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Abstract

In some cases the most important factor limiting the per-
formance of a distributed control system is not the avail-
ability of computational power but rather the availablity
of time on a shared communication network for commu-
nication between the sensors, the control computer and
the actuators. In this paper we develop a mathematical
model describing a class of multivariable control problems
of this type and present an algorithm which can be used
to investigate the existence of stabilizing control laws in
the presence of communication constraints. Our model
assumes that the communication facilities are to be time-
shared according to a pattern which is repeated periodi-
cally. The designer has the problem of picking the pattern
such that effective control laws can be implemented within
the constraints it imposes. If the systems being controlled
are linear, there is an affine family of possible closed-loop
transition matrices sassociated with each communication
pattern. The selection and implementation of a particular
control law which is supported by the given pattern then
defines the performance. This approach allows us to put
the problem of designing the communication pattern in
a form that can be investigated using mathematical pro-
gramming techniques. In particular one can evaluate the
advantages and disadvantages associated with allocating
more communication resources to some control loops and
less to others.

1 Introduction

The decreasing cost associated with adding microproces-
sors and communication capability to sensors and actu-
ators has made control problems involving networks of
sensors, actuators and computers quite common. A re-
cent IEEE Spectrum article 1] surveys some of these de-
velopments. In particular, networks of electric motors op-
erating under the control of a host computer can provide
effective solutions to motion control problems. However,
there exists almost no tools of analysis appropriate for es-
tablishing limitations on the performance of such systems.
Results that describe the extent to which systems can be
controlled, or give nontrivial conditions underwhich they
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can be stabilized, are not available. Currently existing
device networks consist of sensors and actuators linked
together by a communication network. The devices on
the network can communicate with each other, through
the host computer, but in many situations there is only
one communication channel. Contention for this chan-
nel can cause significant delays. Given this fact, it is of
interest to investigate the best use of the channel, given
particular control objectives.

We consider a class of actuator/sensor devices acting
under the instructions of a single control computer. We
assume that the individual devices incorporate the ability
to receive and store several types of instructions. The sim-
plest type instructs the device to report the value stored
in one of its registers. This might be the only instruc-
tion supported by a sensing device. If the device is an
actuator, typical instruction sets would include the in-
struction to adjust its set-point, and if the actuator has
a local control system, instructions to adjust its feedback
gains. Electric motors, packaged with encoders, control
computers, and communication ports, supporting such in-
structions are now available. (These ideas are presented
in a more formal way in [2].)

Of course the sensor/actuator devices operate in sam-
pled data mode. Their local clock rate is usually much
faster than the highest frequency available for communi-
cation so that we have a multi-rate sampling situation.
To simplify matters we ignore the errors caused by finite
word length representation of real numbers and proceed
as if the sensors and actuators generate and act on real
numbers. Matters of this type are considered in [4].

The evolution equation of the physical devices can be
lumped togethber with the equations of any local con-
trollers. We assume that at each sampling instant there is
a state z consisting of the state of the individual physical
devices together with the values of all past measurements
currently in memnory. There is also a set of linear function-
als, (ci(t), 2(t)), 2 =1, 2, ..., f indicating those functionals
of z(t) that are available at time ¢ for use by the con-
trol computer. We can think of the ¢i(t) as describing
the availability of information from the sensors. We also
have a set of vectors b;(t), ba(?), ..., by which enter into the
overall evolution equation

o(t+h) = Ac(t) + ) bi(t)ui(t)

and serve to describe which control actions are available
for use at time £. We can think of these as describing



the extent to which the desired control policy is deliver-
able. We postulate that each communication event, such
as the request to send the value of a variable associated
with one of the subsystems or the actual transmission of
the data requested, or the instruction to establish a new
set-point for the i*" unit, takes a certain multiple of a
number 7. We have in mind that 7 is much larger than
the sampling times associated with the individual sensors
and actuators. We call 7 the communication period.

Sensor/Actuator 1

Sensor/Actuator 2

Computer 7‘

Sensor/Actuator m

Figure 1: The daisy chain configuration.

Communication capacity will, of course, depend on the
topology of the network. We are particularly interested
in the familiar “daisy chain” configuration. In this case
only one communication operation can be carried out at
a time, leading to a limitation on the availability of data
and the deliverability of instructions. In this situation it
is important to determine which variables have the most
relevance and hence to determine to which variables one
should allocate the most communication time. The next
section discusses this in more detail.

2 Communication Sequencing

The overall evolution equation appearing in the previous
section includes the equations of motion for the individual
devices. These are modeled by discrete-time systems of
the form

zi(t + k) = Asxi(t) 4 Biui(t) ; vi(t) = Cizi(t)

The sampling rate for the individual systems may vary
from system to system. However, we are interested in
cases for which even the least of these is much higher
than the communication period. Under this hypothesis
these systems may be regarded as continuous-time sys-
tems as viewed over the network. We postulate the ex-
istence of two types of control. One is local and fast the
other is global but slower and subject to constraints aris-
ing from the limited capacity to communicate. We model
the effects of the first type control by saying that we can
instruct a local controller to use a matrix K;(¢) so as to
alter the local systems consistent with

:l:i(t + h) = /i.;a;i (t) + biu; (t)

yi(t) = Cizi(t)
where A; = A; — GiK;(t)H;. The second type of con-
trol implements feedback which couples the output of one
subsystem to the input of another. This leads to a set of
‘coupled equations of the form

zi(t+h) = (Aiza(t) + bi(kis (s (t — bis (£) + ui(t)
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i(t) = cizi(t)
with the [;; representing the delays associated with re-
questing and delivering sensor information. Eliminat-
ing the explicit dependence on y, this leads to a delay-
difference equation for z,

ze(t+h) = (Aes () + bilksj (D) o(t ~ 1 (1)) + us(t)

where, as described above, the l;; account for the fact that
present values of the physical variables sensed at location
% stored by device j may be the most recent data available.

Of course there exist a variety of strategies for making
use of the communication channel. If we apply feedback
from one unit to another then there will be cross coupling
terms. The network can be used to implement sparse
coupling and, in this way, obtain relatively high speed in-
teraction or it can be used to implement a fully coupled
feedback system at lower speed. Some variables can be
given less access to the channel and others more, or they
can all be treated equally. The limited bandwidth im-
plies that the sampling density available to any particular
feedback path is subjected to an overall constraint that
limits the sum of the sampling densities. It is unnecessar-
ily restrictive to assume that all the cross-communication
channels operate at the same frequency. We will refer to
the choice of channel access as communication sequenc-
ing. If only a single channel is available, one can think of
dividing the time axis into multiples of 7 and allocating a
communication task to each interval as suggested by fig-
ure 2. A special case, one that is both useful in practice
and theoretically interesting, arises when the communica-
tion sequence is assumed to be periodic in the sense that
the access pattern is repeated periodically. In this case if
the uncontrolled systems are time-invariant the controlled
system will be time-varying with a periodic time variation
whose period is the length of the access pattern. This has
the effect of making the I;;(¢), appearing in the previous
equation, periodic with this period. Put differently, we as-
sume that there is fixed allocation of the communication
channels whereby the output of the 5** system is commu-
nicated to the input of the j'* system every Tij units of
time and that initially it arrives there with a delay of §;;h
units of time.

schedule of read/write operations
S(1) SQ) 53
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Figure 1: The Allocating time slots to communication
tasks.

A delay difference equation with periodic delays can
always be replaced by an ordinary autonomous equation
on a higher dimensional space. For example, the difference
equation

z(j + 1) = ax(j) + bz(j — jmod3)



implies the éet of equations
* 2(1) = az(0) + bz(0)
x(2) = az(1) + bz (0)

z(3) = az(2) + bz(0)
z(4) = az(3) + bz(3)

These can be organized as an autonomous three dimen-
sional system

21(3G + 1)) at+b 0 07[ z2(3)
2283+ 1)+1) | = b a 0 z2(3c+ 1)
z3(3(: +1)+2) b 0 a z3(3t + 2)

The dimension of the autonomous system will equal the
product of the dimension of the original state vector and
the least period of the periodic variation. By analogy with
the use of the term in mathematical programming, we will
will refer to this as the extensive form of the equations.
We denote the extensive form tramsition matrix by A.
Notice that the stability of the original system can be
easily related to the stability of the transition matrix of
the extensive form; the original system is stable if and
only if A has all it eigenvalues inside the unit circle.

Assuming now that the communication sequence is pe-
riodic of period pr, we may find an autonomous descrip-
tion of the dynamics in extensive form. If we restrict
attention to the case in which the feedback control laws
are linear, how do the feedback gains enter into the transi-
tion matrix associated with the extensive form? Because
of the communication overhead associated with changing
a set-point, a set-point once fixed can not be changed for a
few periods. This means that a scalar describing the feed-
back between the ¢** output and the #** input will show
up in a number of entries in the transition matrix asso-
ciated with the extensive form. In fact, by analogy with
the ideas of Floquet theory, the eigenvalues of A describe
the growth or decay, of the solutions over the period pr.

We may summarize this development in the following
way.

Remark 1: For a given linear system with an n-
dimensional state vector, each choice of communication
sequence of period pr, defines an affine subspace of the
space of all real pn X pn matrices. Each matrix in this
space corresponds to a specific choice of feedback gains
and the mapping from the space of gains to the affine
subspace is affine,

k’—*Ao+ZkiAi

The eigenvalues of the matrices in this subspace determine
the rate of growth or decay of the closed-loop system.
On the basis of this analysis we see that questions which
arise in the design of distributed networks of actuators
and sensors depend on the selection of a subspace of the
space of n by n matrices and that stability depends on
finding an element in that subspace having eigenvalues
in a suitable region. The subspace is characterized by the
communication pattern, i.e. by the choice of the temporal
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pattern describing the sequence in which sensor informa-
tion is communicated to the actuators.

The Communication Sequence Problem: Find a
period p and a communication sequence of period p such
that the affine subspace of the set of all pn X pn matrices
associated with the communication sequence contains a
matrix all of whose eigenvalues lie in a region I' contained
in the complex plane. '

3 Enhancing Stability

The solution of the problem identified at the end of the
last section depends on being able to determine if a given
affine subspace of the space of square matrices of a given
size contains a matrix whose eigenvalues are in a certain
region.

The Affine Subspace Stability Problem: Given a
region I of the complex plane, and a set of square matri-
ces {Aog, A1, -+, Ar}, determine whether or not the there
exists a matrix of the form

A= o+ 3 ack
1 .

with A having all its eigenvalues inside the region I

Although the Routh-Hurwitz conditions and their vari-
ous modifications and refinements will, in principle, allow
one to check if a given matrix has its zeroes inside a half-
plane or a disk, it is usually not practical to use such tests
when attempting to determine if a parametrized family
contains a such a matrix unless the size of the matrix is
small. The design of algorithms for solving problems of
this type is challenging, in part, because when described
in terms of the matrix coefficients they lack convexity.
For example, it can happen that A and B both have their
eigenvalues in the left half-plane but that (1/2)(A + B)
does not. This is in contrast with the conditions for a
matrix to be nonnegative definite. The conditions on
the coefficients of a symmetric matrix that imply, and
are implied by, nonnegative definiteness are, of course,
nonlinear. Even so, the set of positive definite matrices,
thought of as a subset of the vector space consisting of
the symmetric matrices, form a convex cone. If H; and
H; are nonnegative definite then so is aH; + (1 - a)H,
for all & between zero and one. This fact makes the de-
sign of algorithms for extremization of linear functionals
subject to the constraint that the matrix is nonnegative
definite easier than might be supposed from examining
the usual algebraic test for nonnegative definite. This has
been investigated in various general settings by Nesterov
and Nimerovsky [6] and applied by Boyd et al.[7] in the
context of automatic control.

Fortunately, results on nonnegative definiteness can
give information about stability. As has been observed
before, one can rephrase the fact that there exists a
quadratic Liapunov function for an asymptotically stable
linear system as: A square matrix A has all its eigenvalues
in the circle of radius r centered at the origin if and only



if the linear family of matrices

R 0
e={Qle=|, Ra-.r"zATRA];R:RT}

contains a positive definite matrix. Moreover, if there is
a positive definite matrix of the given form, say one cor-
responding to the choice R = R” then trR* > 0 and the
unity trace matrix (¢rR*) 1R is also a solution. Thus we
can also say that a square matrix A has all its eigenvalues
in the circle of radius r centered at the origin if and only
if the affine family of matrices

R 0

QZ{QIQ: 0 R—T—zATRAjl ;R:RT;tTRzl}

contains a positive definite matrix. Conversely, if A does
not satisfy the eigenvalue condition then the distance be-
tween @ and the cone of nonnegative definite matrices is
strictly positive.

Let S(n) denote the space of n X n symmetric matri-
ces regarded as an inner product space with (S, S3) =
tr81Ss. Let P(n) C S(n) denote the set of nonnegative
definite matrices, let §(n) denote the subset of S(n) con-
sisting of those symmetric matrices of trace 1. Finally,
if @ is an arbitrary symmetric matrix we let d(Q, P) de-
note the distance between the matrix Q and the nearest
nonnegative matrix, as measured by the norm associated
with the given inner product. It follows from general prin-
ciples that if C is a closed convex set of symmetric matrices
then there there is an element of C that is closest to P.
Algorithms for finding the matrix in C closest to P are
described in [6].

Define

QR k) ={QRQ= [ f)z R_AT(Ok)RA(k) ]}

Theorem: Given an affine subspace of a space of
square matrices characterized by

A={A: A(K) = Ao+ Y _kidi} 5 Ao #0

and given R? € 3(71,) and Igo, define R* and k' by the
iteration whereby Ri*! € S(n) minimizes the distance
between

R 0
Q—{Q|Q— l: 0 R—’I‘_zAT(ki)RA(ki) }}
and P(n) and k**! minimizes the distance between

Ri+1 0
e={QR= 0 Rt r—2AT(k)Ri+1A(k) }

and P(n). Then if A does not contain a matrix with all its
eigenvalues in the right half-plane, the sequence (R, k)
converges to a local minimum of the distance between the
bilinear family consisting of matrices of the form

R 0

and P(n).

Proof; The set ® is not necessarily convex. However,
it is convex in k for fixed R and convex in R for fixed
k. Thus the minima referred to in the theorem statement
make sense. Clearly each step of the iteration brings Q
closer to the cone of positive definite matrices or, at worst,
does not alter the distance. The sequence of distances is
bounded from below and therefore it has a limit. If the
limit is zero then we can proceed to find a suitable @ and
k if the limit is positive then we can only assert that the
algorithm found a local minimum which was positive. We
cannot rule out the possibility that a different starting
point might lead to a different limit, and that this second
local minimum might be in the cone of positive semidefi-
nite matrices.

Cone

2
—
“R

Figure 3: Illustrating the alternating steps described
in the theorem.

The above algorithm depends on being able to solve the
problem of identifying the symmetric matrix in a given
subspace that comes closest to the nonnegative definite
cone. That is, given a subspace of the set of symmetric

‘matrices, @ = Span{Q1, Q2, ...Qx}, give an algorithm for

determining if there is a positive definite matrix in their
linear span.

Positive definite matrices have positive traces; if a
linear combination @ of a set of symmetric matrices
{Q1,Q2,...,Qr}, contains a positive definite matrix @

then
rQ = Z a;trQ;

Thus the numbers ¢r(Q1), tr(Q2),...,tr(Qk) cannot all
vanish. Moreover, if the space contains a positive defi-
nite matrix it contains one having trace one. This follows
immediately from the fact that H > 0 implies aH > 0 for
all positive a.

The approach to such problems recommended by Nes-
terov and Nimerovsky [5] as well as Boyd et al. [6], in-
volves the use of a penalty function in the form

o, Q) = Indet(al + Q)

clearly this function is positive when « is large and goes to
minus infinity as (o] +Q) approaches the boundary of the
cone of positive definite matrices. Thus if one minimizes
ya — ¢(a, Q) with respect to real a and @ in a subspace,
then it is intuitive that the for -y approaching infinity, o*
will approach the the smallest eigenvalue in the subspace
of symmetric matrices under consideration.

A Penalty Function Algorithm: Let
Q= spa'n{in Q27 eeey Qk}

be a subspace of the space of real symmetric matrices.
Counsider the problem of finding the minitaum value of



a such that al — Q is positive definite for Q € Q and
trQ = 1. To do this we select a sequence of positive
real numbers, 4%, 41, ~2, ..., monotone increasing and un-
bounded, and then minimize v+ In det(al + Q) starting
with o sufficiently large. For fixed + the gradient flow is

just

Q==Y QtrQi(Iya-Q)
a=—ytr(Iva+Q)™*

provided that the @Q’s are orthonormalized, i.e.

4

1.

(Qr,Qj5) = &i;
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