connects to the RS-232 port of the com-
puter, which is used to control the manipulator.

Possible commands include position and velocity set
points, sensing of the current position or velocity, as well as
specifying coefficient values for the local PID controller. Cur-
rently, the rate of communication with the motors is 9600 b/s.
Measured in terms of instructions, the communication rate
will of course depend on the number of characters sent to
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Figure 1. The HRL planar manipulator.
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Figure 2. Language-driven motors.
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each motor. If a position set point and measurement request
are transmitted to each of the four motors (a total of approxi-
mately 60 characters), then the effective communication rate
is approximately 20 Hz. Each motor is followed by 10/1 gear
reduction. The distal link of each finger is connected to the
motor’s gearbox with a chain drive, whereas the proximal
link is connected directly to the gearbox. This results in a par-
allel linkage mechanism for each finger, so that the rotations
of the distal and proximal links are decoupled.

The manipulator is controlled by a central digital com-
puter, which coordinates data gathering and commands the
four actuators. By using joint angle, tactile sensing, and ob-
ject position information, the manipulator can locate, grasp,
and move objects on the desktop. The manipulator can be
viewed as a hybrid system, combining continuous-time
rigid-body dynamics and event-driven transitions, to be con-
trolled with hybrid, language-driven actuators. These ideas
will be discussed in more detail as we proceed to describe the
operation of the manipulator and report on some of the re-
search activities facilitated by our experimental setup.

A Vision-Based
Deformable Tactile Sensor
Over the last two decades, tactile sensing research has fo-
cused on the development of technology and devices that

attempt to endow robots with some of the dexterity that hu-
mans possess. Everyday experience, as well as analysis of
the kinematics of manipulation and grasping [1], [2], sug-
gest that contact forces and locations are the most impor-
tant geometric parameters for manipulation, and it is
precisely those parameters that most tactile sensors are de-
signed to measure.

The limitations of rigid fingertips in the precise and al-
gorithmic study of manipulation have been discussed in
many works [3]-[5], some dating back more than a decade.
One disadvantage of conventional tactile sensors is that
they operate solely as force-sensing devices; that is, they
measure the pressure distribution over their surface but
provide little or no information on possible deformations
of the surface itself. With few exceptions [6], [7], tactile ar-
rays are typically mounted against a rigid backing and cov-
ered with a thin rubber layer to provide friction. Rigidity
limits the degree to which such sensors can be used in ma-
nipulation tasks [3]. Despite that fact, much of the work in
dexterous manipulation has continued to use the
“point-contact” model for finger-object interactions. In
fact, most of the existing tactile-sensing technologies, in-
cluding tactile arrays ([8], [9], and others) and vi-
sion-based tactile sensors [10]-[12], are not adaptable to
deformable fingertips. The work in [4] and [13] explored
different ways of constructing nonrigid fingertips; foam,
rubber, powder, and gel were investigated. The gel-filled
membrane showed the best overall performance in terms
of attenuation of impact forces, conformability, strain dis-
sipation, and reality factors. The compliant fingertips de-
scribed next most closely resemble the gel-filled fingertip
used in [13].

Fig. 3 shows the deformable tactile sensor that has been
developed in the Harvard Robotics Lab as a result of a
15-year collaborative effort. A more detailed description of
the sensor and its operation can be found in [14]. The sen-
sor consists of a metal housing and a roughly elliptical la-
tex membrane that provides an area of contact. A clear,
fluidlike gel fills the membrane, sealed off from the rest of
the assembly by a transparent window. A grid of dots is
drawn at precisely computed locations on the inner sur-
face of the membrane. A metal fingernail serves to provide
support for the membrane when the latter is being de-
formed by contact. The fingertip is approximately 6.2 cm
long and has a diameter of 2 cm at its base. A schematic is
shown in Fig. 4. The sensor’s metal housing holds a camera
with a diameter of 7.5 mm and a fiber-optic cable that illu-
minates the interior surface of the membrane. The camera
is connected to an image acquisition board, which cap-
tures images of the grid of dots on the membrane. Typical
images are shown in Fig. 5. The image size used was
192 120× pixels. The sensor has mechanical properties that
are well suited to manipulation. In particular, the use of a
fluid-supported membrane [3] allows local deformations
(caused by contact with an object) to be distributed
throughout the enclosed volume, because of the constant
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Figure 3. The tactile sensor.
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Figure 4. Tactile sensor schematic.



pressure of the fluid inside. This is in contrast to materials
that obey Hooke’s law (i.e., rubber-covered rigid finger-
tips) and allows the fingerpad to “wrap around” the object
locally at a contact (see Fig. 6). Mechanically, the sensor
acts much like a human fingertip and has been found to be
very effective in providing grasp stability.

An Inverse Problem:
Membrane Reconstruction
A particularly challenging problem involves the use of im-
ages of the grid of dots drawn on the inner surface of the
membrane to recover the three-dimensional shape of the
membrane. This can be accomplished by a “reconstruction
algorithm,” which we will briefly describe here. Additional
details can be found in [15] and [14].

Consider the grid of dots drawn on the membrane. The
undeformed locations of the dots on the membrane are
known a priori. When the fingertip comes in contact with
the environment, the membrane deforms and the camera
observes a change in the projections of the grid of dots
onto the image plane (as in Fig. 5(b)). A set of imaging op-
erations (see Fig. 7) provides us with the two-dimensional
projection of the deformations of the dots. Projective ge-
ometry tells us that there exists an infinity of solutions for
the new three-dimensional coordinates of the dots. Under
deformation, the portion of the membrane that is not in
contact will assume a shape that minimizes its elastic en-
ergy. In addition, the volume enclosed by the membrane
remains constant. These constraints, together with some
genericity assumptions on the grid of dots, are sufficient
to obtain a solution for the three-dimensional coordinates
of the grid.

A reconstruction example is shown in Fig. 8, corre-
sponding to a human fingertip lightly touching the mem-
brane. The reconstruction algorithm uses images such as
the ones in Fig. 5 to produce a three-dimensional approxi-
mation to the membrane surface in the form of a 13 13×
mesh that corresponds to a 4-cm2 area on the fingerpad.

The coordinates of the grid are measured with respect to a
Euclidean frame whose origin is at the center of the
charge-coupled device (CCD) array in the camera and
whose z-axis is perpendicular to that array. “Crossed”
points represent the undeformed location of the grid. The
line segment through the grid is drawn through the cen-
troid of the area of contact.

February 2002 IEEE Control Systems Magazine 85

(a) (b)

Figure 5. Camera view of membrane: (a) undeformed; (b) in
contact with an object.

Figure 6. Grasping with a deformable fingertip.
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Figure 7. Fingertip operation: (a) image data of the displacement of the pattern of dots is used to interpolate a flow field, (b); the image
flow field, along with other constraints, enables reconstruction of the 3-D shape of the deformed membrane (c).



Tactile Sensor Performance
By computing the membrane displacement along the in-
ward-pointing normal for each point on the grid, we can
identify the points that are part of a contact. Fig. 9(a) shows
typical results obtained with this method when a pencil tip
is pressed lightly against the fingerpad. The graph shows a
peak forming around the area of contact from which we can
determine that the pencil was pressed about 1 mm into the
membrane. The area of contact included 14 grid points with
their centroid at (−4.5 mm, −3.7 mm, 22.2 mm) measured in a
coordinate frame located at the end of the distal link. The

same method can be used to simultaneously detect multiple
areas of contact (Fig. 9(b)).

Typically, the reconstructed grid is used to estimate
the maximum deformation and contact coordinates. The
minimum inward displacement that can be detected is 0.5
mm. For small deformations of the membrane, the sensor
can localize contact with a maximum error of 1.9 mm,
equal to one-half of the distance between neighboring
dots on the membrane surface. The availability of an ap-
proximation to the fingertip surface allows one to esti-
mate the local curvature of objects that come into contact
with the sensor.

The reconstruction algorithm involves a significant
amount of computation and image processing. On a dual 400-
MHz Pentium PC, the maximum rate of performing this recon-
struction is 15 Hz using a 5 5× grid of dots on the membrane
and a13 13× interpolated grid to approximate the fingerpad
surface. This rate is lower than what can be achieved with
traditional tactile sensors; however, the deformable sensor
provides a much richer description of a contact.

Additional experimental results involving our tactile sen-
sor can be found in [5]. Results on the use of the sensor in
manipulation experiments are presented in [16]. Other ap-
plications being explored include the miniaturization of the
sensor and its use as a laparoscopic device in minimally in-
vasive surgery.

Visual Tracking
Together with tactile information, knowledge of the object’s
position is important during manipulation. An overhead
camera captures images of the manipulator’s workspace.
These images are processed to detect and track objects in
that workspace. Tracking software was developed to com-
pute the position and orientation of the object relative to an
inertial frame fixed on the desktop. To make it easier for the
tracking algorithm to locate objects, a pair of black dots is
mounted against a light background on the object. Alterna-
tively, using simple image thresholding, the tracking algo-
rithm can locate any dark-colored object against the light
background of the desktop. Images obtained from the over-
head camera are similar to that of Fig. 1. In this case, only po-
sition information is computed. The overhead camera

provides 192 120× images that corre-
spond to an area of 36 cm × 28 cm on
the desktop. Consequently, each pixel
images a 1.9-mm × 2.3-mm area.

Object tracking is made more effi-
cient by using an estimate of the ob-
ject’s velocity—computed from past
tracking data—to avoid searching the
entire scene. If p v ak k k, , ∈R 2 are the
position, velocity, and acceleration of
the object, then the estimate �pk + 1 of
the next (expected) object position is
computed according to
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and the tracking algorithm searches a small region around
�pk + 1 to find the object and determine pk + 1. The maximum
tracking rate is 60 Hz on a dual 400-MHz PC, currently limited
by the maximum rate at which the camera can capture video
frames. Fig. 10 shows the position data ob-
tained during a manipulation task superim-
posed on a snapshot of the manipulator
during the task.

Learning to Manipulate
Humans use their hands in many everyday
tasks with remarkable dexterity and are
able to integrate visual and tactile signals
to manipulate various objects with preci-
sion, speed, and efficiency. The develop-
ment of robotic hands with similar capabil-
ities is aimed at producing mechanical and
control systems that will be able to per-
form many of the tasks that are beyond the capabilities of
conventional robot grippers. However, robotic fingers
add significantly to the complexity of a manipulator, both
in mechanical design and in control and coordination.
Multifingered manipulation is difficult in part because it
involves rolling contact between the object and finger
surfaces. This introduces a nonholonomic constraint into
the kinematics of the object-hand system. As a result, the
planning of finger motions depends on the geometric evo-
lution of the object-finger contact(s) [1], [2], [17], [18].
The contact evolution is itself dependent on the kine-
matic configuration of the hand, the object trajectory, and
most important, the object’s geometry, which is often
only approximately known.

Learning can be an effective approach to manipulation
because it allows the handling of a large class of objects us-
ing the same algorithm, rather than having to specify model
parameters for every object that one would like to manipu-
late. In addition, precise surface models may be difficult to
obtain for all but the simplest of object geometries. A con-
trol system that learns would make it possible for the user to
abstract from the particulars of system components and in-
stead focus on its desired behavior only, while the internal
details of system dynamics, constraints, and so on, remain
“hidden.” Toward that end, consider the following proto-
type problem.

• Problem Statement 1: Given an object and a feasible
trajectory that is parametrized by time, find the actua-
tor commands that result in the object following that
trajectory as closely as possible.

In this context, a “feasible” trajectory is one that does not
require the fingers to travel outside their workspace or
through any singular kinematic configurations.

To solve instances of Problem 1, we choose to decom-
pose it into an equivalent pair of problems:

• Problem Statement 2: Given an object and a desired
feasible trajectory, find the joint trajectories that cor-
respond to the object following the desired trajectory.

• Problem Statement 3: Find the actuator commands
that result in the joints tracking a set of desired trajec-
tories “as closely as possible.”

Kinematic Exploration of an
Object Trajectory
The first step toward solving an instance of Problem 1 in-
volves “lifting” the object trajectory to the space of joint an-
gles. We accomplish this by performing a “kinematic
exploration” of the desired object trajectory, as well as by
sampling the evolution of the model-dependent effects of
rolling and fingertip compliance along the trajectory. The
use of feedback and learning while exploring the kinematics
of a particular manipulation task allows us to avoid
model-based methods [2] that may be computationally ex-
pensive and difficult to implement.

Before we proceed, it is useful to review the kinematics of
the finger/object system. Consider a set of k fingers, each with
m degrees of freedom, making contact with an object. Let
θ τ, ∈ ⋅Rm k be the vector of the manipulator’s joint angles and
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Figure 10. Tracking an object on the desktop.

The actuators used to drive the
manipulator are language-driven
devices. This feature allows us to

explore questions of motion
planning and optimal description of a

motion task in the given language.



torques. Also, let v ∈R 6 be the instantaneous object velocity
and f ∈R 6 be the total wrench acting about an inertial frame
fixed on the object. The kinematics of rolling contact can be
summarized in the following well-known set of equations [1]:

G v J

J w

f Gw

T

T

=
=
=

( )�

( )

,

θ θ
τ θ

(2)

where J is the manipulator Jacobian and G is the so-called
grasp matrix. The quantity w denotes the vector of forces
acting at the object/finger contacts. The grasp matrix is de-
termined by the coordinates of the object/finger contacts,
which are also necessary to specify J . Of course, the evolu-
tion of (2) during a manipulation task depends on the geom-
etry of the object and fingertips. This dependence is made
explicit quite elegantly in [2]. We note that the stability of a
grasping configuration can be determined from the rank of
G. In addition, the last equality in (2) can be used to select
the internal forces applied to the object by exerting finger-
tip forces that are in the nullspace of G.

The following algorithm (similar to that in [19]) was used
to learn the kinematics of manipulating an unknown object
along a desired locus of points:

0) Sample spatially the desired object trajectory, using a
finite number of set points.

1) Determine a desired incremental motion for the object
toward the next object trajectory set point.

2) Sense the position/orientation of the object, the coor-
dinates of each fingertip/object contact, the force at
each contact, and all joint angles.

3) Compute the fingertip forces necessary to maintain a
sufficiently tight grasp on the object. If an adjustment
to the grasp is necessary, apply it and repeat step 1.

4) Solve the hand-object kinematics of (2) for the incre-
mental change in joint angles based on the desired
change in object position/orientation.

5)  Apply the change in joint angles to the fingers.
6) If the desired object set point has been reached, store

the desired joint positions and velocities (computed
from (2) for a given desired object velocity) for this set
point. Otherwise repeat from step 2.

7) Repeat from step 1 until the object has attained all tra-
jectory set points.

Fig. 11 shows a typical trajectory obtained using the
above algorithm. For this task, a 2-in-diameter spherical ob-
ject was used. The apparent “noise” in the actual trajectory
is due to the resolution limit of the overhead camera that
was used to measure the position of the object.

Software Organization
In the present setting, software development required a sig-
nificant amount of time, taking approximately 50% of the
person-years invested in this project. For this reason, we
think it is appropriate to describe how the software was or-
ganized and to discuss its possible reuse.

Over the last decade, there has emerged an engineering
approach to the linguistic description of motion control
tasks [20]-[23]. The actuators used to drive the HRL manipu-
lator are particularly suited for the study of motion descrip-
tion languages because they are language-driven devices.
This feature allows us to explore questions of motion plan-
ning and optimal description of a motion task in the given
language. Using the actuators’ instruction set, together with
basic sensing operations, we have implemented a set of con-
trol primitives (akin to the “atoms” and “behaviors” of MDL
[24]). These are building blocks in terms of which grasping
and manipulation tasks can be described. Our goal was to
implement the beginnings of a motion language for use with
multifingered manipulators. This language should contain,
at its highest levels, primitives for grasping and manipula-
tion tasks, so that the user needs to specify little or no infor-
mation about the object other than its desired trajectory.

There is, of course, a substantial amount of literature on
software organization, with no shortage of works emphasiz-
ing the power and conceptual advantages of thinking in
terms of objects, classes, and reusable modules. We refer
the reader to standard references on the subject (e.g., [25]).
When it comes to the control of electromechanical systems,
however, standard object-oriented methods will take on a
somewhat special form because the software must interact
with one-of-a-kind hardware and instruction sets. In addi-
tion, there are few precedents that could dictate how soft-
ware should be organized. We chose to organize software
modules according to their interaction with the hardware
and with the outside world.

Software/Hardware Interaction
The use of off-the-shelf hardware implies that the instruc-
tion sets are essentially fixed. In our case, there is a given
command set for the actuators and another for the image ac-
quisition board. These sets are treated as assembly code,
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and we designed low-level routines that interface to them.
The following is a partial list of the available hard-
ware-dependent primitives.

• Sensing: The controller receives joint, tactile, or ob-
ject position data by transmitting a request to the ap-
propriate sensor. Joint angles are measured by
querying the corresponding motors. Polling a tactile
sensor provides a three-dimensional
vector for the contact location (i.e.,
the centroid of the area of contact),
the maximum deformation depth, as
well as a vector for the surface normal
at the point of maximum deformation.

• Actuation: The controller can transmit
a joint position or velocity command
to a specific motor. The PID controller
residing in the motor uses the com-
mand as a set point and regulates mo-
tor current. The controller can modify
the parameters of the PID loop and can
specify upper limits for the angular velocity and accel-
eration of the motor.

• Feedforward Control: The controller transmits a pre-
defined sequence of control inputs to the motors (in
real time).

Hardware-Independent Primitives
We would like motion description languages to have as
much portability as traditional C++. One could argue that
currently there is almost no portability for motion control
programs. On the other hand, the HRL manipulator has
given us a chance to see what such a software environment
might be like. The following high-level primitives abstract
from the specifics of the hardware and provide the basic
functionality necessary for manipulation.

We note that each of the software modules described in
this work must be supplemented by algorithms that are cor-
rect in detail. This constitutes an important but tedious pro-
cess that is beyond the scope of this article. In the interest of
space, we omit many of the details; however, we do want to
avoid the gross oversimplification sometimes found in AI
texts and wish to call attention to the fact that behind each
of the following primitives is a certain amount of mathemati-
cal analysis. Primitives are arranged according to the physi-
cal complexity of the corresponding task:

• Find Object: Involves image processing, segmentation,
and template-based search. This primitive initiates a
routine that obtains an image of the desktop from the
overhead camera and searches that image for an ob-
ject. Currently, an object is detected either by its con-
trast to the light-colored desktop or by a pair of
fiducial dots mounted on its surface.

• Grasp Object: The mathematics here have to do with
finger kinematics and Jacobians, as well as the grasp
matrix (2) and its rank [17]. After an object has been

located, the controller moves the fingertips closer to
the object using inverse kinematics. Usually, no infor-
mation is available on the object’s geometry; there-
fore, the controller proceeds by moving the fingertips
slowly toward the known center of the object while
the tactile sensors are monitored for signs of contact.
When contact has occurred, tactile data is used to

check for grasp stability. This is done by examining
the singular values of the grasp matrix. Finally, the fin-
gertips are moved along the surface normal at the
contact(s) to tighten the grasp as desired. The finger-
tip forces necessary to apply a desired internal force
to the object can be computed by solving an optimiza-
tion problem whose data include a basis for the null
space of the grasp matrix [1].

• Catch Object: This primitive uses the manipulator’s in-
verse kinematics and Jacobian, together with a simple
difference equation (1) that estimates the location of a
moving object in the images acquired from the over-
head camera. The controller tracks a moving object
on the desktop (e.g., a rolling ball) and guides the fin-
gers to follow the object at a fixed prespecified dis-
tance on either side. When the object’s velocity
decreases below a specified threshold, the fingers are
moved quickly toward the object until contact occurs.

• Point-to-Point Manipulation: Enables the manipulator
to move an object from one equilibrium configuration
to another. Once the object has been securely
grasped, the controller uses joint, tactile, and visual
feedback, together with the kinematics of the manipu-
lator, to compute the incremental joint motions re-
quired to bring about a desired incremental object
motion by means of (2) (see also [17]-[19]).

• Teleoperation: The user provides a desired position
for the object using a pointing device (such as a com-
puter mouse) while the controller uses grasping and
point-to-point manipulation primitives to move the
object according to the user’s commands.

• Kinematic Exploration: The analysis here makes use of
the manipulator’s Jacobian and kinematics (2) in a feed-
back control loop. Given a desired object trajectory (for
an object in the manipulator’s workspace), the control-
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ler uses low-level and point-to-point manipulation primi-
tives to move the object to each of a sequence of
configurations, all lying on the desired trajectory.

A Note on Software Architecture
We do not expect the reader to be interested in coding de-
tails (which are available from the authors); however, we do
want to give a general idea of the architecture of our soft-
ware, as well as the manner in which primitives interact with
each other. Following the paradigm of MDL [23], [24], [26],
each hardware-independent primitive was implemented as
a feedback loop that can be interrupted based on sensor
data (for example, a vision sensor indicates that an object
has been located and the manipulator should now move to
grasp it). Once a primitive is interrupted, another begins to
run. This procedure takes place on a computer (called the
“control processor”) that transmits control inputs to the ac-
tuators and decides which primitive to run at a given time.

Due to the complexity of our sensor suite, a significant
amount of preprocessing must take place before the raw
data (e.g., pixel values) are converted to information that
can be used by a primitive (e.g., coordinates of an ob-
ject-fingertip contact). For this reason, all code that imple-
ments sensing operations is executed on a dedicated
second processor (called the “sensing processor”). The
sensing processor maintains a polling table with the ad-
dresses of some or all of the available sensing routines. Dur-
ing each feedback cycle, these routines are executed and
their output(s) are returned to the control processor. Of
course, each primitive might have different requirements
with respect to which sensors must be polled (e.g., tactile
sensors only versus tactile sensors and overhead camera)
or how the raw data should be processed (e.g., measuring
local curvature at a contact versus simply detecting con-
tact). For this reason, our implementation allows for a primi-
tive to dynamically interrupt the sensing processor and

reset its polling schedule to include a new subset of sensors.
Such an action causes the sensing processor to begin run-
ning a new set of routines and posting the resulting data
back to the control processor for use by the primitive that
made the request. This arrangement makes the software ef-
ficient (because a sensor does not consume CPU time if
there is no demand for its output) and enforces the separa-
tion between the hardware-independent algorithm and the
data gathering necessary to drive that algorithm.

As we have indicated, feedback loops running on the con-
trol processor are closed by data arriving from the sensing
processor. Of course, the highest frequency at which sensor
data can be generated (and thus the highest rate at which a
feedback loop can run) depends on the sensing modalities
and amount of preprocessing that have been requested by
the corresponding control primitive. In addition, because
the sensing processor does not run a real-time operating
system, there is a slight variability in the time intervals be-
tween data arrivals at the control processor. The resulting
“jitter” in the feedback loop does not seem to cause a prob-
lem in the operating domains we have explored.

Software/Communication Interaction
Until recently, it had been common to “decouple” the com-
munication aspects from the underlying dynamics of a con-
trol system, as this simplified the analysis and generally
worked well for classical models. In the past few years, how-
ever, advances in electronics, communications, and network
technologies have enabled the development of large-scale,
complex systems. This has led to the need to reexamine
some of the fundamental assumptions involving the effects of
communication on control. Smart structures, communica-
tion networks, robots, and formations of autonomous vehi-
cles are all examples of systems that incorporate an
unprecedented number of components, all of which must op-
erate in a coordinated manner. These systems are distributed

in the sense that their sensors, actua-
tors, and computing elements commu-
nicate via a shared medium, be it a
radio frequency, a computer bus, or
pins on a VLSI device. Restrictions on
access to this medium often have a pro-
found effect on the performance of the
overall system, pointing to the neces-
sity for analytical tools that bridge com-
munication and control.

As the complexity of a system in-
creases, simultaneous communication
among components becomes an unre-
alistic assumption. Instead, sensors
and actuators must “share the atten-
tion” of the controller. Lack of time to
communicate is therefore an impor-
tant constraint compared to lack of
computational power. The HRL manip-
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ulator was used to explore aspects of
this “coupling” between control and
communication.

The manipulator uses actuators
that share the computer’s serial port
so that the computer can communi-
cate with only one motor at a time.
Therefore, the coordination of actua-
tion and sensing operations requires that the controller
choose which motors and sensors to exchange information
with at a particular time. Fig. 12 illustrates the control loops
and communication constraints that govern the operation
of the manipulator. The communication constraints govern-
ing the operation of the manipulator become important
when one requires the manipulator to follow a desired tra-
jectory in real time. The controller cannot supply continu-
ous inputs to the actuators, nor can it update all actuators
simultaneously. In the following, we introduce a simple
model that can be used to analyze this situation and that
captures characteristics of a rather general class of hybrid
control systems.

A Model for Limited
Communication Control
Consider a continuous-time, linear time-invariant (LTI) sys-
tem that is controlled by a digital computer (Fig. 13).

• The controller cannot provide continuous inputs to
the LTI system; instead, commands are sent to the sys-
tem every ∆ units of time via a zero-order hold.

• The dimension of the communication bus (b) that car-
ries controller-generated inputs may be smaller than
the input dimension of the LTI plant (m). As a result,
the controller must choose which of the input signals
to update at every cycle.

We are interested in control tasks of finite duration; therefore,
we consider controller-generated sequences of fixed length N .
To fix notation, let �b N( ) denote sequences of length N whose
elements are in R b . The plant is defined by the triple
( , , )B A C m n n n n p∈ × ×× × ×R R R , with G s C sI A B( ) ( )= − −1 .
Finally, L Tp

2 0[ , ] denotes the space of square-integrable func-
tions with finite support, taking values in R p .

The controller can select which input is to be updated at
a particular time. This leads to the idea of a “communication
sequence” [27], which can be understood as the order of op-
erations for the switch(es) connecting the controller to the
various parts of the system. We will use the notation

{ }σ σ σ σ σ= − ∈( ( ), ( ),..., ( )) : ( ) { , }0 1 1 0 1N i m

to represent a communication sequence. The vectors σ( )i of
a communication sequence σ are to be interpreted as indica-
tors of which of the elements of the system input v t( ) are to
be updated by the controller at t i= ∆, i N= −0 1, ,… . Because
onlyb inputs can be communicated at one time, we must im-
pose a feasibility condition, namely, that Σ j j i bσ ( ) ≤ for

i N= −0 1,..., . It is worth noting that the definition of a com-
munication sequence allows us to quantify the amount of
“attention” the controller pays to each input and output of a
computer-controlled system.

This model for computer-controlled systems has been
used to understand optimal control problems involving out-
put tracking [28] and stabilization [29] in the presence of
communication constraints. Here we discuss some of the
ideas involving the input-output characteristics of com-
puter-controlled systems.

Input-Output Behavior
We ignore for the moment any constraints having to do with
the size of the communication bus (i.e., all m inputs can be
updated at once) and consider the resulting sampled-data
system as a linear, time-varying map that takes sequences to
continuous-time outputs: Λ ∆∆( , , ) ( ): ( ) [ , ]G N

m pt N L N� → 2 0 .
This map is completely determined by the parameters of
the underlying LTI plant, the controller’s sampling period,
and the duration of the task:

y t t u t k u kG s N
k

N

( ) ( ) ( ) ( )( ( ), , )= = −
=

−

∑Λ ∆∆ ∆φ
0

1

,

where

φ = ≥

<






∫ −

∆

∆

( )
.

( , ) ( )

t Ce Bd t

t

t A t

0
0

0 0

min τ τ

Now, fix a communication sequence σ according to which
inputs are to be transmitted. The multiplexing action of σ
can be expressed as a linear operator M( )σ

M N Nb m: ( ) ( )� �→ .

The operator M is determined by the elements of σ. In fact, if
we identify elements of �b N( ) with vectors in RN b⋅ , then M
can be written as an Nm Nb× matrix with binary entries. The
key to constructing M is to notice that consecutive elements
( ′ ′ +σ σ( ), ( )k k 1 for some k) of a sequence ′ ∈σ Range( )M dif-
fer in at mostb places (as dictated by σ( )k ). The closed-form
expression for M is rather cumbersome and will not be
given here (see [28]). To summarize, for a fixed communica-
tion sequence, the overall input-output map is given by

y Mu= Λ ,
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where we have suppressed the dependence of Λ and M on
the system parameters.

An Invertibility Experiment
We now proceed to apply our analysis of computer-con-
trolled systems to a class of problems involving real-time
trajectory tracking.

Suppose that we would like to manipulate an object along
the (planar) real-time trajectory:

x t t

y t t t
d

d

( ) . ( )

( ) . . sin( ), [ , ]

=
= + ∈

4 2

4 5 1 7 2 0 1

cos

s. (3)

For simplicity, we choose to restrict object and finger mo-
tions to the horizontal plane. Of course, each finger is capa-
ble of motion in the vertical direction, so that one could
consider object trajectories that exercise all three degrees
of freedom in each finger. Using our algorithms for kinematic
exploration, we were able to compute the joint trajectories
that would result in the object following the desired path
(see Fig. 14). However, these “nominal” joint trajectories
cannot be communicated to the actuators because of the ex-
istence of communication constraints between actuators
and controller. Instead, any joint input must be piecewise
constant (i.e., an input is set and cannot be changed until
some time later). How are we then to compute the “best” set
of such inputs?

If we approximate the manipulator with an LTI system,
then the question is one of “inverting” that system to find
the input that will produce a desired output [30]. We must
make a distinction here between the Moore-Penrose in-
verse, which is what we look for in this section, and the ap-
proximate inverse corresponding to an operator whose
range space is dense. Turning to our model for com-
puter-controlled systems, it is obvious that such systems

are not invertible because of the existence of communica-
tion constraints. Therefore, the best one can hope for is to
approximate a desired output “as closely as possible.” If we
choose the norms induced by the usual inner products in
�m N( ) and L Tp

2 0[ , ]:

u v u k v k y z y t z tm pN
T

k

N

L T
T

T
, ( ) ( ), , ( ) ( )

( ) [ , ]�
= =

=

−

∑ ∫
0

1

0 02
dt

then our trajectory-following problem can be posed as a
least-squares matching problem:

• Problem Statement 4: Given y L Td
p∈ 2 0[ , ] find u Nb∈� ( )

that minimizes

y Mud L
−Λ

2

2 .
(4)

It can be shown [28] that if the original LTI system has
normal rank (i.e., limsup rank| | [ ( ) ]s C sI A B m=

−− =1
1 ), and if

the controller communicates with every input at least once
over the course of the task, then the operator ΛM is
one-to-one and thus has a generalized (Moore-Penrose) in-
verse given by

( )( )# * *Λ ΛΛ ΛM M M MT T=
−1

, (5)

where Λ* is the adjoint operator of Λ, given by

Λ ∆

Λ ∆

∆

∆

∗

∆

( , , )
: [ , ] ( )

( )( ) ( ) (*

G N
L N N

y j t j y t

p m

T
N

2

0

0 →

= −∫

�

φ ) , ,dt j N= −0 1…

for y L Np∈ 2 0[ , ]∆ .
Finally, the solution to our trajectory-following problem

is given by
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( )u M M M y yT T
d ic*

* *( )= −
−

ΛΛ Λ
1

,

where yic is the effect of the initial conditions of G s( ).
Equation (5) can be considered an analog of the

well-known formula for the left pseudo-inverse of an opera-
tor K n m:R R→ , with m n> , rank( )K n= :

( )K K K KT T# =
−1

.

Trajectory-Following Experiments
We modeled the manipulator as a four-input LTI com-
puter-controlled system with a communication bus of di-
mension 1. Using kinematic exploration, we obtained the
nominal joint trajectories required for the object to follow
the path given by (3) (shown in Fig. 14). A communication
sequence was selected, and the generalized inverse of (5)
was used to compute the optimal input sequence u* (a total
of 20 samples to be sent to the motor per second). That se-
quence was transmitted to the actuators, and the actual ob-
ject trajectory was recorded. Finally, the L2 tracking error,
y Mud −Λ *, was evaluated.

Uniform Attention
We selected a communication sequence corresponding to
“uniform attention”

σ = ( , , , , , , )e e e e e e1 2 3 4 1 4… ,

where ei denotes the standard basis vector in �4 . In this set-
ting, the finger joints are labeled as follows: 1—left proximal,
2—left distal, 3—right proximal, and 4—right distal. Fig. 15
shows the input signals applied to the actuators and the result-
ing object trajectory. There is good agreement between the de-
sired and actual curves. The L2 tracking error (4) was 5.5.

Averaging
To obtain a basis for comparison, we computed a sequence
of control inputs by averaging the nominal (but infeasible)
actuator inputs of Fig. 14. For example, if a control sample
were to be sent at t tk= and then at t tk= + 1, then set
u u t dt t tk t

t

k k
k

k= −+

∫ +( ) / ( )
1

1 . Fig. 16 shows the input/output
pair corresponding to that approach. Tracking performance
was quite poor, with an L2 error of 12.1.

Nonuniform Attention
The figure-8 tracking experiment was performed again, this
time using a communication sequence that devotes 10%,
35%, 15%, and 40% to inputs 1, 2, 3, and 4, respectively:

σ = ( , , , , , , , , ,

, , , , , ,

e e e e e e e e e

e e e e e e e
3 4 1 2 4 4 2 4 1

2 4 2 3 4 2 4 , , , , ),e e e e2 3 4 2

again using the standard basis vectors in�4 to specify which
input gets updated at a particular time. Notice that distal
joints (inputs 2 and 4) are updated more frequently than
proximal joints. We arrived at this choice of communication
sequence by observing the desired joint trajectories (in Fig.
14). For each time interval of length ∆ = 0 05. s, we allocated
communication cycles using as a guide the amount of rota-
tion required by each joint over that interval. Tracking perfor-
mance was slightly improved compared to what was
achieved with uniform attention. The L2 error was 3.2 (Fig. 17).

Conclusions and New Vistas
We have described an experimental facility designed to
study aspects of multimodal intelligent control and re-
ported on some of the related research activities. The pur-
pose of the manipulator is to provide a reliable, versatile
control system that will be useful both as an instructional
aid and as a research tool. As the field of intelligent control

February 2002 IEEE Control Systems Magazine 93

0 0.2 0.4 0.6 0.8 1

Time [s]

ra
d/

s

7

6

5

4

3

2

Y
 [c

m
]

X [cm]

Object Trajectory

−4 −2 0 2 4
1

2

1.5

1

0.5

0

−0.5

−1

−1.5

Red: u1
Blue: u2

Green: u3
Teal: u4

Blue: Actual
Red: Desired

Figure 15. Optimal inputs (uniform attention) and resulting object trajectory.



gains maturity, new issues are emerging related to our un-
derstanding of larger, multicomponent systems and to the
interactions among control, communication, complexity,
networks, and signal processing. Our goal in developing a
hybrid system of this type was to create a “system of sys-
tems” that captures such interactions and in which several
sensing and actuation modalities have to be brought to-
gether into the control decisions. The manipulator’s ro-
bustness is reflected in the large number of graduate and
undergraduate students who have used the system over
the past 15 years. Although the manipulator has under-
gone several refinements over time, the use of off-the-shelf
components whenever possible has contributed to its long
life and upgradability. Some of the research efforts for
which the manipulator has proved useful involved me-

chanical design, computer vision, real-time programming,
limited communication control, robotic manipulation, and
tactile sensing.

Current plans for improving the mechanical characteris-
tics of the manipulator include replacing the transmission
chain and gears with a cable drive to decrease joint compli-
ance and backlash. Estimating object shape from overhead
images could prove valuable in planning effective grasps. In
addition, the rich set of data provided by the manipulator’s
fingertips could be used to sense slip or in combination with
overhead images for shape estimation. More broadly, it is
important to understand how sensors and actuators might
“best” share the attention of the (centralized) controller.
The manipulator allows us to explore problems of this type,
which are of interest to a broad spectrum of researchers. In
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fact, issues related to attention, including the interaction of
control and communication, are of particular significance to
modern engineering systems where the presence of a net-
work or of a distributed topology is becoming increasingly
common. We believe that the experimental system pre-
sented in this work, together with others like it, can contrib-
ute to the ongoing investigation of these questions, as well
as to the education of future engineers. To date, the HRL ma-
nipulator has helped shape five doctoral theses and 15 un-
dergraduate research projects at Harvard, under the
direction of the second author. It has influenced our teach-
ing on a wide variety of topics, as suggested by the refer-
ences. We expect that the manipulator will continue to
evolve, and we hope that other researchers will find it a use-
ful paradigm for intelligent control.
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