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Abstract

In this paper we consider the question of how to
trade-off the complexity of implementing a control law
against the performance of the control system. We pro-
pose a measure of complexity and formulate optimiza-
tion problems involving both a measure of the desir-
ability of the trajectories and the difficulty of imple-
menting the control law. By introducing criteria of the
type proposed here it is possible to strike a balance be-
tween the performance of the system and the difficulty
involved in implementing the control. The optimiza-
tion problems coming from this formulation are similar
to those arising in the variational description of fields
in physics.

1 Introduction

Although much of the literature on automatic control is
concerned with definitions of optimality relating to the
shape of trajectories and the magnitude of the control
required to generate them, it often happens that costs
related to the implementation of the control are more
significant than the cost associated with the trajecto-
ries. In biological motor control, for example, there are
many situations in which imprecise control is virtually
as good as precise control; the more important objec-
tive is to find a control law that can be implemented
without diverting attention from the other tasks which
are more pressing. This raises the question, “How can
the cost of implementation be taken into account when
formulating an optimal control problem?”

Our point of view is that the easiest control law to
implement is a constant input. Anything else re-
quires some attention. The more frequently the con-
trol changes, the more effort it takes to implement it.
Because the control law will depend on the state z and
the time ¢, it can be argued that the cost of imple-
mentation is linked to the rate at which the control
changes with changing values of x and ¢. This rate of
change may also affect the effort required to compute
the desired control or some suitable approximation to
it. In any case solutions that require less frequent ad-
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justments as z and t change are to be preferred over
those that require more frequent adjustments. From
the point of view of an animal controlling its body,
or a systems engineer allocating the cpu cycles of a
computer controlling a machine tool, control laws with
small values of ||0u/8t|| and ||0u/0z|| require less fre-
quent updating and will be more robust with respect to
small changes in the data. These considerations sug-
gest that a suitable quantification of what is meant
by “attention” might be be obtainied by squaring the
values of the partial derivatives, adding them and inte-
grating over all time and space to get a measure of the
attention required to implement a given control law.

This reasoning suggests a class of optimization prob-
lems associated with selecting the architecture of a con-
trol system. The general structure of the optimization
problem will involve minimizing functionals of the form

ou du
Na = /Q¢ (-T,t, %,E{) dxdt

subject to constraints on u such as will insure that the
performance is adequate for the task. We will refer to
7 as an attention functional.

Textbooks on optimal control discuss the difference be-
tween open-loop and closed-loop control however the
classification is rather informal and in many cases (e.g.,
fixed end-point linear-quadratic optimal control on fi-
nite time intervals) it is unclear what might be meant
by a closed-loop solution. This makes it difficult for
researchers in other fields to discuss the distinction in
a precise way. At an intuitive level, it seems that bi-
ological motor control involves not only “pure” open-
loop control but also a gradation of modalities spanning
a range between open-loop and closed-loop operation.
Intuitively, one thinks that large values of ||Ou/0z||
indicate closed-loop control and that large values of
|10u/0t|| indicate open-loop control. By modifying the
attention functional we can change the ratio of the pe-
nality put on the closed-loop ||0u/0z|| terms relative to
the penality put on the open-loop ||0u/dt|| terms. In
this way we create a continiuum and arrive at a charac-
terization which makes possible a quantitative study of
the trade-offs between open-loop and closed-loop con-
trol.

We remark in passing that the way we formulate the
minimum attention stabilization problem here yields
equations that are similar to the equations describing

2628



fields in physics. In the variational approach one usu-
ally formulates a Lagrangian density derived from the
kinetic and potential energy and obtains the field equa-
tions as the corresponding Euler-Lagrange equations.
(See, for example, Abraham and Marsden [1]. who
treat the the gravitational field in this spirit.) In the
present circumstances the minimum attention controls
will be characterized as the solutions of a set of partial
differential equations involving the state variables and
time.

2 Attention and Stability

Consider the problem of finding a stabilizing control
law for the scalar system

T=1u

that can be implemented with as little “attention” as
possible. In order to make this into a precise problem
we must choose an attention functional which gauges
the attention required to implement a particular feed-
back control law. In this example we seek a control law
% : [0,00) X (—00, 00) — (—00, 00) having the property
that all trajectories go to zero as t goes to infinity and
such that the “variation” of u is not too big. To this
end, we choose the attention functional

o o rou\?  (ou)®
w= [ (5) () @
and ask that u satisfy suitable boundary conditions. Of
course we must have u(t,0) = 0 if the null solution is to
be an equilibrium solution. Local stability of the null
solution demands that the integral of u.(t,0) should
diverge to minus infinity. That is to say, if the solution

x = 0 is to have the property that the linearization
about it

, Ju
8(t) = a(®)o(t) = 52|  s(t
(t) = a®)e(t) = 52 0
is asymptotically stable we need
t
lim | a{c)do = -0
t—o0 0

We will refer to this integral as the stability integral.
Somewhat more subtle is the matter of boundary con-
ditions on 4(0,z). We may think of u(0,z) as being
the value that u must assume when the control system
is “turned on” at ¢ = 0 suggesting the following argu-
ment. Before the control system is engaged there is no
information on z available and so we must think of u
as being held at some fixed value. Its value can only be
changed on the basis of a measurement of the state and
the execution of some action based on this information.
This argues for the boundary condition u(0,z) = a. In
principle, a could be any real number but if we ac-
knowledge that u(t,0) = 0 we see that a = 0 is the
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only possible choice consistent with a smooth control
law. Thus we have boundary conditions dictating the
value of u on the positive £ axis and the entire z axis as
well as a condition on the integral over time of the of
the partial derivative u,(¢,0). We will see below that,
specifying the the partial derivative of u with respect to
z on the line x = 0, together with the standard first or-
der necessary conditions “over determines” u and forces
a non-smoothness into the problem.

In formulating the above attention functional we have
implicitly assumed that x and t have been scaled in
such a way as to be equally “significant”. Introducing
the metric (ds)? = (dt)? + (dz)?, we can express 7, in
terms of the gradient

na=/ / || Vu||2dtdz
—o00 v0

To begin with, we observe that the control law
t T
14t21+ z?

satisfies the boundary conditions described above,
makes the null solution of £ = u asymptotically sta-
ble and is such that the partial derivatives

u(t,z) =

. 1- g
wt?) = -~ Ty
1 1-22
(1+1¢2) (14222

are square integrable on the space

uw(tam) =

F={(tz):0<t<o00;—00 <z < o0}

Thus this function confirms the existence of a stablizing
control requiring only a finite amount of attention. On
the other hand, a linear, time-varying feedback control
law v = —k(t)z will meet the boundary conditions if
k(0) = 0 but requires infinite attention relative to this
measure in all but the trivial (and non stabilizing case)
k=0.

It is well known, and easy to demonstrate, that a func-
tion which satisfies the boundary conditions and pos-
sesses partial derivatives up to order two can be a local
minimum for the functional defined by the square of
the gradient only if it satisfies the associated Euler-
Lagrange equation

8? 52
<5‘13 + 5?) u(t,z) =0
Under this hypothesis, a suitable integration-by-parts
shows that the minimizing value of the attention func-
tional is expressible in terms of the boundary values of
u as
Ou(t,0)

———T—u(Ot, O)dt

na(u)z/Ra—u(qt’—ziu(O,x)dm+ e D
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assuming that u, becomes vanishingly small as |z| goes
to infinity. However, for the given boundary conditions
on u we see that the square of the gradient would be
zero. This is inconsistent with stability and so it must
happen that the conditions required for the integration-
by-parts are violated. We will not undertake a system-
atic study of this here but we do point out that it makes
sense to search for a minimum of the attention func-
tional within a class of u’s that only have first partial
derivatives almost everywhere. For example we could
consider a class of functions with piecewise smooth first
partials. In fact, we will show that there exist solutions
to the variational equations and the boundary data in
this class.

With the goal of finding a suitable u satisfying the vari-
ational equation, we introduce a real analytic function
¢(t), its complex extension ¢(t + iz) has an imaginary
part u(t,x) = (¢(t + iz) — ¢(t — ix))/2i that vanishes
on the line x = 0 and satisfies Laplace’s equation in
a neighborhood of the f-axis. The expression given
above for 7, shows that we cannot find a suitable u
that is twice diffrentiable everywhere and so we seek
to piece together in a continuous way solutions con-
sisting of harmonic functions defined on subsets of the
domain of interest. Based on the observation that the
mapping (t,z) — .(z,t) sends the first quadrant and
the boundary conditions on u into themselves, we look
for a solution of the variational equations on the wedge
interior to the two 45° lines, x = +¢t. We will then ex-
tend this solution to the whole half-plane by reflecting
in these lines.

The particular attention functional being considered
here will only be finite if the control becomes “soft” for
large values of |z| and t. We have already noted that
linear control is excluded. If in the wedge jz]| < ¢ we let
u be given by the imaginary part of ¢(z) = — log(z-+k),
k a real, positive constant, thenin that wedge

-1
u(t,x) = 5 (log(t + k + ix) — log(t + k — iz))
When extended to the whole half-space ¢ > 0 by re-
flecting in the 45° line, this choice gives

-1
-1

—tan
—tan

|zl <t
|z| > ¢

T

u(t,r) = { th_"

z+k
Clearly this function is continuous in the half-plane ¢ >
0 and has a continuous derivative except on the lines
t = *x. Within the 45° wedge the derivatives are given
by

~z

(G

v - "tk
T+ k)2 + 22

U
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Because log t goes to infinity with ¢ the stability inte-
gral diverges as required. However the integrand of the
attention functional is given by

1
Vul|? =
which makes the attention functional diverge. Thus
this choice of control does not go to zero rapidly enough
for large values of x and t and we may say that the
boundary condition

ugy(t,0 = —tan™? poay>

is incompatable with the desire to minimize the given
attention functional.

On the other hand, we can show that the control de-
fined within the 45° wedge by the imaginary part of
#(z) = —log(log z + k) with k < 1 that is, for |z] <t

-1
u(t,z) = 5 (log(log(t + k + iz)) — log(log(t + k — iz)))
not only make the stability integral divergent, as re-

quired, but also keeps the attention functional finite.
Starting with

log(t + iz) = log\/(t + k)2 + 22 + itan™?

we see that the imaginary part of

z
t+k

Pt +iz) = —log(log/(t + k)2 + 22 + i tan™? t_%)
is given by
tan™! &
u(t,z) = —tan~ t+h

1
log

supplementing this with the expression obtained by re-
flection we get

-1 _=
1_ tan”" %

—tan "t ————t— <
u(t, ) = tan log A/ (t+k)?+a? |lz| <t
| e = E

log :; (z+k)2+12

For large values of t and/or z the control is small and
the leading tan™! can be dropped. In this case the
control is approximated by

tan~?! ﬁ}_—mk
T Tog((t+k) e +m)

tan™

2t
- log((:c-{—k;i- —:ti)

Thus we see that this control falls off faster at infin-

ity than the u = tan=!(z/t + k) control investigated
previously.

z| <t
ult,z) = =l <

|z >t

This additional log in the denominator is enough to
make the attention functional converge. The details



are left to the reader but the key fact is that the infinite

integral
* 1
I= / —dz
o zlog'zx

while divergent for £ = 1, converges if £ = 2. Thus
there exists a finite attention control law that drives x
to zero from any initial condition.

A systematic discussion of the minimum attention con-
trol of linear systems can be organized along the follow-
ing lines. If the uncontrolled system has all its eigen-
values on the imaginary axis then one can proceed by
analogy with the results just given. For example, the
controlied harmonic oscillator

E+r=u

can be stabilized by

u(t, ) = 2 (log(log(= + k) ~ log(log(z + K)))

with z = ¢ + 4. Linear systems with poles in the right
half-plane can not be stabilized by a control with 7,
finite. This leaves as the remaining interesting case
the situation in which the uncontrolled dynamics are
asymptotically stable and the control enters as

= Az + bu

We investigate this in the next section.

3 Attention and Average Performance

To fix ideas, consider an asymptotically stable linear
system
i = Az + Bu

and suppose that it is desired to modify a trajectory
based performance of the form

o0
= / 27 Qz + uTudt
0

by adding a term that will limit the value of the atten-
tion functional

e roo /gy 2 ou\?
= — ] + | %) dtdz
v [ (&) +(F)
Problems of this type must be posed in terms of fam-
ilies of trajectories rather than individual trajectories
as one does in optimal control. We achieve this by as-

suming that the initial state of the system is random
with probability density po(x) and then minimize

n="ne+Emn

To put this into mathematical form we introduce an
evolution equation for the density of the random vari-
able z(t),

0
a_;’ = —(;%,(Aa: + Bu)p) ; p(0,x) = po()

along with an evolution equation for u

Ou(t, )
ot

The performance measure is 7 = 7 + 7 with

N = / / o(t, ) (T Qx + ||u||?)dzdt
0 RVL

=o(t,z); u(0,2) =0

and o
o = / / 18u/B? + |[o|*dedt
0 Rn

As in the stability problem of the previous section,
boundary conditions must be provided. Again we can
argue that (0, z) should vanish along with u(¢,0). Be-
cause the open-loop system is assumed to be stable
there is no analog of the condition arising from stabil-
ity considerations. Because the choice u(t,z) = 0 gives
a finite value for the performance measure, and because
the performance is bounded from below by zero, there
must be an infinimizing sequence of controls.

Because u is not readily expressable in terms of p and
its derivatives, the first order necessary conditions in
this case are more conveniently written in terms of
a state-costate pair. To this end, we introduce the
costate in the form (¥(t,z), x(t,z)) with ¥ being the
partner of p and x being a vector of functions whose di-
mension equals that of the dimension of u. The hamil-
tonian is then

0
Mo = [~ (A + B+ (v) + fda
with f being the sum of the integrands of 7, and 7,

= p(t,2) (=T Qz + [[ull?) + |[o]* +vTv

The (formal) first order necessary conditions will then
be obtained in terms of the coupled partial differential
equations obtained from this hamiltonian

oY o7 T T
i (A:I:+Bu,a$)+x Qr+uu
6x__8111 T
- (g B A e

Of course the control v is to be choosen so as to mini-
mize h; that is v = —x.

The role of these equations is to make concrete the
qualitative question involving the trade-off between the
partial of u with respect to z verses the partial of u
with respect to t. When ||Az + bul] is large it is more
economical to use the former whereas when || Az + Bul|
is small it is better to use the latter.
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4 Attention and Stochastic Control

In this section we illustrate the formulation of a perfect
observation stochastic control problem with a penality
for attention. For the sake of comparison we again con-
sider an asymptotically stable linear system but now
with white noise excitation

T = Az + Bu + Gv

we look for a control u depending on z and t such that
the sum of

1 T
0

plus the value of the attention functional

o roo /5y\? ou\?
= - — } dtd
v [ (&) < (G) e
is as small as possible. We assume that the initial state
of the system is random with known density po(z).

Again we introduce a pair of evolution equations in the
the density p and the control u. If L = L(u) is the
Fokker-Planck operator for the given stochastic differ-
ential equation, then

@%’z_) = Lp(t,z) ; p(0,z) = po(x)
dult, x)
ot

and express the terms in the performance measure as
Nt + Mo With '

=v(t,x); u(0,z) =0

= ” T HST x u2 r
= [ [ o) Qe+ |l )zt

and
" = / /R JiBu/@al? + Ijo|Pdsds

As in the stability problem, boundary conditions must
be provided. Again we can argue that u(0,z) should
vanish along with u(t,0). Because the open-loop sys-
tem is assumed to be stable there is no analog of the
condition arising from stability considerations.

5 Descretization

The above models based, as they are, on analysis and
precise real numbers do not speak directly to the issue
of computer implementation. Even so, we can use them
to guide the selection of feedback controls that are well
adapted to computer implementation. Introduce the
notation

|z| = greatest integer in x

and observe that for a a positive number and u given
by u = — tan~!(z/t + 1) the descritized function

_ [ Ltlout,z)]  u(t,z)>0
ug(t, ) —{ %[—au(t,x)] ult, ) <0

has, for a large, the same general shape as u while
only taking on only a finite number of values. It does
not produce an asymptotically stable null solution of
course, no control assuming a finite number of values
can, but as a becomes larger it does approximate arbi-
trarily well in the uniform topology a smooth control
which produces asymptotic stability. This is possible
because of the saturating nature of the smooth control
law that emerged in the stability problem. No com-
parable statement can be made about a linear control
law.
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