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Abstract

The existing literature on network and queuing analy-
sis has a tendency to move as quickly as possible away
from the flow equations to a description of the prob-
lem in terms of probabilities, leaving behind the sam-
ple path description. In this paper we formulate and
solve a number of general questions in this area using
sample path methods as an important part of the pro-
cess. Relying, as it does, on the theory of stochastic
differential equations, this approach brings to bear a
heretofore ignored but quite effective problem solving
methodology. It also serves to bring the subject of con-
trolling queues in closer contact with other branches of
automatic control.

1 Introduction

Inspired, at least in part, by the successful use of
Wiener processes in estimation and stochastic control,
over the last thirty years it has been often suggest-
ed that methods based on stochastic differential equa-
tions should find an important role in queueing theo-
ry. Even so, the accumulation of useful technique and
solved problems has remained rather modest. Undaunt-
ed, we take up this challenge. Presented here is a set of
solved problems based on techniques involving stochas-
tic differential equations with Poisson counters and the
related hyperbolic partial differential equations which
describe the evolution of the probability distributions.
From the queueing point of view, our models involve
flows with finite buffers, flows with priorities, tandem
configurations, multi-class flows, etc. The space avail-
able for this paper does not permit a full presentation of
both the theory and a fully representative set of worked
examples. In hopes of offsetting the image of stochastic
control as being stronger on theory than it is on solvable
problems, we devote most of the space to examples. We
hope to present a more complete account in the near
future.

Our central theme is that by passing back and forth
between a description of the sample paths using differ-
ential equations and a description of the evolution of the
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probability density in terms of the Fokker-Plank equa-
tion, we can both unify and simplify analytical aproachs
to these problems. In the treatment given here we use
Poisson counter driven stochastic differential equations
together with a systematic use of the Itd calculus as
the fundamental modeling methodology. The idea of
using stochastic differential equations to model queue-
ing delays is not new. Deterministic fluid model has
been suggested by several authors including Kleinrock,
[7]. Anick et al. [1] seems to be the first to analyze a
stochastic fluid queueing system.The relevant underly-
ing theory is covered in Brémaud [3] (and, together with
Martins-Neto/Wong [8] among the first) expositions of
the dynamic systems view of queueing systems. Mar-
tins [8] treats some classical queueing problems with
the martingale calculus and Davis [6] treats in detail
piecewise deterministic process.

2 Mathematical Preliminaries

2.1 Poisson Driven Differential Equations
Poisson counter is a simple but important process. In
{4], the utility of the Poisson Counter is greatly ex-
tended by combining them with ideas from differential
equations. We now briefly describe this approach to
pave the way for our applications.

Consider a stochastic integral equation

t
0

20 =(0) + [ s, ar+ [ glate),nav.

where N, is a Poisson Counter. The solution of equa-
tion (1) is defined as follows.

Definition: z(-) is a solution of (1) in the It6 sense if, on
an interval where N is constant, ¢ satisfies ¢ = f(z,t) -
and if, when N jumps at ¢, z changes according to

lim z(t) = g(lim z(t),t1) + lim z(t) (2)
t—t} t—t] tot]

and z(-) is taken to be continuous from the left. Equa-
tion (1) is often written as

dz(t) = f(z,t)dt + g(z)dN 3)



and is called the Poisson Counter driven stochastic D-
ifferential Equation.

Some consequences of the above definition are listed
below. In the paper [5] there appears an explicit con-
struction of a sample path realization of an arbitrary
finite state, continuous time jump process using differ-
ential equations driven by Poisson pulse trains. We will
use this idea extensively because it can be combined
with ordinary differential equation models leading to a
uniform description of interesting situations.

Consider a stochastic differential equation driven by n
independent Poisson Counters Ny, ..., Np:

dz = f(z)dt + f: gi(z)dN;, zeR" (4

i=1
We have the following It0 rule.

If ¢ : R® - R is a differentiable function, then

ay(®) = (3L, f())de+ 3 [w(a(t)+:(z(0) - $(aD)]aN:
i=1
)

This rule will be further explained in some of the con-

crete application examples later. Since x(t) is contin-
uous from the left and the Poisson counter is taken to
be continuous from the right, we have

570 =E10) + LEale0, e (©

where a;; is the rate for N;.

Furthermore, if z(¢) has a smooth density function
o(t, z), then we would have the following equation sim-
ilar to the Fokker-Planck equation for the Wiener pro-
cess driven systems.

262 - 2 (r@wtt, o+

m

-1
a;i (p(t,éf () |det(I + %gj -p(t,z)) O

i=1
where §;(z) = z + gi(z) and §;'(z) is the value of z
just before the jump of N; [4]. (If the inverse of § has
more than one branch then it is necessary to sum over
all inverse images of z.)

2.2 Hyperbolic Differential Equations

As just discussed, the evolution equations for the prob-
ability density functions of interest in the study of Pois-
son counter driven differential equations are first order
in time and space, usually involving nonlocal effects in
that the coeflicients of the partial differential operators
may take the form a(z - b) 2. Such partial differential-
difference equations are notoriously intractable. How-
ever, and this is what makes it possible to solve many

problems involving fluid queues, is that if the coeffi-
cients are constant then these nonlocal effects go away.
Constancy of the coefficients arises when the flow rates
are independent of the queue length, as long as the
queue length is positive. In this case the Fokker-Planck
equation can be cast as a set of simultaneous first order
partial differential equations of the form

gt ) = (S iz +4o) ) =0 (®

with appropriate boundary conditions. Even for this
subclass, when more than one dimension is involved the
time dependent theory is involved. When conditions for
the existence of a steady state are assumed, however,
the asymptotic theory can be worked out. These addi-
tional assumptions are analogous to the stability condi-
tions associated with diffusion processes. As illustrated
by the examples to be given, the conditions for the ex-
istence of a steady state are often rather intuitive and
of independent significance. Garabedian [11] provides
a context in which to think about hyperbolic systems.

3 Hybrid Models

The models we consider here are stochastic differen-
tial equations driven by continuous time jump processes
taking the form

dr =Y ¢i(z)dN; ; z(0) €S 9

dv = f(z,v)dt + Z gi(z, v)dN; (10)

The N’s are Poisson counters. An important aspect of
this model is that the assumption that S is a finite set
does not make their theory either trivial or uninterest-
ing. It does mean that the functions ¢; must be chosen
to be compatible with S in the sense that for all z; in
S and for all ¢, we assume that;(z;) — z; € S. These
(z,v) models have a “hybrid” character in that z takes
on values in a finite set whereas v takes on values in a
continuum. It is known that any finite state jump pro-
cess can be generated by the = part of such a system; a
general construction was given in [5].

In the classical “virtual work” approach to the Poisson
arrival, deterministic service rate model, the z equation
is absent and the v equation is driven directly by the
Poisson counter. We can think of such models as Pulse
Driven Models. By way of contrast, the fluid queueing
models to be treated here have the property that the z
equation is present and the g; are absent. We can think
of these as being Level Driven Models

Because z evolves independently of v it is possible to
evaluate the statistical properties of z independently
of any analysis of v. Thus average inflow rates can
be determined before considering f. Because the large
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time asymptotic behavior of the solutions often depend
on the capacity of the system modeled by f to handle
the inflow, modeled by z, this is important.

4 Examples

Our first example is a familiar one, having been the
subject of the paper by Anick, Mitra and Sondhi [1].
Our reason for presenting it is to show that it can also
be done with path calculus for moments while some
later examples can only be done with moments. It also
provides a transition point and a means of introducing
the notation and language to be used later. Here and
below, we use boldface I to denote indicator functions.
The specific notation I, is the indicator function for set
v>0.

1. The Basic Single Server Infinite Buffer Queue
Consider an on-off Markov modulated source fed into a
queue with constant service rate c¢. The model is

{
(11)

with h > ¢ > 0. Let the rates of the counters N; and
N be a11 and ag2, respectively. If pg and p; are the
respective probabilities associated withz = O0and z = 1
then the probability law for z is generated by

NP

From this we see that the flow rate into the v system
has an average value of haj1/(a11 + a22). Unless this is
less than the outflow capacity c the size of v will grow
without bound. Because z only takes on the values 0
and 1 it is convenient to abbreviate the joint density
p(t,0,v) as po(t,v) and p(t,1,v) as p;(t,y). Standard
arguments (or the formula in section 2) then lead to the
Fokker-Planck equation

dz(t) = (1 — z(t))dN; — z(t)dN, ; z(0) € {0,1}
du(t) = —clydt + hz(t)dt

Po
n

—a11
a1l

Do
4t

az2

—an (12)

Bpoa(tt:v) _ 0'8@5 —aj aszz po(t,v)
Bplagtt,v) an (c — h) 86_11 - a2 P1 (t’ 'U) '
(13)

This equation is to be solved on the domain (t,v) €
([0,00), [0, 00)) subject to a boundary condition at v =
0 which relates the strength of the impulse at v =0 to
p(t,0%). More specifically,

auli [ po(t,0)do = (b= p(t, 00 (14)
€ o

The first step in looking for an equilibrium solution is
to find the solutions of the determinental equation

det cA ~ aiy a2
a1 (

Cc— h))\ — Q22 =90 (15)
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One solution is A; = 0 and the other is

(@11 + az2)c — a1 h

Az = c(c—h)

(16)

Note that A, is negative exactly when the the capacity
of the buffer exceeds the expected input flow. This
suggests that we look for a solution of the form

[raata 1= |

The expression for the vector density is

§8(v) + fer
ker2v

pBo(v)

pB,1(v) (17

o) 1 _ [ (1- 2thsy) 6) + e s,
p1(v) AL \yeha?

(18)
The marginal density for v is the sum of these compo-
nents, which, of course, is the same as the results of
Anick et al.

In some less elementary situations it still possible to
compute the moments of the distribution even though
the Fokker-Planck equation can not be solved direct-
ly. To facilitate comparison we now rework this model
showing how to compute the steady state value or the
moments directly from the sample path equations. Ob-
serve that the differential equations imply, via the It6
calculus, that

‘%E‘vz = —9c€v + 2hExw (19)

d
(E&)x = &(1 — z)vay, — Exvage — c€z + hEL,x (20)
It is important to observe that £zI, = £z, because v
is positive whenever z is. Thus if a steady state exists
then the following sum must vanish.

a1 —(a11 + as2) v (h— C)u i+
[—20 2h jli,‘[va+£[ n
(21)
Thus c€v = h€zv and when the capacity condition (h—
¢)ai; < cazz holds we have
(1 - ﬁ‘“;;—‘”—?) Ev=(c—hEzx  (22)
or,
v = (c - ﬂ—)A (h—)flhal.  (23)
- a1 + az ' .

The nth moments of steady state v can be obtained
quite similarly and the result is

e = (o= )—

2. Tandem Servers with Infinite Buffers

h—c
a1l + a2

hayy -
enEv™ L

, n>1.
(29)

ai + az2



Now consider the case of a tandem fluid model. Our
solution here seems to be new. The sample path de-
scription is

dz(t) = (1 - z(t))dNy — z(t)dN,

dvy (t) = - Im dt + Co.’l:(t)dt

d’Uz(t) = —Czlvgdt + cll'ul dt

dvs(t) = —cslgdt + oL, dt (25)
dva(t) = —cply dt +cn1l,,_,dt

where I, denotes the relevant indicator function, taking
on the value one for v > 0. To avoid trivialities we
assume ¢y > ¢ > C2 > -+ > ¢, > 0. (If a down stream
link has higher bandwidth than its source then we may
as well neglect this link). Stability, on the other hand,
demands that ¢, > co€z.

It is clear that the probabilistic description of v; is the
same as it was in the case of the single server. Focusing
on vy, consider

dvi = —2cov31,,dt + 2c1v21,, dt.
In steady state this leads to
c2€ve = 618‘0211:1 (26)

or c
Evsl,, = 2Ev,. (27)
(&1

Now lets consider a differential equation for v, (t)v2(t).
We have
dvive = v1dvg + vadu;. (28)

Plugging in the expressions for dv; and dvs, tak-
ing the expectations and considering in steady state
dfvyva/dt = 0 we have

—Cl“:Uqul + h€vex — 0281)11.,, + clé'vll,,l =0. (29)

Let us analyze the four terms on the left hand side. For
the first term we have from the above that

—015’021,,1 = -6251.)-2. (30)

For the third term we have, noticing that vy = 0 implies
v; =0, that

—6251)1[1 - I(,,2=Q)] = —c2€vy — CQSU]IUz:O = —c2év;.

(31)
The fourth term is easier to see:

6151)111,‘ = C1£’U1. (32)

The second term involves £vyx. Lets consider the d-
ifferential for vox. Since vy is continuous we have
dvez = vodz + zdvs which leads to, after taking ex-
pectations,

d
Efvzz =a;1Eve — (au +a22)€v2z—-cz£$1,,2 -l-C1(‘:£l:Iu1 .
(33)

Since z = 1 implies both v; > 0 and vy > 0 the last
two terms on the right hand side are c2€z and ¢; €z,
respectively. Thus we see that Evoz can be expressed
in terms of £v,. Finally in steady state we have

aiy €1 —C2
a1 + az2 ai + as

Evpx = Ex. (34)

Substituting this into (29) we have a recursive formula
for vy:
han h(Cl - Cz)

(an Iy Cz) Evg+ a1+ a2 52+(C1 02)51)1 =0.
(35)

In order to bring out the structure of the general sit-

uation we now organize this point of view in terms of

the underlying linear algebra. We require a series of

vectors,

TV
o
m =z ; mz:[l’u ] ; mg=| Ly | -+
10 Lyvs
(36)
which can be organized into an equation that defines
the steady state

Bu 0 0 0 0 my b1

_ 321 Bzz 0 0 0 mo 0

0= B3y Bz, Bz 0 0O £ m3 tlo
(37)

The diagonal blocks, B;; have a regular form:

an +a2) an

= —ay : Bp=]| ¢
By = —a11 ; Bzz—[ co —a

~{a1+ag) 0 an
B33 = Co —C1. —C3 3 e (38)
0 (53] -Cg

In general we have

hay; h{c1 —¢n)
—_— —_¢ 39
(011 + a2 c,,) Evn + ain + aze :1: (39)
+(cn-1—€n)(Wn—1 + -4+ v1) = 0. (40)

3. Single Server with Multi-rate Sources
Consider a source that has three possible input flow
rates. For example, there may be no flow, a low data
rate stream or a high data rate stream. See also {1].
The differential equation model takes the form

dz =" ¢(z)dN; ; T € {71,72,",Tm}  (41)

dv = —cl, + z(t)dt (42)

In the case n = 3 the Fokker-Planck equation takes the
form of p = Ap where A is given by

i)

(c=T1)7z5; —an a3 a3
a21 (C - .1'2)2% — ags a3
as1 aszg

(c— Zs)% — a33
4
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The Fokker-Planck equation is of the general form

9p(t,z) _ (

at
Suppose we take the v-domain to be [0,00). Then the
steady state solution takes the form

(44)

o
5{)0 + A) p(t,x)

C~Av

p(v) = €€ 4% pq + p6(v) (45)

The pair (pg, p) represent a total of 2n undetermined
constants. These are fixed by two different types of
conditions. In the first place, the z-marginal, must be
a steady state probability vector. That is

e <)
Poo = / ¢ 49 py 4 p8(v)dv (46)
0
should satisfy
Apeo = 0. 7)

Assuming that A is irreducible, this together with nor-
malization represents n conditions. The other n con-
ditions come from an analysis of the flow of possibil-
ity at the junction at v 0. In equilibrium, the
net flow rate of probability into each of the n sets
S; = {(z,v)|z = zi,v = 0} must be matched by the
flow rate out of the set. Flow out comes about when v
is zero and the state of z changes in such a way as to
force v(t) to increase. This rate is Ap. The flow rate
into the S; is zero if the i** component of Cp(0F) is pos-
itive but otherwise it is the i** component of Cp(0t).
If z is a n-dimensional vector we let [2]-. denote the n
dimensional vector whose components are either zero
or equal to the components of z, depending on whether
or not the components of z are positive or negative.
Adopting this notation, we may say

Cp(0h)}- = Ap

(48)

This equation represents n more conditions on the pair
(po, p)- Finite buffer case can be treated similarly. See

also [10].

4. Single Server with Priority Services

Priority, or differentiated service, is becoming reality
in Internet. We now consider a deterministic server
with capacity ¢ fed by two independent Markov on-off
processes z; and z2. Suppose z; has absolute priority
over 2. We have:

dzi(t) = (1 - (t))dNu - :tl(t)lez

dﬂ:z (t) = (1 — T2 (t))ngl - Iz(t)dN22 (49)
dv; (t) = —-C]:,,,1 dt + hixq (t)dt

dva(t) = —clL,(1 = L,)dt + hazodt.

To make the problem meaningful we require that ¢ <
min(hy, k). It is clear that v; is the same as before.
We focus on £v,. Consider the following equations.

4 0] = 2c[—Evalu, (1 — I,) + ho€vaas)

—2c€vs + 2c€v2l,, + ha€vez2 (50)

2 Evovr = E(vaduvy + vidus)
= —cEvaly, + h1vazy — c€vily, (1 — Ly, ) + ho€viz2
= —c€voly; + hi€vazy + ha€uviza.
(51)
since Ev11,,(1 - 1,,) = 0.

%51}2121 = £(v2da:1 + :Eld'vz)

il

a11€v2 — (@11 + a12)Evazy + ha€z122
(52)
Here €z:1,,(1 - I,;) = 0 is because v; = 0 implies

x; =0.

%Evzzz = S(l‘zd’vz <+ 'Uzdxz)
—051221112 (1 - Iul) + h2£.’l:§ + a21gv2(1 - 12) — az22€vaz;

= —c€x2 + c€x2ly, + ho€z2 + a21€vz — (a2 + az2)évazs.

(53)
Note that here we have £x21,,, = £z2 and £z,1,,1,, =
Ex1,, because vy is positive whenever z; is.

Assuming that the steady state exits leads to 4 lin-
ear equations. Note that vz = vz and that
Ex1x9 = Ex1Ex2 due to apparent independence. There
are now 4 unknowns involved in the 4 equations above.
They are

(54)

To see that the above equations are independent we list
them in a matrix form.

Evg, Evaxy, EVaxa, Evol,, .

—-2¢ 0 ha 2c Evs
0 h 0 —c Evezy
ann  —(an + a12) 0 0 Evezs
asy 0 —(021 + (122) 0 szlvl
0
_ -—hzglez
- —h2g.’tl T2 (55)

(C bl hz)EZQ - C(‘:.'Equl

It is clear that in general the coefficient matrix is non-
singular.

5. Service Rate Dependent on Backlog

In the above fluid queueing systems the service rates
are constant. The path calculus approach is capable of
handling more complex service schemes. For example
consider a Markov on-off process feeding into a work-
conservative queue with the service rate proportional
to the instant workload, v(t). This bandwidth allo-
cation scheme could be useful for certain guaranteed
quality service or can be used to approximate a queue .
with many different priorities. In wireless network this
could model a power control scheme. Note that here
the queue content is always finite although there is no
hard buffer limit. The sample path of this fluid queue

o

where ¢ is a constant.
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(—III + ].)le — zdNs.
—cv(t)I,dt + zdt.

dz =

du(t) = (56)

a11€vz — a1 €vexy — a12€v2Ty — 0531102 (1 - Ivl) + hE€zi1z2

—c€x2)y, + c€x2ly, 1y, + ha€za + a21€v2 — (a21 + az2)Evaza



Here we use the path calculus to compute the moments.
We have

fv = E_L’ (57)
cap + a2
gl = MAaU_ epnns0. (58)

0211, + ajic + asac

6. The TCP Window Process

Now consider the application of sample path calculus
to TCP traffic. In Misra et al. [9] evidence is given
lending support to the idea that most loss traces are
close to Poisson streams. There are two different kinds
of losses, triple duplicate ack (TD) losses and time out
losses (T'O). The window size goes on increasing linearly
with every RTT till the time loss occurs. For a TD kind
of loss the window size is reduced to half it’s current
value whereas for a TO loss the window size is reduced
to 1.

Let W(t) be the window size. Then,

dt

dW(t) = m

+ (=W (t)/2)dN7p + (1 = W(t))dNro.
(59)

To take into account max window size, (59) is modified
by multiplying the first term by an indicator function,
ie.,

dt

dw (t) = In (W (1)) BT

+(~W(t)/2)dNrp+(1-W (t))dNro
(60)
where LW < M
yWit) < M;
Ta(W(®) = { 0,W(t) = M.
This ensures that the window size doesn’t grow once it
has reached M.

The differential equation approach leads to a closed for-
m formula that fits the empirical data extremely well.
To simplify the notion we use a; and a2 to denote the
rates for Nyp and Npo, respectively. The formula is
as follows.

1
RTT

where, with K = 1/RTT and TO denoting the time
out period,

EW = { (I—Pm)+a1}/(az/2+a1) (61)

2a2 + 2a; + a1a2 + 2a; K + 2K? + 2K
(K+1)(2May + Mas + 2K

alK(2al + 02)(M - I)TO

(K +1)(2K +2May + Mas2’

P, =

+

(62)

5 Extensions

Lack of space has prevented us from discussing a num-
ber of interesting aspects of our work. One of these

is an approximation method for determining the auto-
correlation functions associated with the buffer length-
s. Although the autocorrelation can not be comput-
ed in closed form, sample path descriptions facilitate
the development of effective approximations based on
matching key moments which can be computed explic-
itly. This type of information gives considerable insight
into the effects of cascading systems
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