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Abstract

The signals one encounters in examining image in-
tensity data seldom appear to be even approximately
Gaussian and as a consequence Gauss-Markov filtering
theory, which vision researchers have found to be so
useful in tracking and road following, has not been of
much value in understanding the basic science involved
in developing low level vision algorithms. In this paper
we propose a new methodology for stochastic modeling
which allows one to explore a class of models better fit-
ted to the distribution of values taken on by the data
while maintaining the ability to fit the autocorrelation
function.

1 Introduction

Consider stochastic processes y generated by It6 differ-
ential equations of the form

dr = Azdt + Bdw

dz = ¢i(2)dN;

=1
y = c(z)dz + h(z)

Here w is vector-valued Browian motion and Ny, ...N,,
are Poisson counters of rates A1, ...\, respectively. We
assume that the functions ¢; are chosen, together with
the allowable values of z(0), in such a way as to have
z(t) evolve without leaving a finite set. The problem
to be addressed is this.

Problem: Given a set of observed, stationary signals
r;, defined on an interval (—o0, co) suppose that the as-
sociated (empirical) autocorrelation is ¢ and that the
probability distribution for the values of 7;(t) is p(r),
independent of the value of t. Find a model of the
above class which matches exactly, or closely approxi-
mates, both the autocorrelation function and the prob-
ability density of the values of r. There are constraints
implicit here. Of course the autocorrelation function
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must be a positive definite function and if the mean of
the amplitude distribution is zero then

v = [ ” p(r)dr

— 00

Of course the standard solution of the covariance gen-
eration problem in terms of Gauss-Markov processes
solves this problem in the very special case for which p
is Gaussian. Such results are discussed in many text-
books. In an earlier paper (2] the author showed that
one could achieve an arbitrarily good approximation to
the power spectrum using finite state processes instead
of Gaussian processes but in that work the probability
distribution of the process being constructed, although
certainly not Gaussian, was determined indirectly by
the correlation function rather than being fitted to the
distribution of the observed data. In both these situ-
ations one may say that the distribution of values of
the process was sacrificed in favor of the shape of the
autocorrelation function.

Although in many situations it is not useful to approx-
imate a random variable by one whose density is Gaus-
sian, a special case of an approximation theory result
established by Wiener (see [1]) tells us that it is pos-
sible to approximate probability densities on the real
line by convex combination of Gaussians. We will uses
this fact below. The basic idea to be developed here
may be introduced with the help of the following ex-
ample. As in [2], we will make use of a continuous-time
jump process taking on values on values in a set of or-
thonormal vectors. We take these to be the unit vectors
{e1,e2,...en} in some n-dimensional Euclidean space.

Example: Suppose, that the given data {r;(t)} has a
bimodal distribution with peaks at r; and r, and that
the associated empirical probability distribution can be
approximated by a sum of two Gaussians centered at
these peaks. That is, consider

1 2 1 2
= pr—r)*/20y 4~ (r—7T2)°/202
pelr) = 5 5= NEW, +

Consider a model whose state space is a product space,
S = {e1,e2} x R%. We take the equations of evolution
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to be
dzy = —ai1dz1 + bidun

d.’l‘z = -azdwz + bzd’d)g
-1 0 0 1
dz:[ 1 O:lZle2+{0 —I]Zszl

y(t) = (h, 2(t)) + T () C2(¢)
and we ask that z(0) € {e1,e2}.

These equations imply that the jump process z jumps

between the value e; and e;. If p;(2) is the probability

that z(t) = e; and if p2(t) the probability that z(t) = e»

then the infinitesimal generator of the process is such
4 - p }
dt -8

where a and 3 are the rates of the Poisson Counters

Nyz and Ny, respectively. Because of the particular
values that z assumes, we have

The steady state probability distribution for p is just
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Ez(t) = p(t) ; E2(t)2T(t) = I: a-é—ﬁ
a+8

|2 % ]

Matters being so, if a1 and ag are negative so that the
processes tends to a unique steady state, then in steady
state the expected values of y and y? are given by

Jim Ey(t) = (peo, 1)

Jim EY(t) = trhhTpoopl, + tr€CTz(t)2T (t)CD
— 00

where
D = Diag (pooPa,)

Moreover, we see easily that

lim Ez(t)2T (t) = —2%7 0
60 10 2—1;7'2-

In making these calculations we have used the fact that
the Poisson and Wiener processes appearing are all in-
dependent.

The independence of the underlying processes allows us
to compute the steady state value of the expectation of

P(r) = lim Ey(t)y(t +7)
In fact,

PY(r) = tl_l}n(;lo ECz(t)z(t+7m)(1 + trC'TSz(t):cT(t + 7))

3743

To be even more specific, if we let C be the identity,
let g = -1, a0 = -2, by = 2, and by = 4 then the
steady state values of the variances for the processes
z1 and z, are both one. If we let hy = —hy = 1 and
let @ =1/2,8 = 1/2 we see that the expected value of
z is zero and that the covariance of z is e7l.

lim Ey(t)y(t+7) =e 171 + e 171 4 e~ 2"l
t—o0

The density of the amplitude of y(¢) is the sum of two
Gaussians, each of variance one, centered at -1 and +1,
respectively. That is,

1

_ Ll v e—(a+1)?/2

2v2m 2427w

In the standard linear theory one can not get nontrivial
sums of Gaussians.

o) +

2 General Theory

The example just treated brings out the important as-
pects of a more general theory. However, with some ad-
ditional generality we can introduce many Gaussians,
via many decoupled linear systems, thus allowing the
approximation of arbitrary amplitude densities. If the
approximation involves v Gaussians,

v
— ___y‘j__ —(r—=7:)?/20;
p(r) N e

then we will take a finite state system with at least v
states. To get the amplitude density correct one can let
h; = r; and chose the coefficients of the linear systems
such that the i*" system has variance ¢;. The coeffi-
cients p; are then fixed by fixing the steady state value
of the probability vector associated with z. Of course
this can be any set of nonnegative numbers that sum
to one and in our setting these weights will be fixed by
fixing the counting rates of the Poisson counters.

Recall that for a linear, time-invariant, stable system
characterized by the triple (A, B,(), the associated
stochastic system

dr = Azdt + Bdw ; y = Cx
has steady state statistics
Exz =0
ExaT =Ygy ; Do AT + A¥yy = ~BBT

and also

T

Ex(t)zT(t+7) = Tpae® T3 7> 0

On the other hand, for a time-invariant continuous time
jump process defined on the unit vectors in E™, the cor-
responding calculation involves the infinitesimal gen-
erator of the jump process. If the probability vector



evolves according to p = Fp, and if F is irreducible
then it too has a unique steady state and in steady
state

E2(t)2T (t) = .. Diag(p1(c0), ...pn(00)

Using this we can write a linear differential in the vari-
able 7 and solve to get

Ex)2T(t+7) = Sl T >0

Theorem:
tion

If y is generated by the stochastic equa-
dz = Azdt + Bdw
m
dz = Z ¢i(2)dN;
i=1

y=(h,2) +27Cz

then under the assumption that infinitesimal generator
for the probabilities for z is irreducible, and the as-
sumption that the matrix A has eigenvalues with nega-
tive real parts, we can assert that y tends to a station-
ary process whose probability distribution is the sum
of Gaussians and whose power spectrum is rational.
Moreover, through choice of parameters in this setting
(including the rates of the Poisson counters) one can
approximate arbitrarily well any given probability dis-
tribution for the values of y.

Sketch of Proof: Again, using the independence of =
and z we see that in steady state

Ex =0
€z = poo
ExzT = Top 3 TowAT + AL, + BBT =0
E22T =%, = Diag;pooPg;>
and finally, for any set of indices ¢, j, k,{ the indepen-
dence lets us assert that
Exizizpz = (Exiz;) - (E2p2)
Using this we see that in steady state
ECTz(t)zT (£)Cz(t)zT (t) = CTECDiagpeops
If we introduce J(7), defined as
J(r) = tl_l)Iglo z(@®)zT(t + 1)

then
dJ

= AJ(r) + J(1)FT

dr
so that r
J(r) =ed7J(0)ef T
This allows us to see that the autocorrelation function
has a time dependence that is expressible in terms of
exponentials and thus that the power spectrum is ratio-
nal. Appealing to the Wiener approximation theorem
as suggested in the first paragraph of this section, we
see that we can approximate an arbitrary amplitude
density.
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3 Further Remarks

We have not shown that our class of models is rich
enough to solve the problem of jointly specifying the
amplitude density and the covariance in all cases where
this problem has a solution. What we see from the gen-
eral development is that the time dependencies in the
covariance function are of the form e~ ** with the \;
either being an eigenvalues of the infinitesimal gener-
ator of the z process or else being the sum of the one
of these eignevalues with an eigenvalue of A. Using
the Bochner representation theorem, it was shown in
[2] that it is possible to approximate an arbitrary posi-
tive definite autocorrelation function without using the
Gauss-Markov part at all. However, if the autocorrela-
tion has lightly damped exponentials then it is known
to be necessary to use a very high dimensional system.
It seems quite likely that in the present context au-
tocorrelation functions that have only that have only
lightly damped modes and, at the same time, mul-
timodal amplitude densities will require high dimen-
sional realizations. For example, it seems impossible to
realize e~ cos 20t as a autocorrelation function, given
that the amplitude distribution is massed at -1 and 1.
On the other hand, good approximations may exist.
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