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Abstract

We study the question of existence of steady-state prob-
ability distributions for systems perturbed by white
noise. We describe a class of nonlinear feedback sys-
tems for which an explicit formula for the steady-state
probability density can be found. These systems include
what has been called monotemperaturic systems in ear-
lier work. We also establish relationships between the
steady-state probability densities and Liapunov func-
tions for the corresponding deterministic systems.

1 Introduction

The study of linear systems excited by white noise
of constant intensity is greatly facilitated by the fact
that one has an explicit formula for the solution of the
Fokker-Planck equation which describes the evolution of
the probability density. For nonlinear systems the situa-
tion is quite different. Namely, not only are the transient
solutions difficult to find, but even the steady-state so-
lutions are hard to characterize. In this paper we show
that for a certain class of nonlinear systems the steady-
state densities can be found explicitly. These systems
correspond to feedback systems of Lur’e type, and can
also be thought of as a generalization of the monotem-
peraturic systems introduced in [2]. Some related ideas
and applications are discussed in [3], [4], and [6].

We consider Itd stochastic systems of the form

dz = Azdt + Bdw + kf(cT z)dt (1)

where z(t),k,c € R”, w is an m-dimensional Wiener
process, and A and B are matrices of appropriate di-
mensions. Throughout the paper we make the following
two assumptions.

a) All cigenvalues of A have negative real parts.

b) (A,B) is a controllable pair.

The problem under consideration is that of existence
of a steady-state probability distribution for the process
z(t). Let us first recall what happens in the linear case
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(k = 0). It is well known that the steady-state proba-
bility density is

]. 1,.TH~-1
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pl) = /e det 0

where @ is the positive definite symmetric steady-state
variance matriz satisfying the equation

AQ+ QAT = —-BBT. )

We will be concerned with extending this result to the
nonlinear case. In Section 2 we formulate a condition on
the parameters of the system (1) that enables us to ob-
tain an explicit formula for a steady-state probability
density. This condition will be called the compatibility
condition, and systems for which it is satisfied will be
called compatible. A physical interpretation of compat-
ibility is given in Section 3 in terms of certain concepts
from statistical thermodynamics. Namely, systems that
are monotemperaturic in the sense of [2] turn out to be
compaitible. In Section 4 we single out a class of systems
for which the compatibility condition takes a particu-
larly transparent form, and show how the steady-state
probability densities are related to Liapunov functions
for deterministic nonlinear feedback systems. In Sec-
tion 5 we discuss convergence of the probability distri-
bution associated with (1) to steady state. Finally, in
Section 6 we use the work of Zakai on the existence of
steady-state probability distributions to obtain bounds
on second moments for certain non-compatible systems.

2 Compatible systems

Let us denote by Q the solution of the equation (2). We
will say that the system (1) is compatible if the vectors
k and AQc are proportional, i.e., if the following com-
patibility condition is satisfied:

k= AAQc for some X € R. (3)

We will look for a steady-state probability density taking
the form

p(.’c) - Ne——%xTQ_la:—AF(ch) (4)

where F is a potential: F(z) = f; f(v)dv, and N > 0 is
a normalization constant.



Theorem 1 If the compatibility condition (3) is satis-
fied, then the function p given by (4) is a steady-state
probability density for the process described by (1) when-
ever f is such that p € L*(R™).

REMARK 1. The last requirement is not fulfilled au-
tomatically. However, p does belong to L!(R™) if, for
example, A > 0 and zf(z) > 0 for all x.

Proof. The Fokker-Planck operator L corresponding to
(1) is defined by the formula

n 1 n
Lp=—(trA+ Y kicif (c"=))p + 3 2 (BB )ikpe;a,

i=1 k=1

— (D Aijgi+ D kif(c"2))pay-
i=1

i,j=1

Combining the terms and making use of (2) and (3), it
is not hard to see that the above expression equals zero
when p is given by (4). a

To gain some insight into the meaning of the compati-
bility condition (3), consider the case when f is piecewise
constant (as, for example, in systems with quantized
measurements). For each region where f is constant we
can find a gaussian density that satisfies the equation
Lp = 0 everywhere in that region. Then (3) guaran-
tees that these gaussians fit together at the boundaries
between such regions to form a continuous steady-state
density. We show in [6] how the solutions obtained here
can be used to optimize the steady-state performance of
stochastic quantized feedback control systems.

We can switch to new coordinates in which @ = T'T
for some 7" > 0. The structure of compatible systems is
then revealed by the following statement.

Corollary 1 IfQ = —QT, then the system
_ I o7
de = (Q — ﬁBB )zdt + Bdw

1 ome (5)
+AT(Q — ﬁBB Yef(c' z)dt

s compatible.
EXAMPLE 1. Consider the system
de; = fi(z1,...,2p)dt + bdw;, i=1,...,n (6)

where w;’s are independent scalar Wiener processes. We
will call such a system gradient :Sf there exists a function
é(z1,...,2,) such that f; = ——i. It is not difficult to

Ox;
verify that a steady-state density is then given by

p(z) = Ne—26(x)/6?

(whenever p € L*(R")). In fact, (6) belongs to a general
class of systems that take the form

¢ = —Vé(z) + Bu
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where the gradient V is computed with respect to the
Riemannian metric given by G = (BBT)~!. For a
detailed study of such systems, extended also to de-
generate diffusions, see [4]. An arbitrary compati-
ble system will possess, in addition to gradient terms,
certain “skew-symmetric” terms which do not change
the steady-state probability distribution (more precisely,
these come from vector fields of divergence zero that are
everywhere tangential to the equiprobable surfaces). In
fact, all compatible systems naturally fall into the frame-
work of [4] for the case of R™ with a constant metric (cf.
Section 5 below). A special class of such systems in R?
has been described by Rueda in [7].

ExAMPLE 2. The Newton’s second law for a nonlin-
ear spring in a viscous fluid in the presence of random
external forces may be expressed by the second-order
equation

#+ai+ f(z) =W @

_d% is white noise and ¢ > 0. The total

.1
energy of the system is §a‘2 + F(z), and a steady-state

where w =

probability density is
p(z, &) = Ne~20(38*+F()) (8)

This formula reflects the fact that the levels of equal
energy are at the same time the levels of equal proba-
bility in steady state, and ensures that the fluctuation
introduced by the presence of white noise and the energy
dissipation due to the damping term az eventually neu-
tralize each other. See [3] for a generalization of these
ideas and an application to function minimization using
simulated annealing,.

To see how this example fits into the above framework,
consider the following auxiliary system:

()= ) 0+ () e (2) e

where ¢ > 0. One can check that the compatibility con-
dition (3) holds for (9) with the proportionality constant
A =2(a+€) = 2a as ¢ = 0, which reveals the meaning
of the constant 2a in the formula (8). If we compute the
steady-state density for (9) using the formula (4) and
then take the limit as ¢ — 0, we arrive precisely at (8).

The steady-state probability density (8) is in fact
unique. This is a consequence of a result by Zakai [8]
for a class of systems that includes (7) as a special case
(see Theorem 2 below).

3 Compatibility and statistical thermo-
dynamics

We are now in position to give an interpretation of the

compatibility property on physical grounds. It involves



systems that describe the behavior of electrical networks
with noisy resistors in Nyquist-Johnson form. If all the
resistors are of the same temperature T, the system is
called monotemperaturic. This concept was first mathe-
matically defined in [2], where the authors give a canon-
ical representation for such systems in the form

i=(Q- 2—1T-GGT)x + G+ Du,
y=—-DTx — Fu+V2TFv

(10)

Here Q = —QT, F = FT and w and v are independent
white noise processes. The steady-state variance for (10)
is Q = T1, so we can say that in steady state all the
modes possess equal energy. This property is sometimes
referred to as the equipartition of energy property.

In the present framework, certain types of circuits
with nonlinear capacitors or inductors are described by
equations of the form (1). We claim that by closing the
feedback loop in (10) we can obtain a compatible sys-
tem. Indeed, let-u = y + f(y) (assuming single-input,
single-output case, otherwise do it for each pair (u;, ;).

This yields
(6)=( )G
v/ -F) \y
w D

S SIOROTRE

0 v
We have thus obtained a system that takes the form (5)
described in Corollary 1. Summarizing, we can say that
compatibility can be thought of as a natural property
of monotemperaturic systems with nonlinear reactances.
Notice that (1) is more general than (11) since the noise
matrix in (1) is not necessarily block diagonal.

~- LoGT
hr

4 Liapunov functions
Consider a system excited by scalar white noise

& = Az + b + kf(cTz).

Since by the assumptions made in the Introduction
(A, b) is a controllable pair, in the appropriate basis the
linear part of the system takes the standard controllable
companion form. Moreover, if k and b are proportional,
then we can multiply f by a scalar if necessary and ar-
rive at

p(D)z + f(e(D)z) = 1. (12)

d
Here D = W and p(D) = D" +p,_1 D" 1. .+p; D+

po and ¢(D) = cp—1 D"+ -+ ¢1 D+ ¢ are polynomi-
als. The class of systems thus constructed includes (7),
and is of considerable interest despite the special form
of (12) (see, e.g., [8]).

In this section we will be concerned with formulating
conditions on the polynomials p and ¢ under which (12)
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is compatible. We will adopt certain results from [1]
regarding the Lur’e problem of absolute stability for the
deterministic counterpart of (12)

p(D)x + f(c(D)x) = 0. (13)

We will assume that zf(z) > 0 for all z except z = 0,
and that either the equation p(D)z = 0 is asymptoti-
cally stable or p(D) = Dh(D) with h{D)z = 0 asymp-
totically stable. Denoting D¢(D) by m(D), assume also

that the function ms

is positive real. Then we can

s
apply the classical jglctorization lemma to conclude that
there exists a unique polynomial r(s) with real positive
coefficients and no zeros in the right half-plane, such
that Evp(s)m(~s) = r(s)r(—s) = r*(s)r~(s) (here Ev
stands for the even part of a polynomial). We construct
a Liapunov function for (13) as follows:

V) = [ pD)m(D)s - (~(D)e)dt + F(e(D)a)
0 (14)
where %lﬁ)— = ¢;f(c(D)z) as before. In [1], the

problem of absolute stability for (13) is investigated with
the aid of the function (14). It can be shown that V is
well defined, positive definite, and that its derivative
along the solutions of (13) is given by

V =—(r~(D)x)%. (15)

Obtaining the Liapunov function (14) is a matter of mul-
tiplying both sides of (13) by m(D)z, integrating by
parts, and completing a square if necessary. In many
situations (cf. Example 2 of Section 2) such a Liapunov
function arises naturally as the total energy of the sys-
tem.

Now, given a polynomial p(D), let us choose ¢(D) by
setting each ¢; to p;41 if 7 is even and to 0 if 7 i1s odd.
Notice that m(D) is then simply the odd part of p(D),
and therefore Evp(D)m(—D) = m(D)m(—D), so we see
that 5)

p(s
also take m(D) to be a constant multiple of Oddp(D)
as in (7), which amounts to a simple modification of the
nonlinearity. We will now use the Liapunov function
(14) to arrive at a steady-state density for (12).

is positive real and r~ (D) = m(—D). We can

Theorem 2 Suppose that either p(D)x = 0 is asymp-

totically stable or p(D) = Dh(D) with h(D)x = 0
asymptotically stable, and that
1
D) = —0ddp(D 16
(D) = —-0ddp(D) (16)
with a > 0. Then the function
p(z) = Nem2eV () (a7

is a unique steady-state probability density associated
with the system (12).



Proof. Let us consider the case when n is even. The
equation for a steady-state probability density can be
written as

1 &%
2 0z?

n—1

P =Pn-1p+ (18)
where p stands for the derivative of p(z) along the solu-

tions of the deterministic system (13). Using (15) and
(17) we can write (18) as

2(1(1"(D):1:)2 = Pn_1— ACp—-2
+20%(cpo2Zn_1 + - - - + coz1)? = 2(am(D)z)?

and this is true by hypothesis.

The case of odd n is treated similarly. The uniqueness
of the steady-state probability density (17) follows from
the work of Zakai [8, Theorems 3 and 4]. O

From the results of Section 2 it follows that if we want
(12) to be compatible, the choice of ¢(D) is unique up
to a constant.

5 Convergence to steady state

It is well known that the time-varying solution of the
Fokker-Planck equation

Z_1p (20)

takes the form

Z ps 91

where A;’s are the eigenvalues of L, p;’s are polyno-
mials in ¢, and g;’s are functions of . Thus, eigen-
values of L provide information about the convergence
of the stochastic process to steady state. In the pa-
per by Holley et al. [5], and more recently in [3] and
(4], Fokker-Planck operators and their spectral proper-
ties were studied with the view towards applications to
function minimization.
In our previous notation, consider the function

¢ = %:cTQ_lx + %)\F(CTx)

(cf. Example 1). Define the vector V¢ by

(Ve)i =D (BB )ijbu,.

j=t

In view of (2) and (3) we have

Vé = “%(A+QATQ‘1)9:—%(HQATQ"IA"l)kf(CTx)-

The Fokker-Planck operator associated with the system
(1) can be written as

L= Lgrad + Lsew
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where

n

< 0 1
gradp Z 29—' V¢)1P) + 5 Z (BBT)f'jpl‘i-’b’j

'j:I
- —
"2 Zz: )i 6:(:, 55, P
and
1~ 0 Tt
Lexewp = 5 6.’1}[(QA Q _A)"J'sz]
i,j=1 *

[(cQATQ-lA- 1)ijk;i f(c" )p).

+
N b=
:M“
mlm

1

0

,J

Define a gauge transform P of an operator P by ﬁp =
e?® P(e~2%p). It is not hard to show directly that

/ ngradpe’2¢dx <0, / pLgewpe™2dz = 0.
Rn R"

Therefore, all eigenvalues of L with eigenfunctions in the
space {p : e~®p € L?(R")} are nonpositive. This implies
that all eigenvalues of L with eigenfunctions in the space
{p : e?p € L%({R™)} are nonpositive. Thus it follows
that the steady-state density is a stable equilibrium for
(20). To obtain specific information about its domain of
attraction and the speed of convergence to steady state,
one needs to carry out a more detailed spectral analysis
of the Fokker-Planck operator L.

Regarding convergence to the steady-state density
(17) for the system (12), some results can be found in
the literature. Namely, according to Theorem 3 of [8],
for T — +o00 and all 2o € R™ we have

(= / (2(t) dt—)/

where p,, is the steady-state density and g is any real-
valued function integrable with respect to the measure
pssdx.

p,,d:t z(0) = 1'0} =1

6 Non-compatible systems

Compatibility is not a necessary condition for the exis-
tence of a steady-state probability distribution. In the
previous sections we have discussed systems for which
explicit formulae for steady-state probability densities
can be found. It would be interesting to try to develop a
perturbation theory that would allow us to obtain spe-
cific information about steady-state probability distri-
butions for those systems that are not compatible. We
discuss some preliminary results here.

Consider the system (1), and denote by L the corre-
sponding Fokker-Planck operator and by L* its adjoint.
Suppose that we have a nonnegative, twice continuously
differentiable function V(z) in R™, which is dominated



by a polynomial. Theorem 2 of [8] can now be formu-
lated as follows: If there exist numbers R < co and k > 0
such that L*V(z) < —k for all x satisfying ||z|| > R,
then the process defined by (1) admits a steady-state
probability distribution. We can apply this Liapunov-like
criterion to establish the existence of steady-state prob-
ability distributions at the expense of having to abandon
constructive proofs and explicit formulae.

As is well known, if the assumption a) of the Introduc-
tion holds, then there exists a positive quadratic func-
tion V(z) = 7 Cz whose derivative along the solutions
of £ = Az is —zT Dz, with D symmetric positive def-
inite. For the system (1) this implies that outside the
ball of radius R

L*V(z) = —z7 Dz + 22T Ck f(cT ) + tr(CBB™)
< =Amin (D)||2||? + tr(CBBT)
+ max(0, BAmaz (Cke” + ckTCT)||2||?)

providing that

az? < zf(z) < Bz? for ||z} > R and some B > o > 0.
' (21)

Here A\nin and Ajpge stand for the minimal and the max-
imal eigenvalue, respectively. Now we see that for 3
small enough there exists a steady-state probability dis-
tribution.

ExamMpLE 3. Consider the (non-compatible) second-
order system

i+ f(&)+ 2= (22)

Assuming that (21) holds, we can recast (22) as Z+ez+
9(¢)+x = w with 0 < € < . In the above notation, take

C= (a i), where a > 0. This gives CkcT +ckTCT =

1
<_01 :(11) with ’\max(CkCT -+ CkTCT) =vVaZ+1- a,
and D = 2 € . Now, let ¢ - 0 and ¢ — oo
€ 2(ae—1)

in such a way as to have ae — oco. Then obviously
Amin(D) = 2 and Apaz(CkeT + ckTCT) — 0, which
proves the existence of a steady-state probability distri-
bution for all 8 > a.

We now single out a class of nonlinear feedback sys-
tems perturbed by white noise for which explicit bounds
can be obtained for certain second moments in steady
state. These are single-input, single-output systems of
the form

& =Qz—bf(bTz) + b (23)

where © = —QT. Let us assume that the condition (21)
holds. In this case it may be interpreted as saying that

. 1
the temperature of the system (23) is between -— and

26
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2—10(—. Rewriting (23) as

&= (Q—bb")e - bg(bTz) + b

one easily verifies that it is not compatible unless Qb = 0.
However, notice that

%ez”‘”z =267z f(bT z) + b7b.

Assume for simplicity that ||5|| = 1. Providing that the
steady-state probability distribution exists, we deduce
that in steady state £67z f(b7z) = 1/2 and therefore

1 1
— < ET2)? < .
Qﬂ—g(b 2 <5

The equation (22) may serve as a simple example.
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