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Abstract

This paper treats a class of nonlinear feedback sys-
tems perturbed by white noise, the nonlinearity being
given by a piecewise constant function of a certain type.
We obtain explicit formulae for steady-state probabil-
ity densities associated with such systems. This result
is used to address a stochastic optimal control problem
that can be interpreted as minimization of the cost of
implementing a feedback control law.

1 Introduction

Given an integer M > 0 and a real number A > 0, we
define the quantizer q : R — Z by the formula

M, z>(M+1/2)A
de)={-M =< —(M +1/2)A
z
[K’L §J, (M +1/2)A<z< (M +1/2)A
Thus on each interval Ji := [(k — 1/2)A, (k + 1/2)A),
where k € Z and —M < k < M, the function ¢ takes
on the value k.

We consider the quantized feedback system
dz = Azdt + Gdw + bg(c" z)dt (1)

where z,b,c € R™, w is an m-dimensional Wiener pro-
cess, and A and G are matrices of appropriate dimen-
sions. All stochastic differential equations in this paper
are to be interpreted in the 1t6 sense. Let us make the
following two assumptions regarding the system (1).

a) All eigenvalues of A have negative real parts.
b) (A,G) is a controllable pair.

We will denote by L the Fokker-Planck operator asso-
ciated with (1). The linear case (b = 0) is well under-
stood: the steady-state probability density (s.s.p.d.),
which is the solution of the equation

Lo(z) =0 2)
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is a Gaussian with mean 0 and variance @) satisfying
AQ + QAT +GGT = 0. (3)

The nonlinear case is much more difficult. Lyapunov-
like methods have been used to prove the existence of
s.s.p.d. (this work can be traced back to at least early
60s—see the references in [4] and [5]). However, these
results do not provide specific expressions for s.s.p.d.
We will formulate a condition on the parameters of
the system (1) which enables us to obtain an explicit
formula for a s.s.p.d., and use this result to investigate
a stochastic optimal control problem associated with
the steady-state performance of (1).

We will not embark on the issue of existence of solutions
for stochastic differential equations with discontinuous
right-hand side as in (1). The situation when instead
of a piecewise constant function ¢ one uses a suitable
continuous approximation is covered by the standard
theory. In fact, the results of the next section directly
generalize to that case. The s.s.p.d. associated with (1)
is to be understood as a solution of (2) almost every-
where, and can be obtained in the limit as continuous
approximations approach g¢.

2 Compatible systems

Let us denote by @ the positive definite solution of (3).
It is not hard to show that the function

ple) = Ne—%(:H—A‘lbk)TQ“l(x+A"1bk)+dk if TeelJ,

with arbitrary constants NV and di satisfies the equa-
tion (2) almost everywhere. This function is piecewise
Gaussian. Clearly, if x € R, we can always determine
particular values of dx so as to make p continuous.
However, this is not necessarily true in the multidimen-
sional case. We will say that the system (1) is compat-
tble if the following compatibility condition is satisfied:

b=AAQc for some A € R. (4)

This condition is precisely what makes it possible to
obtain a continuous s.s.p.d. by choosing appropriate
constants as explained above. The following result can
be proved by a direct calculation not given here due to
space constraints.

Theorem 1 If the compatibility condition (4) ts satis-
fied, then the process described by the system (1) admits



a steady-state probability distribution with a continuous
piecewise Gaussian densily.

As we said before, the above result can be generalized
to a larger class of nonlinear feedback systems [2]. In
[2] it is also shown that, at least for some initial proba-
bility distributions, convergence to steady state can be
established, and that for an important class of systems
the s.s.p.d. is unique.

3 Stochastic optimal control

Let us assume that (1) is compatible, and that M = 1:

1, x> A/2
q(z) = S0, —AJ2< 2 < AJ2
-1, T < —A/2

We will consider an optimal control problem with a per-
formance criterion formulated in terms of the s.s.p.d.
In view of the remarks at the end of Section 2, solu-
tions to such problems provide information about the
behaviour of (1) for large times {.

Let £ denote the expectation with respect to the s.s.p.d.
Every time the solution trajectory crosses one of the
switching hyperplanes ¢cTz = +A/2, we need to com-
municate to the controller a request to change the con-
trol value. This reflects the amount of “attention”
needed for implementing a given control law (a similar
idea is exploited in [1] in the context of deterministic
systems with smooth control functions). One might
thus be interested in mimimizing the number of such
crossings per unit interval of time. Making use of the
fact that the s.s.p.d. is an even function of z, let us de-
fine the attention cost to be C' = 2€CA/2(CT1:), where
EC,(€) stands for the mean number of crossings of a
level u per unit time by a scalar stochastic process £(t).

Since the expectation is computed with respect to the
s.5.p.d., we may treat the process cT x(t) as stationary,
assuming that 1t “has reached steady state”. Therefore,
we may use the celebrated Rice’s formula for the mean
number of crossings [3]

e—t?/2r(0)

where r(7) = EE(t)E(t + 7) is the autocorrelation func-
tion associated with a stationary stochastic process
E(t). In our case (1) = limy_y 400 T Ex(t)2T(t + T)c.
Let us first study the following question: when is
ECay2(cTz) finite? We will need the following easy

Lemma 2 Assume that r”(r) erists in some neigh-

borhood of zero, possibly excluding zero itself. Then

ECas2(cTz) < 00 if and only if r'(0) = 0.

EXAMPLE 1. For the equation
dr = —zdt + dw — bg(z)dt,

z€R, b>0 (5)
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we have 7/(0) = —Ex(t)(~xz(t) — bg(z(t))) < 0, hence
the condition of Lemma 2 is not satisfied. Thus we see
that it is in fact a nontrivial task to construct a control
system with a finite attention cost.

Consider a general linear stochastic system

dr = Azdt + Gdw
=cle
We have limy 00 EY(t)y(t + 7) = limy_ 00 cT Ex ()2 (t +
T)e = cTQeATTc, where @ is the steady-state vari-
ance matrix satisfying the equation (3). Therefore
r(0) = ¢TQAT¢ = (¢, AQc). Premultiplying (3) by
¢’ and postmultiplying by ¢, we obtain 2(c, AQc) =
~(GT¢,GTc). Thus the condition of Lemma 2 is sat-
isfied if and only if GT¢ = 0. This means that we will
have a finite attention cost if all the directions in which
the noise can propagate are parallel to the switching
hyperplanes. On the other hand, if G is a nounsingular
n X n matrix, the attention cost will always be infinite.

The above discussion suggests replacing (5) by
dz = —zdt + dw — bq(y)dt,
dy = Bzdt — Bydt

with # > 0. This system 1s compatible, and the cor-
responding attention cost is finite. It is not very diffi-
cult to compute it directly using our knowledge of the
s.s.p.d. p(z,y) associated with (6). We have

_B_ <%_ube—(ﬁ+1)A’/4ﬁ\/ﬁw§)

B+1

where g = p(0,0). The attention cost is given by
B
2(8+1)

_ VB
¢= T Ey?
We summarize as follows.

Proposition 3 If (4) holds and r'(0) = 0, then the
attention cost is well defined and finute.

(6)

Ey? = ¥*P(ly|>A/2)+

9 emAY/8EY?
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