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Abstract

In this paper we show how the type of hybrid models in-
troduced in [1] can be used to evaluate the performance
of motion control systems. We define an appropriate class
of formal languages, allowing us to frame such problems
succinctly as word-to-position transducers. We show that
models involving multiple triggers play an important role
in modeling this type of motion control system.

1 Introduction

Systems whose operation involves a combination of
smoothly changing variables and discontinuously changing
variables have now become more common because of the
increased use of microprocessors in control system design.
Computer controlled positioning devices, such as machine
tools printers, robots, pen plotters, exemplify what we have
in mind. Such devices operate on the interface between
communication networks and the physical world. They in-
teract with computers, or computer networks, by means
of a set of symbols, and interact with the physical world,
through forces, velocities, pressures, etc. As contrasted
with the well developed theories of differential equations,
formal languages, etc. available to treat the various pieces
of such problems, very little methodology exists guide the
analysis of the interactions between the symbolic and the
continuous. Current engineering practice is to model the
information driven part of the system using one formalism
and to model the physical part of the system using another.
For the most part, textbooks either ignore, or only discuss
qualitatively, the way in which the continuous aspects and
the discrete aspects interact with each other.

In our paper [1] we gave some examples serving to mo-
tivate the study of this interaction and described a rea-
sonably general approach to the modeling of such systems.
The performance of such language-driven positioning de-
vices may be gauged in several ways. Measures include the
symbols processed per unit time, the velocity of the phys-
ical movements, the positioning accuracy and/or repeata-
bility, the resistance to external disturbances, the ability
to handle emergency conditions, etc. In many cases the
dominant consideration is ease of programming.
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In this paper we establish some of the properties of the
models of the form shown in Figure 1. We study a set
of questions reflecting the interaction between the discrete
and continuous part. Qur models have inputs consisting of
real valued functions u and symbol strings v. The outputs
are real valued functions y and a symbol string w. We
give results on problems associated with following symbolic
commands. As contrasted with work on real-time control,
in the sense that the term is used in computer science (2],
we assume that we have a good model for the non-automata
theoretic part and use this knowledge to formulate a more
tractable set of questions.
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Figure 1. System with both symbolic and continuous
variables.

2 Background

Because the models to be discussed here have not yet been
widely explored, we begin by putting them in a larger con-
text. Input-output models based on difference equations
of the form

z(k + 1) = f(z(k), u(k)) ; y(k) = h(z(k))

make sense in a variety of settings. For example, in au-
tomata theory one restricts z(k) to take on values in some
finite set X, u(k) to take on values in a finite set U, and
requires that f map X x U into X. In the realm of classi-
cal analysis, one considers difference equations of the same
form with X and U being vector spaces or manifolds. The
analogous differential equation

£(t) = a(z(t), u(t))

is less flexible in that it is only defined in those circum-
stances for which X has enough structure to permit the
derivative to be defined. Although in automata theory one
understands that k+1 follows k in time, there is no explicit
measure time. The automaton reads the input symbols,
one after the other, but the amount of physical time this
process takes plays no role.
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However, in order to be able to use these models to pre-
dict significant aspects of the behavior of the system it is
necessary

i) to give a temporal description to the evolution of the
automaton,

ii) to specify how the interaction between the discrete and
the continuous part of the system occurs, and

iii) to specify the equations of evolution.
Example 1: Let = and z be vectors and p a scalar.
Consider the system

#(t) = Anz(t) + Araz|p)

z[p] = Anz(tp) + Azz|p)

p(t) = r(z(t), z1p))
The notation |p} denotes the largest integer less than or
equal to p. For simplicity, we abbreviate z({p(t)]) as z{p]-
The notation [p] denotes the smallest integer greater than
p. We include equality in the definition of the “floor” func-
tion and exclude it in the definition of the “ceiling” func-
tion. We assume that r is nonnegative so that p is mono-
tone increasing and use ¢, to denote the the value of t at
which p most recently reached an integer value. As in [1],
we think of p as being a trigger which initiates an abrupt
change in z. An event driven sampling process gives rise
to z(tp).
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Figure 2. Illustrating the definition of ¢, and |p(t)].

These equations describe a system in which z satisfies a
linear differential equation and z is constant as long as p
is between integer values. When p reaches an integer, the
value of z may change and the vector field that defines the
evolution of ¢ and p may change as well. The variables =
and p are continuous. If r is a constant these equations are
linear and their solution {(¢) = (z(t), 2(t)) can be expressed
in terms of a transition matrix ((¢) = ®(t,to)¢(to). Even
though & is discontinuous in t, it satisfies the composition
law, ®(t,to) = ®(t,t1)P(¢1,t0). Moreover, one can solve
for ¢ using matrix exponentation, etc. If the derivative
of p is not constant the sampling rate is dependent on z
and/or z and the solution can not be represented in terms
of a transition matrix even though it can be thought of as
being composed of a collection of linear flows.

By generalizing these equations somewhat we obtain a
family of models that describe a number of situations of
engineering interest. Consider the system of equations

z(t) = a(=z(t), z|p), u(?)) ; y(¢) = e(z(t), 2{p))
p(t) = r(p(t), z(t), 2Lp))
zfp] = f(zlpl, =(ts),vlp)) 5 wik) = h(y(ts), 2lp))

We assume that r(t) is nonnegative. We will say that r
satisfies the transversality condition if there exists an € > 0
such that whenever p(t) is within € of an integer value, i.e.
whenever there exists and integer ¢ such that |p(¢) — | < ¢
it follows that r(p(t),z(t), z|p]) > €

The first equation, specifying the evolution of z, de-
scribes those aspects of the system for which differential
equations are the appropriate basis for modeling. The vari-
able p is to be thought of as modeling the pace of interac-
tion between the dynamics represented by = and the flow
of information represented by changes in z. The equation,
specifying the way in which z changes, describes the part of
the system whose evolution is triggered by events, j.e. the
advancement of p through integral values, and represents
the symbolic processing done by the system. We will refer
to this system as a single trigger hybrid system .

Existence and Uniqueness Theorem: Consider a
hybrid system with the notation as above. Suppose that
the range of f is a countably infinite set, that there exists a
global Lipschitz constant & for the pair (a,r) valid for all z
in the range of f. Then for a given value of z(0), p(0), z(0),
any piecewise continuous function u, and any infinite string
v, there exists a unique pair (z(-), p(-}), continuous in ¢ and
piecewise differentiable, together with a piecewise constant
function z(-), such that the triple (z, p, 2) satisfies the sys-
tem on any finite interval [0,¢1). If, in addition, r satisfies
the transversality condition then (z(t), p(t)) depends con-
tinuously on the initial data (z(0), p(0)).

Sketch of Proof: We may apply the standard Picard
iteration procedure as in 3] to show that solutions exist for
fixed z. The global Lipschitz condition rules out finite es-
cape times. Because r is bounded for bounded (z, p), there
can be no more than a finite number of changes in z on any
finite interval. Thus it is possible to cover any finite inter-
val by piecing to piece together the solutions obtained on
intervals on which z is constant. With a Lipschitz hypoth-
esis, solutions of differential equation depend continuously
on the initial data. However, unless p crosses the integer
values with a positive slope a continuous change in p(0),
acting through the discontinuous dependence of the vector
field on 2, might produce a discontinuous change in z(t).
However, if p passes through integer values with positive
slope then the jump times depend continuously on the ini-
tial data.

3 Lattice Languages

If A= {a1,az...ax} is a finite set then by A* we understand
the set of all strings of finite length made using elements
of A. There is a naturally defined binary operation on this
set, concatenation of strings and, relative to this operation,
A* is a semigroup. If we include the empty string in A" it
becomes a monoid, i.e. it is a semigroup with an identity. A
formal language, as the term is understood in the computer
science literature, is simply a subset of a free monoid over a
finite alphabet. The alphabet itself is not required to have
any particular structure. On the other hand, languages
used to control positioning devices, such as the language
based on G and M codes widely used in the computer con-
trol of machine tools, have a great deal of structure beyond
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that codified by formal language theory. In particular, sig-
nificant parts of the languages used in such applications
can be identified with geometric structures and are used to
specify trajectories. This can be described in the following
way.

Let Z denote the set of integers and let R™ denote
Euclidean n-space with its usual inner product. Let
{e1,€a,...6n} be a set of orthogonal, but not necessarily
orthonormal, vectors in R”. We can associate with this
ordered basis, a lattice

v ={v|v=zaie,- ;i € Z}

The special case obtained by letting the e; be the standard
basis elements in R™ will be denoted by Z" and referred
to as the tnteger lattice. More generally, if all the e; are of
the same length we will say that the the lattice is a scaled
integer lattice with lattice spacing ||e:}|. If v and ¥ are two
points in the lattice

v= Z aie;

7= E d.-ei

we let ||v—17|| denote the Euclidean distance between them
and define ||v — 9]}oo as

{lv ~ 9lloo = max|os — &l
T

By a neighborhood in a lattice we understand a finite
collection of lattice points specified by their coordinates
relative to a specific lattice point. For example, we may
specify a neighborhood as the set of all lattice points that
are less than some fixed distance from the given lattice
point. (See figure 3.)

Even though V™" is is a countably infinite set we can
still consider V™*, the monoid consisting of all possible se-
quences of the form vi,, vi;, ..., vi, With v;; € V™. A sub-
set L CV™* will be called a lattice language. The language
consisting of all finite strings having the property that the
k** element is in the N-neighborhood of the (k — 1)** will
be called the neighborhood language defined by N.

Figure 3: Illustrating a neighborhood in a cubic lattice
in[R?, an interpolation, and a trajectory that approximates
the interpolation.

if if V is a scaled integer lattice with lattice spacing
&, and if L is a lattice language, will say that the hybrid
system

(t) = a(z(t), 2[p)) ; ¥(t) = A(=(t))

B(t) = r(z(t))
z{pl = f(zlp), y(tp), vIp))

reproduces L with tolerence € if, when z is intially in equi-
librium, any sequence in L whose initial entry agrees with
y(0), results in a response y that follows v in the sense that

Hly(8) — vip()]lleo < €

Example 2: Let V™ C R™ be a scaled integer lattice
with spacing 6 and let L be the language consisting of
all sequences in V™ having the property that successive
entries are no more than § units apart in the || - ||oc norm.
Consider the hybrid model

#(t) = Az(t) + Bzlp] ; y(t) = C(t)

pt) =r
2Tp] = vlp)

We make three assumptions on the linear system
£(t) = Az(t) + Bu(t) ; y(t) = Cz(t)

i) Assume that the real parts of the eigenvalues of A are
negative.

ii) Assume that G(s) = C(Is — A)"'B takes on the value
lTats=0.

iii) Assume that the induced || - ||oo norm of the operator

Lt/r]
My = Z Cerlt-l/rl 41y,
k=0

is less than or equal to €/6.

Under these hypotheses the hybrid system reproduces L
with tolerence e.

Proof: Introduce the change of variables m(t) = z(t) —
A7'Bz(t). Then

m(t) = Am(t) - A”B%z(t)

and

y(t) — CA™'Bz(t) = Cm(t)
where the derivative of z is to be interpreted in the dis-
tributional sense. Thus, using the steady state tracking
condition, CA™!B = I, we have y — 2 = Cm. The error
between y and v is the value of the solution of

m(t) = Am(t) — A~ Bu(t)

where u is a vector-valued sequence of delta functions hav-
ing || - ||co-strength & separated by 1/r units of time. The
error can, therefore, be expressed as

e/}
y(t) — v(t) = Z Cet Tl A~ gy,
k=0

with pux being the derivative of z at time kr. and from this
the claim follows.
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4 Multiple Triggers

The tracking problem treated in the previous theorem re-
quired no computation from the finite state part of the
system because the input was such that it could be passed
on to differential equation without further processing. This
situation is exceptional. In typical cases involving “higher
level” languages it will be necessary to perform some com-
putations on the input string v in order to generate the
approprate signals for the differential equation. In such
situations the single trigger model that we used above is
usually not adequate to express the timing relationships.
The introduction of multiple p’s requires some extension of
our notation.

If p e RY, say p = (p1,p2,.--,Pq), then we define p] to
be the point in Z7 with coordinates (|p1}, [p2], .-, [Pq))-
The ceiling version [p] is defined analgously. Our vector
trigger hybrid model then takes the form

£(t) = a(z(t), z|pj, ul(t)) ; y(t) = c(=(t), 2|p))
p(t) = r(p(t), z(t), 2|p))
2[pl = fzlpl,z(tp),vim]) 5 w(k) = A(z(tp), 2pq])

where z(t) € R™ and p(t) € R?. Notice that the input
string v is indexed by a single whole number which we take
to be the value of the first counter, p;. The output string
v is indexed by a single whole number which we take to
be the value of the last counter, p,. We assume that each
component of r is nonnegative and that each satisfies the
transversality condition. Finally, we assume that at most
one 7i(t) is nonzero at any one time so that at most one
trigger is advancing at a time. This condition, together
with the transversality condition, implies the existence of
a lower bound t. on the time that must elapse between the
moment when one p;(¢t) passes through an integer value and
when some other p;(t) passes through an integer value.

Armed with this more general model, we now return to
the problem treated in example two above. Let v; and v,
be two points in a scaled integer lattice V™ C R™. Observe
that there exists a whole number s and a sequence of lattice
points fi, f2, ..., fs such fi = vy, fy = vq, the ||+|]oo distance
between successive elements of the sequence is less than or
equal to the lattice spacing, and the distance between any
of the f; and the line segment joining the end points is less
than or equal to the lattice spacing as measured by || - || .-
We call such a sequence a lattice point linear interpolation
between v; and v,.

Given a language L and a neighborhood N associated
with this lattice we will say that an automaton of the form

p(t) = r(p(t), 2(p))

z([pl) = f(z(Lp),vlp1))
w(|pq)) = h(zlpq))

compiles L at rate r into the neighborhood language defined
by N if:

i) z can be expressed as (z1, z2) such that if (2,(0), 22(0)) =

(a, b), the string defined by the successive values of 21, i.e.

21(0), 21 (1), ... gives, first, a linear interpolation between a

and vy, second, a linear interpolation between v; and wvq,
. and, finally, an interpolation between v,; and v,.

i) zy returns to b when z; reaches v,.

iii) the output symbols are delivered at rate r per unit time.

If we limit ourselves to a finite subset of the lattice then
there exists a finite state machine that generates the series
of nearest neighbor steps. However, to define an automa-
ton that accepts as input a sequence of lattice points and
outputs a lattice point linear interpolation it is necessary
for the machine to read the input at a different rate than
it generates output symbols. Having read the first element
of the word v the automaton computes, in several steps
if necessary, the points on the interpolating path. These
are then metered out to the differential equation in nearest
neighbor steps. When the last step has been taken. the
input is read again thus making available the next elemnent
of the v sequence, etc. All this must be done in such a way
as to generate output symbols at the steady rate of r per
unit time.

Example 3: Let V™ C R™ be a scaled integer lattice
and let I, € V™" be a language. Assume that the linear
system

z(t) = Az(t) + Bu(t) ; y(t) = Cx(t)

satisfies the conditions of Example 2. Assume , further.
that the system

p(t) = 7(p(t), 2(lp))

2([p1) = f(z(lp), vp1))
wlpq]) = z11Py]

compiles L at rate r to a linear interpolating sequence.
Then the over all system

z(t) = Az(t) + Bailpe] ; y(t) = Cz(t)

B(t) = r(p(t), 2(1p})
z([p1) = f(z(lp). vlp1))

reproduces v with tolerance e.

5 Lattice Systems

The differential equation models of the previous sections
would be appropriate to model linear servo motors having
a position feedback loop. However, many position control
systems are implemented using stepper motors. The in-
put/output characteristics of these devices have a hybrid
aspect. For our purposes, the most significant aspect of
a stepper motor is that it has multiple stable equilibrium
points and these points can be thought of as defining a
lattice in R*.

Figure 4. The source of the equilibria of a stepper
motor.
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This phenomenon arises because of the geometric and
magnetic properties of the stator and rotor as suggested by
figure 4. The basic properties of such systems are suggested
by a differential equation of the form

#(t) + ai(t) + sin(znix) = u(t)

The idea is that when a pulse of a suitable magnitude is
applied to the motor, the rotor will move from one stable
equilibrium point to the next. On the other hand, unless
the control is suitably orchestrated, and enough time is
available for the system to settle, the physical variable =
may not move to the next equilibrium. Related problems
are discussed in [5] and [6].

Example 4: Let V be the unit lattice in R'. Consider
the second order system

E(t) + az(t) + sin27z(t) = u(t)
with o positive. Suppose that u(t) is of the form

no o H0St<h
“()“{o, ifb<t<T.

For T sufficiently large there exists a disk D = {(z, )|z* +
2 < ¢} of radius less than 1/2 and values of a and b such
that if (z(0),%(t)) € D then (=(T) — 2m,2(T")) € D.

Proof: Observe that the stable equilibrium set for the
unforced system is the integer lattice in R'. Because o
is positive the domains of attraction associated with the
stable equilibria divide the phase portrait into a countable
family of open regions. Each of these open regions intersect
the axis defined by = = 0. (See figure 5.) If the system
starts at (z(0),z(0)) and if an impulse of strength 3 is
applied, then the derivative increases to £(0) + 3. If we
choose (8 to be the = coordinate of the mid point of the
interval I in figure 5, then for a certain range of inmitial
conditions near z = 0,z = 0, z(t) will approach 7 as t goes
to infinity. Given any ¢ there exists a time T so that z, £) is
within a disk of radius €. The trajectory that results from
an impulse of strength B can approximated with arbitrary
precision by a trajectory caused by a tall narrow pulse of
height a and width b = 8/a. Putting these facts together
we confirm the claim. .

Figure 5. The separatrices for £ + ¢ +sinz =0 .

Typical applications such as a dot matrix printer would
require several such motors. Taken together, the set of
possible stable equilibrium points would form a lattice. Be-
cause it is impractical to command the system to move to
a point that is not an equilibrium point, the appropriate
languages to use in this situation is fixed, to a large mea-
sure, by this lattice of stable equilibria. We illustrate this

with a simple example. We will say that the system

£(t) = f(z(t),v(t)) 5 y(t) = h(z(?))

is V™ _stable if for each v € V'™ there exists = such that
f(z,v) = 0 and h(z) = v have a solution with 3f/dz
having all its eigenvalues in the left half-plane.

Example 5: Consider the sequence v = 100...0 and
the sequence v = 00...0, each of length & + 1. Let L be
the free monoid consisting of all strings made from v¥, v5.
And, let

p(t) = r(p(t), zlp})
z[p] = f(ztp),vIp1))
be an automaton that disassembles elements of the free
monoid {v¥,v¥}* into its {0,1}" equivalent and outputs
the string of zeros and ones at rate r. Then for suitably
chosen values of k£ and r, the output system

Z(t) + az(t) + sin2rz(t) = az|p] ; y(t) = z(t)

tracks the number of occurrences of v¥.

6 Conclusions

There exist many important classes of language driven sys-
tems. Because of their flexibility they are easily adapted
to new problems and may be refined to provide improved
solutions to old ones. We have shown how hybrid system
models of a particular type can be used to model interest-
ing aspects of the performance of such systems. There are
many related problems, especially those that involve more
use of feedback, that remain to be investigated. Some of
the more mathematical aspects of the relationship between
continuous and discrete aspects of dynamical systems are
discussed in [4].
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