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Singular Values and Least Squares Matching

R. W. Brockett !

Abstract

In this paper we investigate least squares matching
problems, extending the methods of our earlier paper
[1] in such a way as to make them applicable to prob-
lems involving sets of points that are so large that ap-
proximate answers are of interest. These problems are
formulated in terms of continuous descent equations,
and lower bounds on the quality of the best match are
obtained in terms of the singular values of certain ma-
trices determined directly by the data.

1 Introduction

Many important algorithms in computer vision involve
matching points in one image, or one part of an im-
age, with points in a second image or second part of
the given image. Matching is often difficult because of
the large number of possibilities. For this reason, even
suboptimal solutions or solutions that are only good in
some probabilistic sense are of interest. We begin with
an example of the type of problem to be treated.

Example 1: Suppose we have two sets of k points in
R™ and we want to act on the first set by an orthogonal
transformation, so it matches the second set as closely
as possible in a squared error sense. We are not told a
priori which point in the first set should match which
point in the second set. If the points of the first set are
denoted by {z;} and those in the second set by {y;},
we have the problem of finding an n by n orthogonal
matrix © and permutation 7 acting on a set of k objects
such that the sum

n=3 |0z —uill?

is as small as possible. For a fixed choice of 7 the
determination of © is not too difficult. We can rewrite
the expression for 7 in terms of the matrices

X = ry X2 .. Xk
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in the following way
n=tr{OXT - Y)T(0XI — Y)

with IT being a k by k permutation matrix representing
the interchanges of the columns of X achieved by .
This can, in turn, be expanded to give

n=IX|12+]||Y|]? - 2troXIIYT

If II were known this would be the problem of maxi-
mizing the trace of ©XTIYT with respect to the choice
of an orthogonal matrix ©. As is well known, this is
accomplished by choosing © so that XY 7T is sym-
metric and positive semidefinite. Denoting the sym-
metric positive semidefinite square root of a positive
semidefinite matrix by the usual square root symbol,

we have
-1
Bopt = XTIV /(XTIY)T (XIIY)

Topt = tr4/(XTIY)T (XIIY)

On the other hand, repeating this for all possible per-
mutations is not practical for large values of k.

Example 2: Consider a collection of p line segments
in R™. The endpoints of these line segments define p
pairs of points in R™. We denote these pairs of points
by {(ai,b:)}r_;. We would like to find an orthogo-
nal matrix such that the pairs {(©a;, ©b;)}’_; match
with a second “template” defined by the pairs of points
{(si,t:)}i—;. If we are not given an orientation for the
line segments then the pair (a;, b;) is equivalent to the
pair (b;,a;). One can associate the individual pairs
with the individual pairs of the template in p! different
ways and having done so, one can associate the points
making up the pairs with the points of the templates
in 2P different ways. To express this problem in a form
that can be compared with the first example we define
a subgroup of the set of all permutation matrices of size
2p by 2p which consists of those matrices that can be
expressed as

Pyn 0 .
HT‘H. = 0 P22 0
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with the P;; being two by two permutation matrices.
When a matrix X having 2p columns is multiplied on
the right by such a matrix, the effect is to either leave
unchanged a given odd-numbered column or else to in-
terchange it with the following even-numbered column.
We also define a second subgroup of the set of all 2p
by 2p permutation matrices in terms of the two by two
identity matrix I5. It consists of all permutation ma-
trices of the form

prily  pi2ls
o, = pnly paly

Iz

Recast in the language of a group actions on sets, we
can say that the group (II2)? x II,, where (II2)? is the
product of p copies of the two element permutation
group, acts on the data to preserve or reverse orienta-
tion and renumber the line segments. In terms of equa-
tions, we can express the matching problem as that of
minimizing the function

n =tr(0XI - Y)T(OXII - Y)

with II being expressible as the product IT = II;II;
with the first factor in IIr~» and the second in IIj,.
The expression for n again simplifies to

n=X|?+||Y]]? - 2tr©XIIY

but now the group of permutations that are permitted
is not the whole set of permutations that might act on
the columns of X but rather only the subgroup identi-
fied above.

2 Generalities on Matching

In the next section we will establish certain lemmas
that will let us link the quality of the best match avail-
able to the singular values of the rectangular matrices
X and Y which appear in the statement of example
one above. Recall that the singular values of a rectan-
gular matrix, say X, are the positive square roots of
the nonzero eigenvalues of either the symmetric matrix
XTX or (equivalently) the symmetric matrix X X7.
We denote these by p;(X). That the quality of the
match and the singular values of X and Y are related
is, perhaps, surprising. However, it is clear from the
definition that the singular values of X and ©X7¥ for
© and ¥ orthogonal are the same and so the singular
values have a suitable invariance.

As in reference [1], we will replace the combinatorial
search involved in finding the best permutation with a
calculus problem involving orthogonal matrices. How-
ever, the problems under consideration here are differ-
ent and there are very significant differences between

what is done in [1] and what is proposed here. The
function of © given by trOoQOT N, which plays a crit-
ical role in [1], is replaced here by the function of two
orthogonal matrices © and ¥ given by trOXTY. Only
the permutation matrices corresponding to even per-
mutations have positive determinants and belong to
the set So(n) of proper (determinant = +1) orthogo-
nal matrices. The permutation matrices corresponding -
to odd permutations have negative determinants and
so in most places we deal with the entire orthogonal
group O(n).

Theorem: Consider the matching problem of example
one. Let py(X) > po(X) > ...ur(X) be the singular
values of X, and let p1(Y) > ua(Y) > ...t (Y) be the
singular values of Y. The total error associated with
the matching problem is lower bounded by the sum of

the squares of the differences of the singular values of
X and Y. That is

72 Y (m(X) — pa(Y))?

This lower bound is achievable for particular data sets
but in general it underestimates the error.

For example two, a different type of bound is available
based on an averaging technique. We begin by forming
an 7 by p matrix of centroids of the pairs

1 1
zi = (0 +bi) yi = 5(si+t)

Because the sum of the squares of the errors in match-
ing the endpoints is at least twice as great as the square
of the error associated with matching the centroid, we
see that the above result implies the following.

Corollary: Consider the matching problem of exam-
ple two. Define the centroids as above. Let u1(X) >
p2(X) > ... (X) be the singular values of X and let
1Y) = p2(Y) > ..y (Y) be the singular values of
Y. The total error associated with the cluster match-
ing problem is lower bounded by twice the sum of the
squares of the differences of the singular values of X
and Y. That is,

n>23 (m(X) — w(Y))?

3 Some Analysis

Our approach to establishing theorem one is based on
the fact that a permutation matrix is necessarily or-
thogonal. Instead of searching over all the permutation
matrices, we search over the set of all orthogonal ma-
trices. The advantage of enlarging the search space is
that the methods of calculus are now available and the
problem becomes more manageable.
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Lemma 1: Given two real n by m matrices X and Y,
let p1(X) = p2(X) = ..pr(X) and 1 (Y) 2 pa(Y) 2
..tis(Y") be the respective singular values. Then the
value of the function

#(0,¥) = troxXvy”T

as © and ¥ range over the set of n by n and m by m
orthogonal matrices, respectively, is bounded by

trOXTY <) vy

The stationary values of ¢ occur when ©XTY7T and
TYTOX are symmetric matrices. If the singular values
of X and Y are distinct, there are 2™m! distinct values
of (©, ¥) at which the upper bound is achieved.

Proof: We begin by replacing X and YT by their sin-
gular value decompositions. Our notation is

X =09D10;

and
YT =9,D,0,

In terms of this notation
¢(@, \I/) = tr@@()Dl@l\I”IfoDzlpl

Using the cyclic property of the trace, we rewrite this
as
$(8,¥) = trOD; ¥ D,

with © = U,00, and U = ©,00,. It is well known
that for a given M, the maximum value of trOM with
respect to a choice of orthogonal matrix © is obtained
by choosing © in such a way as to make ©M symmetric
and positive semidefinite. The maximum value is, by
the polar representation, simply the sum of the singu-
lar values of M. Thus we see that the stationary values
of ¢ occur when both 6D, D, and U D2,OD are sym-
metric. This last condition also implies that D,6D; ¥
is symmetric. However, it is easy to see that if D is
diagonal with distinct eigenvalues and both Dy A and
ADsy are symmetric, then A must be diagonal. Thus we
see that ¢ is stationary only when ©D,V is diagonal.
By pre-multiplying ©D; ¥ by its transpose we get

¥TD,6T6D,% = ¥ D2 = D7

with II being a permutation matrix. This implies that
¥ can be expressed as the product of a diagonal or-
thogonal matrix (there are 2™ such matrices) and a
permutation matrix (there are m! of these).

We wish to describe a descent algorithm for minimizing
functions of the type appearing in the previous lemma.
In order to define a gradient flow on a manifold, in this
case a manifold consisting of the product of orthogonal
groups O(n) and O(m), we need a choice of Riemannian

metric. Here we use a scaled version of the standard
metric on O(n) defined by

ds* = (d6eT,deeT)

Lemma 2: Assuming the standard metric on the
orthogonal group, the gradient flow for the function
¢ : O(n) x O(n) — R defined by ¢(©,¥) = trOXTY
is given by

6= xvYT —vyTxTeT)e
¥ =wyTex - xTeTyuv")¥

Expressed in terms of the variables T = ©X and V =
UY7T, these equations take the form

T=(@v-vTThT

V=Wr-1TvT)Vv

Proof: The expression for the gradient flow follows
from the Taylor series expansion of

f=tr(I + QOX(I + S)¥YT
The first terms are
F(€,8) =~ troX YT + tr(QexXey” + svyTex

from which we get the equations for © and ¥. The
expression for the derivatives of ©X and ¥Y7 follow
from these by substitution.

Matching problems involving more structure can lead
to situations in which one does not want to investigate
the minimum over all orthogonal matrices but rather
only the minimum over some subgroup. This is illus-
trated by example two, in which case it is natural to
consider the subgroup consisting of matrices of the fol-
lowing form.

Example: let G; be the full group of orthogonal ma-
trices and let G, be the “maximal torus” consisting of
orthogonal matrices of the form

cosf; sinfy 0 0

—sinfl; cosé, 0 0
G. = 0 0 cosf; sinfy
e 0 0 —sinf; cos#é,

Let G, consist of orthogonal matrices of the form

0 wizds wizlp
G, = ~wi2ls 0 wa3
—w13  —Wa3 0
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The subalgebra consisting of those matrices that can
be expressed as sums of matrices of these two types is
of relevance in treating example two.

Such cases require a modification of the results of
lemma 2.

Lemma 3: Let £; be a Lie subalgebra contained in
the set of n by n skew-symmetric matrices, and let
Lo be a Lie subalgebra contained in the set of m by
m skew-symmetric matrices. Suppose that their corre-
sponding groups, denoted here as Gy and Gy, which are
closed subgroups of O(n) and O(m), respectively. Let
m; denote the orthogonal projection of the set of real
skew-symmetric matrices onto £;. Then the gradient
descent equation for

#(O,¥) =tro XY T
with ©® in G; and ¥ in G, is

0= %m(@X\I'YT -vTyeTxTe

.1
¥ = -2-7r2(\IIYT®X -TxTyel)v

Expressed in terms of the variables T = 08X and V =
Y these equations take the form

T= %m(TV —-vithr

V= %WQ(VT ~-TTvhyVv

Proof: We have an inner product defined on the space
of skew-symmetric matrices by (;,Q) = trQTQ,.
Relative to this inner product, there is an orthogonal
projection onto any subspace. The given equations are
simply the gradient flow on the given manifold.

4 References

1. R. W. Brockett, “Least Squares Matching Prob-

lems,” Linear Algebra and Its Applications, Vols.
122/123/124 (1989) pp. 761-777.

1124



