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Abstract

In this paper we describe a family of explicitly solv-
able optimal control problems involving nonholonomic
systems. It appears that the optimal trajectories for
these problems need only be piecewise smooth with the
smooth arcs being given in terms of a product of matrix
exponentials. The solvability of a matrix equations of
the form e2ef =% = X plays a key role.

1 Introduction

The model problem discussed by Gaveau [1] and the
author [2] has proved to be a useful source of insight
about nonholonomic control. In this paper we iden-
tify a class of explicitly solvable problems of this type,
a class that includes the problem of {1]-[2] as a limit-
ing form. The optimization problem we solve involves
systems that evolve on matrix Lie groups. The hypoth-
esis involves the existence of a Z; grading on the Lie
algebra generated by the control vector fields. The re-
lationship between the space of the control action and
the Lie algebra it generates is formulated in theorem 1.
A number of examples will be given and in some cases
these will be given a geometric interpretation involving
holonomy.

Let G be a real Lie group and let £ be its Lie algebra.
We will say that a sum decomposition of £ = Lo + £
defines a Zs grading if ‘

[Lo, Lo] C Lo
[Co, [,1] C L,
[ﬁl, Co] C L
L1, L4) € Lo
‘We will also use the standard notation
adr(-) = [L,]
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and use (X,Y) = tr(XTY)

Theorem 1: Let G be a real Lie group and let £ be its
Lie algebra. Assume that vector space decomposition
L = Lo + L defines a Zs grading on L. Consider the
control system

Xt)=U@®)X(t); X0)=1;U(t) € L,

together with the performance functional

1 1
n=3 [ \wo.ve

and the constraint X (1) = X;. Assuming that the set
S ={(Lo,L1)|Lo € Lo ; L1 € Ly ; ePoelr~ 1o = X;}
is nonempty, for each (Lg, L) € S the control
U(t) = e~ Lot elot

renders 7 stationary. The corresponding value of 7 is
given by
n= (L L 1)

and the stationary trajectory is

X (t) = elotellr=Dolt x(q)

The proof is based on the following elementary but use-
ful lemma.

Lemma 1: Let G be a real Lie group and let £ be its
Lie algebra. Suppose that £ = Lo + £ defines a Z,
grading of L. If mp : £ — Loy and m; : L — L, is the
natural projection, then the equation

M(t) = [mo(M(2)), M(t)] = —[mi(M(t)), M(t)]
has the solution
M(t) = eﬂo(M(O)tM(O)e—ﬂ'o(M(O)t

Proof of Lemma:
also be written as

Observe that the equation can

M(t) = [ro(M(t)), m(M(2))]



Appealing to the assumption about the graded struc-
ture, we see that the projection of the right-hand
side of this equation onto Lo is zero. Thus the pro-
jection of M(t) onto Lo is constant and M(t) =
[mo(M(2)), m1(M(t))] can be regarded as a linear equa-
tion for w1 (M(t)). Solving it we get the desired result.

Proof of Theorem: We get the first order neces-
sary conditions by applying the maximum principle of
Pontryagin. We represent linear functionals on X as
¢p(X) =tr(PX) with P being a square matrix. The
hamiltonian is then

h(X, P,U) = trPUX) + %tr(UT(t)U(t))
Thus P satisfies the equation
P(t) = —P(t)U(t)

and
U(t) = m(X(t)P(t))

Now introduce M = X P. The differential equation for
M is )

M(t) = [m1(M(¢), M(t)]
Applying the lemma we see that

M(t) = e~ ™ MOt pr(0)e~mo (MOt X (1)

Consider the variable Z defined as Z(t) =
e~™ (MOt X (). The definition implies that Z satis-
fies a constant coefficient equation

Z(t) = M(0)Z(t)

Solving this, and then substituting back for X, gives
the result as clamed.

Remark 1: Of course controllability is a necessary
condition to be able to solve eloel1—Lo = X,. However,
there is no assurance that it is sufficient.

2 Gradings on Traceless Matrices

An especially interesting application of this theorem
involves the group of matrices having determinant 1,
Sl(n), and its Lie algebra sl(n), the set of square matri-
ces whose trace vanishes. Consider splitting sl(n) into
the space of skew-symmetric matrices Lo and the space
of traceless symmetric matrices £,. The subset of Si(n)
that can be expressed as X = e®e#-9 with @ = —QT
and H = HT has nonempty interior in SI(n). This does
not follow from basic controllability considerations but
will follow from arguments to be given below. In the
meantime, observe that if X can be so expressed and if
© is orthogonal, then

oTxe = ee"neeeT(H-n)e
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is also expressible in this way. Also note that any sym-
metric positive definite can be expressed as e%ef—9
simply by letting © be zero.

Remark 2: If we express an orthogonal matrix as

O = efleH -0

with Q real and skew-symmetric then the eigenvalues of
© can only be plus or minus one; i.e. ©%istheidentity.
To see this notice that if e’e¥~% is orthogonal then
ef=2 must be orthogonal. But the inverse transposse
of efl= is e=H-% and so we require e~ H-0 = ¢H-0,
Suppose that H — Qz; = A\;z;. Then eH-9z; = ig;
and e H-9z,; = edig; as well. Now if e is unrepeated
as an eigenvalue of e/ % then we can assert that z; is an
eigenvalue of —H —(? and that its eigenvalue is \;+2min
for some integer n. However, subtracting (—H ~Q)z; =
Ai = 2min from (H — w)z; = M\iz; we see that z; is a
purely imaginary eigenvalue of H. Thus it must be zero
and H must vanish on any simple eigenvalue of e,
Orthogonal matrices are orthogonally similar to a real
block form with the blocks being two by two. Applying
this argument one block at a time we see that either
the restriction of H to this sub space vanishes or else
the eigenvalues are repeated. If they are repeated then
they are either one or minus one. If they are one the
matrix is the identity .

Lemma: The expansion of eleH—<? ghout ¢ = 0 is
of the form

eeH= = I L eH + €27 + R(e)
with J symmetric and R(e) of third order.

Proof: Simply expand the two exponentials keeping
terms up to and including those of third order. This
gives

1 1
eSlecH < — (I+Q+§QZ+...)(I+H—Q+§(H—Q)2+...)

Some simplification shows that the second order term
is one half H2 + [, H] and is, therefore, symmetric.

The significance of this lemma is that it shows that the
smooth stationary solutions defined by Theorem one
are symmetric not just to first order but also when sec-
ond order in 2 and H. On the other hand, the control
system

X=UX

Is not only controllable on Si(n) with U tracessess and
symmetric, but it is even first bracket controllable in
the sense that U and [U,U’] span the tangent space.
In this situation we know that any point e2X; in the
neighborhood of X; can be reached with a value of 7
that is at worst linear in ||A||. Thus we see that tra-
jectories that are symmetric up to third order can not
be optimal for steering from I to points of the form e



with Q small and skew-symmetric. The optimal tra-
jectories for such transfers will necessarily involve large
values of Q.

Example 1: Consider the problems m of steering the

system
_(_i_ 11 Ti2 _ u v T11 T2
dt | 21 x22 v U T21 T22
from X (0)] to X (1) = —1 while minimizing the integral

of the norm of the control matrix
1
n= / 2u? + 202%dt
0

As a first step we look at the possible solutions of the
equation

PALP S LIS |

Specializing remark two to the present situation, we
see that the only two by two orthogonal matrices that
can be expressed as e¥~? with H symmetric and Q
skew-symmetric atre I and that the eigenvalues of
H — © must be an integer multiple of . Taking this
into account, we see that the real solutions of

0 @ a b-6] | -1 0
-6 0 b+6 —-a | | 0 -1
occur when 62 — a? — b2 = (nm)2. This, coupled with
the constraints 8 = mn and m + n odd, mean that

a? + b% = (mm)? — (nr)?

The value of a2 + b2 that minimizes this is

a? + b2 = 42 — 7% = 32

€xp [

Thus the minimum value of 5 is 6w2. In this case the
optimal control is not unique because only the value of
a? + b? is specified, not @ and b individually.

Example 2: Consider again the same system but now
suppose the goal is to steer the system to an arbitrary
orthogonal matrix. We need to solve the equation

0 6 a b—6} | cosy siny
e % 5][se "] |

—a —siny cos¥y
Now we need 6 = 9 + , as well as
(r+¥)2-a?-b?=7n
The value of a2 + b2 is
a® +b% = (Y + m)% ~ % = 2wy + ¢

Again, the optimal control is not unique.

Example 3: Consider now the case

X=UX
with the task of steering X (0) = I to a symmetric pos-
itive definite matrix @ with det @ = 1. In this case we

can let © = 0 and the minimum cost is the sum of the
squares of the lograthims of the eigenvalues of Q

n=7 (logA)?
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3 A Nilpotent Approximation

We can gain some understanding of the local behavior
of this system near X = I by splitting X into its sym-
metric and skew-symmetric parts and making a suitable
approximation. Introduce F, G,

F= %(X+XT)—I;G= %(X»XT)
whose differential equations are

F(e) =U@) + 5[0, 60 + 5 (UOFE) + FOUW)

G(t) = 5[0, P + 3(URCE + COUE)

These are fully coupled, however they have a nilpotent
approximation near the point where F' and G vanish.
An expansion about F = 0 and G = 0, yields a the
system

F(t)=U(t)

&(t) = 5[U), Fo)

This pair can be thought of as a sub-system of the basic
model problem

z(t) = u(t)
#(t) = z(t)uT () — u(t)zT (t)

and can be understood using known methods. In fact,
borrowing from the results of [2], we see that the cor-
responding variational equation, written in terms of a
skew-symmetric matrix of Lagrange multipliers, Q is

Fit)+[Q,F(t)] =0
Solving this yeilds
F(t) = e F(0)e™

and
F(t) =eYAe™ ™ + B

with F(0) = A— B and [, A] = F(0). The case F(0) =
0 is especially interesting. In this case we have

t
Glt) = 5 [ 17100 Ale™%, e e — Alas

Remark:
system

The minimum cost required to steer the
F(t)y =U(t)
Gt) = 500, F@) ; U =0T
from (F(0),G(0)) = (0,0) to (F(1),G(1)) = (0,S) is
4w times the sum of the magnitudes eigenvalues of S.

To prove this it is enough to observe that If F and G
are two by two then the equations of motion are

fir=uyn



fi2 = uz2
912 = u11 fiz — w12fn

and for this system the result is known. For the general
system, observe that we can make use of the orthogonal
invariance of the cost functional to assume that S is in
real block diagonal form and that in this case the cost
associated with each subsystme simply adds. This is
in strong contrast with the behavior of the complete
distance-area system, & = u ; Z = zul — uz” whose
performance is more complicated. (See [2].)

Remark 3: In terms of the variables Z = XXT and
© =XVZ  the control system X = UX with U sym-
metric takes the form

Z(t) =U®)Z(t) + Z#)U(t)

&=-VZ adL(UZ+20)0+VZ UVZ6

Theorem one then asserts that Z(t) = e4*(e4t)T and
that © is constant if A is symmetric.

4 Gradings on Skew-symmetric Matrices

Our Second example concerns the group of n by n or-
thogonal matrices having determinant +1. We denote
this group by So(n). The corresponding Lie algebra
is the set of n by n skew-symmetric matrices, so(n).
We work with the quadratic form (2, Q) =trQTQ. Of
course So(n) contains So(n—1) as a subgroup and so(n)
contains so(n — 1) as a Lie sub algebra. We grade
so(n) by identifying Lo with the skew-symmetric ma-
trices whose first column and first row is zero but is
otherwise arbitrary. Take £; to be the set of n by n
skew-symmetric matrices that are zero except for the
first row and first column. A short calculation shows
that this splitting of the space of skew-symmetric ma-
trices defines a Z, grading.

Example 4: Given X; € So(n) and given
X(@t)=U®X@®); X(0)=1;U(t)e L,

There exists a control U(-) on [0,1] that renders sta-
tionary the functional .

1
n= / trUT (t)U (t)dt
0
subject to X (1) = X; provided we can solve
CQCS_Q=X1 s €Ly ; Sely
This control generates trajectories of the form

X(t) = eMelS-Dt X (0)
16

Remark 4: In this case the expansion of the product
takes the form

1
RS-t _ (I+Q+§QZ+...)(I+S—Q+%(S—Q)2+...)
which expands to
EECa TN SR L 512.5]

Again the bracket term [S, )] points in the direction of
L;.

Remark 5: The system of differential equations can be
“block triangularized” in terms of a n — 1-dimensional
part evolving on the unit sphere and a (n —1)(n —2)/2-
dimensional part evolving on evolving on the space of
orthogonal matrices SO(n — 1). Consider the division
of X into sub blocks

X = Tir  Ti12
[1721 Xa2

Let z; denote the first column of X, z = Xe;. Then
we see that the first column of X satisfies the equation

il(t) = U(t).’tl (t)

and can be thought of as evolving on the sphere S"~!.
It is then possible to recast the optimization problem
in terms of a shortest path problem, with an auxiliary
constraint on the holonomy it generates.

Acknopwledgement The author would like to thank
Hector Sussmann for a useful discussion on the conse-
quences of the strong bracket generating condition.

5 References

1. B. Gaveau, “Principle de Moindre action propa-
gation de la chaleur et estimees sons elliptiques
sur certains groupes nilpotents,” Acta Mathemat-
ica, Vol. 139, (1977), pp. 95-153.

2. R.W. Brockett, “Control Theory and Singular
Riemannian Geometry,” in New Directions in Ap-
plied Mathematics, P. Hilton and G. Young (eds.),
Springer-Verlag, New York, 1981.



