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Abstract

This paper studies problems related to the construction of a robust correspondence be-
tween an automaton and a continuous-time dynamical system of the input-output type.
Two general methods, based on ideas from topology, are considered. They can be distin-
guished on the basis of the time scale on which they operate. The slow time scale method
utilizes the relationship between the fundamental group of a space and the corresponding
deck transformations acting on the covering space. The fast time scale method is based on
a suitable topological characterization of pulses and identifies pulses with transitions be-
tween the domains of attraction of stable equilibria. As compared with the standard digital
electronics paradigm, these results provide a more general conceptual scheme for building
robustness into calculating mechanism. The results obtained suggest new ways to interpret
neurobiological signal processing.

1 Models for Computing

There have been many attempts to compare analog and digital computing, motivated,
at least in part, by the desire to make a clear distinction between natural and machine
intelligence. The presently accepted setting for such comparisons dates from the 1940’s with
the literature including work by scientists as influential as Wiener [1] and von Neumann
[2]. Even so, it seems fair to say that most of the major questions remain unanswered. One
might argue that difficulties encountered in trying to make precise statements about the
relationships between analog and digital computing lie at the heart of what makes biological
intelligence mysterious and difficult to study. In contrast with standard textbook approaches
to the design of digital systems [3], in our recent papers [4], [5] we have considered a general
approach to the problem of obtaining robust designs of computational elements using some
ideas from algebraic topology and the theory of dynamical systems. In this paper, we
consider a framework capable of handling a wide class of coding schemes, reflecting work in
neurobiology that suggests many different types of coding are used.

Considerable work has gone into the study of models of the form

ẋ(t) = f(x(t), u(t))
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with x(t) taking on values in a manifold X and the values of u(t) being restricted to some
set U ⊂ Rm. Often one excludes the possibility of restricting u in any way that involves
constraints on its time derivative, its integral, etc. In an optimal control context, such
restrictions are better handled by redefining the input to be the highest derivative present
in the constraints, adding equations of the form u̇(t) = v(t) to the dynamics, and then
imposing state-space constraints. Here we consider the possibility of invoking constraints
linking u(t), u̇(t), and even higher derivatives. We use the notation u{k} = (u, u(1), ..., u(k))
to denote the collection consisting of u and its first k derivatives with respect to time. We
denote the kth tangent bundle by T kU .

With this much notation established, we sketch the two main points of view to be
developed. In the interest of readability, we include in the next section the definitions of
some of the topological terms used. Most are standard and are explained, for example, in
Massey [6] or Bott and Tu [7].

1. The Quasistatic Case. The inputs to the dynamical system are assumed to belong to a
connected set U ⊂ Rm admitting the structure of a differential manifold. The state-
space X is a covering space of a manifold X0 with covering map φ : X → X0. The
system on X is a lift of a system defined on X0, with the system on X0 having input
space U and an asymptotically stable equilibrium point x0 corresponding to an input
u0. Different inputs give rise to different stable equilibria so that a path in U gives rise
to a path in X0. Each closed path in X0 generates a deck transformation on X such
that homotopic paths in X0 generate the same transformation. These transformations
permute the elements of φ−1(x0). We take the set {x ∈ X|φ(x) = x0} to be the state
space of the automaton and identify the inputs with elements of the fundamental
group of U .

2. The Pulse-Like Case. The inputs to the dynamical system take on values in Rm subject
to certain constraints on the values taken on by them and their time derivatives. We
express the constraints as (u(t), u(1)(t), ..., u(k)(t)) ∈ K. The states of the automaton
are identified with the stable branches of the set {x|f(x, u) = 0}. The evolution
equation ẋ(t) = f(x(t), u(t)) is structured in such a way that if u is pulse-like, each
pulse transfers the system from the domain of attraction of one asymptotically stable
equilibrium point to that of another. The transition function of the automaton is
defined by these transitions. We identify the inputs of the automaton with distinct
elements of the homotopy classes of K.

In automata theory the passage of time is not marked in an explicit way, but rather it
is subordinated to the appearance of a new symbol at the input. In the present context it
is necessary to be more explicit. We mark the passage of time in terms of the integral of a
closed differential defined on K. We use this to formalize a relationship between systems
as defined above and a class of hybrid systems.

2 Automata and Covering Spaces

We begin by fixing our notation for finite automata. By an automaton one understands
a five-tuple (V, Z, Y, f, h), with V being the input space, Z the state space, Y the output
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space, f the state transition function and h the output map. One assumes that Z and Y
are finite sets and that f and h are maps f : Z × V → Z and h : Z × V → Y . Variables
z ∈ Z, v ∈ V and y ∈ Y are related by

z(k + 1) = f(z(k), v(k))

y(k) = h(x(k), v(k))

The interpretation is that the input string v(0), v(1), ..., v(k) is processed by the system,
generating an output string y(0), y(1), ..., y(k) which represents the result of the compu-
tation. Digital computers, thought of as having a fixed amount of memory and storage
capacity, can be modeled in this way.

Perhaps the most elementary procedure for associating an automaton with an input-
output dynamical system of the form

ẋ(t) = f(x(t), u(t)); y(t) = h(x(t))

involves the idea of a covering space, and uses the relationship between the fundamental
group of a space and the group of deck transformations on a covering space. We need the
following ideas. (See, for example, Massey [6].) If X and X̃ are differentiable manifolds and
if φ : X̃ → X is a continuous map such that for each x0 in X there is,in X̃, a neighborhood
of each φ−1(x0) such that φ is one to one and onto some neighborhood of x0 in X then we
say that the pair (X̃,φ) define a covering space of X with covering map φ. A continuous
function x : [0, 1] → X such that x(0) = x(1) = x0 defines a closed curve in X. Two closed
curves, both starting at a point x0 and ending at x0, are said to be homotopic if there
exists a continuous deformation of one of them into the other.

X
X

Figure 1. Suggestive representation of a double cover of the circle.

Homotopy defines an equivalence relation on continuous curves starting and ending at
x0. We denote the equivalence class containing the curve γ by [γ]. Poincaré realized that
by using a suitable law of composition, the set of such equivalence classes could be given
the structure of a group. The standard notation for this group is π1(X, x0). (See reference
[6] for details.) Given x0 ∈ X and xc0 ∈ Xc such that φ(xc0) = x0), corresponding to a
continuous curve γ ⊂ X there is a unique continuous curve γ̃ ⊂ X̃ such that φ(xc(t)) = x(t)
for all t. This curve begins and ends in the set of inverse images of x0. If X̃ is such that
any closed curve in it can be continuously deformed into a point then it is intuitive that
a closed curve in X is homotopic to a point if and only if the corresponding curve in X̃ is
closed. More generally, there is a mapping from the homotopy classes in X to permutations
acting on the set of inverse images of x0. In this way one associates with each element
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of π(X, x0) a map of X̃ into itself. Such maps are called deck transformations. If B
is a subset of a topological space X and if r : X → B is a continuous map, r is said to
be a retraction if r(b) = b for all b ∈ B. A jointly continuous family of maps, such that
f(x, 0) = x, f(x, 1) = r(x), f(b,α) = b, for all b ∈ B and all α ∈ [0, 1] is said to define a
deformation retract.

The idea of a covering space is easily extended to differential equations.
Definition 1. Let X and U be differentiable manifolds and assume that x(t), taking

on values in X, and u(t), taking on values in U , are related by

ẋ(t) = f(x(t), u(t))

Let X̃ be a manifold and let φ : X̃ → X be such that (X̃,φ) is a covering space for X. We
will say that a system

ẋc(t) = fc(xc(t), u(t))

defined on X̃ is a lift of the given system if φ(xc(t)) = x(t) for all inputs u. The set of
possible equilibrium points will be denoted by

E = {x ∈ X̃|∃u ∈ Us.t.f(x, u) = 0}
Assuming now that f is differentiable with respect to x and u, let E+ ⊂ E denote the set
of points where the eigenvalues of the Jacobian ∂f/∂x have real parts that are negative.
We call E the E − set of the system and call E+ the E+ − set of the system.

Example: Embed the circle in R2 as x2
1 + x2

2 = 1. Consider a system on this space
having scalar input u(t) and evolutionary equation

ẋ1(t) = −u(t)x2(t)

ẋ2(t) = u(t)x1(t)

Consider the real line as a covering space of the circle with the covering map sending x into
x1 = cos x and x2 = sinx. The equation of motion in the covering space is simply

ẋ(t) = u(t)

In this case the E − set for the system on the circle is the whole circle and the E+ − set is
empty. If we add a drift term to get

ẋ1(t) = (x2(t) − u(t))x2(t)

ẋ2(t) = (x2(t) + u(t))x1(t)

then the evolution equation on the covering space is

ẋ(t) = − sinx + u(t)

The E − set is still the whole circle but now the E+ − set is the half-circle corresponding
to π < x < 2π.
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Theorem 1. Let u and x be related as in Definition 1 with f being differentiable with
respect to x and u. Assume that E+ is connected and that for each u ∈ U there exists
a corresponding equilibrium point x ∈ E+. Assume, in addition, that f(x(0), u(0)) = 0.
Then there exists an ε > 0 and a map φ : (X̃,π1(U, u(0))) → X̃ such that if x(0) ∈ E+,
f(x(0), u(0) = 0, u(t) approaches u(0) as t goes to infinity and ||u̇(t)|| < ε then xc(∞) =
φ(xc(0), [u]). The number of Nerode equivalence classes associated with the map φ is less
than or equal to the number of inverse images in X̃ of a point x0 in X.

Proof: We may linearize the relationship f(x, u) = 0 to get

∂f

∂x
δx +

∂f

∂u
δu = 0

One consequence of the asymptotic stability assumption is that the martix of partial deriv-
atives of f with respect to x is necessarily nonsingular on E+. A second consequence is that
if u changes sufficiently slowly then x(t) will remain close to E+ and will also change slowly.
Thus a closed curve in U generated by a slowly changing input generates a closed curve in
X which lifts to a curve in the covering space. The corresponding deck transformation on
the covering space then generates a permutation of the points of {x ∈ X|φ(x) = x0.

The above procedure is simple and natural but it is not adequate to represent an arbi-
trary finite automaton. To see why, it is enough to recall that one may associate with any
automaton a set of maps of its state space into itself consisting of those transformations
that can be expressed as ψ(x) = f(f(...(f(x, vi1), vi2)..., vik−1), vik) for some choice of the
v′s and some k. This is a subsemigroup of the semigroup of all maps of Z into Z, with com-
position being the semigroup operation. It differs only trivially from the Myhill semigroup
of automata theory. Clearly it is a finite semigroup because Z is finite. It is well known,
any automaton can be realized as

m(k + 1) = v(k) ∗ m(k); y(k) = φ(m(k))

with * being composition. On the other hand, the corresponding semigroup for the covering
automaton defined by theorem one can always be embedded in a group. This places a
restriction on the kinds of automata that can be realized this way.

3 Automata and Coadjoint Orbits I

There is a simple class of systems defined on coadjoint orbits and their covering spaces and
which provides a rich set of examples of Theorem 1. In this setting, one can estimate the
size of the ε that appears there. Instead of considering a full coadjoint orbit, however, we
illustrate Theorem 1 in a more restricted setting.

If Λ = {λ1,λ2, ...,λn} is a set of distinct real numbers, let Sym(Λ) denote the set of
all real n by n symmetric matrices with spectrum Λ. Sym(Λ) admits the structure of a
connected Hausdorff manifold of dimension n(n − 1)/2. The group of n by n orthogonal
matrices acts transitively on it, via conjugation, H )→ ΘT HΘ. There are 2n−1 diagonal
matrices in SO(n) and their diagonal entries are either plus or minus one, subject to the
condition that there is an even number of minus ones. Observe that if H0 ∈ Sym(Λ) is
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diagonal, then the values of Θ that satisfy ΘT H0Θ = H0 are exactly the diagonal elements
of SO(n). Thus we can think of SO(n) as a covering space for Sym(Λ), each point in
Sym(Λ) having 2n−1 preimages in SO(n). For n > 2 the fundamental group of SO(n) is
Z2. The compact, simply connected group Spin(n) is a double cover. (See, for example,
Weyl [8].) Thus we may say that Sym(Λ) has Spin(n) as a compact simply connected
covering space with 2n elements in Spin(n) sitting over each point in Sym(Λ).

Consider the pair of equations from [9],

Ḣ(t) = [H(t), [H(t), U(t)]]

Θ̇(t) = −[H(t), U(t)]Θ(t)

with U and H being symmetric and Θ orthogonal. The first of these can be thought of as
an equation on the space of n by n symmetric matrices, the second as an equation on the
orthogonal group. Together they evolve in such a way as to keep Θ(t)H(t)ΘT (t) constant
and, together, imply the single equation

Θ̇(t) = [ΘT (t)QΘ(t), U(t)]Θ(t)

We regard these equations as defining an input-output system with input U . They are
capable of realizing interesting classes of automata provided that we restrict the choice of
U in an appropriate way. More specifically, this system defines a finite automaton that
computes a certain topological invariant associated with the input trajectory.

Generic n by n symmetric matrices have unrepeated eigenvalues. We denote by GSym(n)
the set of real n by n symmetric matrices without repeated eigenvalues. The following lemma
provides a characterization of this space that will be useful in interpreting the theorem that
follows.

Lemma 1. If Λ is without repeated entries then Sym(Λ) is a deformation retract of
GSym(n).

Proof: For each element U of GSym(n) there is a unique diagonal matrix D(U) such
that D is of the form ΘT UΘ and the diagonal elements of D are in decreasing order. Let
Λ be the diagonal matrix in Sym(Λ) whose diagonals are in decreasing order. Consider the
one parameter family of maps

r(α) : GSym(n) → Sym(Λ)

defined by
r(α) : U )→ Θ(αΘT UΘ+ (1 − α)ΛΘT

For all α between zero and one the convex combination αD + (1−α)Λ is without repeated
eigenvalues. Thus for each α the above expression defines a map of GSym(n) into itself
and for α = 1 it is onto Sym(Λ).

In stating Theorem 2 we make use of the notation adP (Q) = PQ − QP and use ad−1
P ()

to denote an inverse of this operator.
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Theorem 2. Let Q be an element of Sym(Λ) and let U : [0,∞) → GSym(n). Consider
the system on SO(n)

Θ̇(t) = [ΘT (t)QΘ(t), U(t)]Θ(t)

There exists φ : SO(n) × π1(GSym(n), U(0)) → SO(n) and an ε > 0 such that if

||ad−1
U (U̇(t)|| ≤ ε

then
Θ(∞) = φ(Θ(0), [U ])

The state-space of this automaton has 2n−1 states.

Proof: As discussed in [9], for each element U ∈ GSym(n) there is a unique asymptoti-
cally stable equilibrium point for Ḣ(t) = [H(t), [H(t), U(t)]]. Thus, considering this system,
every point in Sym(Λ) belongs to E+ and the linearization that appears in Theorem 1 has
a nonsingular Jacobian because the eigenvalues of H are distinct. To show that the au-
tomaton has 2n−1 states we need to display this number of closed curves in U , distinct in
the sense of homotopy. Let P be an arbitrary permutation matrix and consider the one
parameter family of orthogonal matrices PTΘ(θ)P with

Θ(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 In−2


When θ advances from zero to π the one parameter family in Sym(Λ) defined by H(θ) =
ΘT (θ)ΛΘ(θ) is a closed curve. This closed curve is not homotopic to a point because it
induces a nontrivial mapping of the points of π−1(Λ), sending Θ(0) into Θ(π). As discussed
above there are exactly 2n−1 such mappings that are distinct in the sense of homotopy.

To estimate ε in Theorem 2, we will make use of particular Riemannian metrics on
SO(n) and Sym(Λ). First of all, if Ω is skew-symmetric then we let ||Ω|| denote the square
root of the sum of the squares of the entries in Ω. The distance between Θ ∈ SO(n) and
Ψ ∈ SO(n) is the smallest value of ||Ω|| relative to all skew-symmetric matrices that satisfy
eΩΘ = Ψ. There is a corresponding metric on Sym(Λ). In terms of this metric, the distance
between H1 and H2 is the smallest value of ||Ω|| relative to all skew- symmetric matrices
Ω that satisfy eΩH1e−Ω = H2. We use the notation dn(H1, H2) to denote this distance
between two elements of Sym(Λ). This is sometimes called the normal metric.

The following lemma provides the tools necessary to estimate the size of of the parameter
ε that appears in Theorem 2.

Lemma 2. If H1(t) and H2(t) are closed curves in Sym(Λ) defined for 0 ≤ t ≤ 1 and
if dn(H1, H2) < π/2, then the curves are homotopic in Sym(Λ). If H1(t) and H2(t) are
closed curves in GSym(n) defined for 0 ≤ t ≤ 1 and if ||Ω|| + ||Γ|| such that eΩN1(t)e−Ω

and eΓN2(t)e−Γ are diagonal and similarly ordered, is less than π/2 then H1 and H2 are
homotopic in GSym(n).

Proof: If H1 and H2 are elements of Sym(Λ) and if dn(H1, H2) < π/2 then the equation

eΩH1e
−Ω = H2
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has a unique solution Ω(H1, H2) such the spectral radius of Ω is less than π/2 and this
solution depends continuously on H1, H2. To see see that this is the case, note that

eΩH1e
−Ω = H2 = eΨH1e

−Ψ

This implies that e−ΩeΨ is a diagonal matrix in SO(n). Because the shortest distance
between two diagonal matrices in SO(n) is at least π, the triangle inequality implies that
if ||Ω|| + ||Ψ|| < π then the solution is unique. To see that the solution depends smoothly
on H2 it is enough to observe that because the elements of Λ are unrepeated, the Jacobian
of the differential is nonsingular at each point.

We use the construction of Ω given in the previous lemma and define the homotopy by
eεΩ1(t)H1(t)e−εΩ1(t) = Hε(t).

As we have seen above, if U(t) has unrepeated eigenvalues then a continuous path in
GSyn(n) lifts in a unique way to a continuous path in SO(n) satisfying ΘT N(t)Θ = D(t)
with D(t) being diagonal. If U has unrepeated eigenvalues then it determines a set of 2n−1

orthogonal matrices, each with with positive determinant, via the equation θT UΘ = D
with D diagonal and having dii > djj for i > j. If U depends on a parameter then we can
differentiate both sides of this equation to get

[Ω, D] +ΘT U̇Θ = Ḋ

Consequently ad−1
D (ΘT U̇Θ) determines Ω. A further analysis of the adD() operator can be

used to establish bounds on Ω in terms of the separation between the eigenvalues of U the
the magnitude of its derivative..

4 Pulse Space

It appears that in most circumstances neurobiological systems communicate by means of
pulses rather than by means of the bilevel signals one finds in digital electronics. In the
next section we will describe a general method for associating automata with pulse driven
systems but before doing so we need to give a suitable definition of what we mean by a
pulse. Informally we think of a pulse as sudden and substantial increase in the value of a
function followed by a rapid return to its original value. Often the area under the pulse is an
important parameter. The pulse formation process can then be repeated with some delay
so as to produce a sequence of pulses. In this section we discuss a method for specifying
pulse-like behavior in topological terms.

One can attempt to define what is meant by a pulse by imposing specifications directly
on the functions of time that are to be called pulses. However, because of the character of
pulse trains and the processes that generate them, it seems to be more efficient to give a
characterization in terms of differential inclusions. That is to say, we use inequalities relating
u and u̇ and possibly higher order derivatives. Figure 2 shows an example of the type of
inequality that is useful for this purpose. The figure shown has been constructed from two
annular regions in phase space. In the larger of these regions, signals must resemble one
cycle of a biased sinewave of a particular frequency. In the other region it must resemble
a unbiased sinewave of a second, slower frequency. The former generates the pulse and the
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latter is responsible for enforcing a refractory period between pulses. In our applications
this refractory period give the system a chance to relax toward the nearest asymptotically
stable equilibrium point. This double annulus model of pulse space must be supplemented
with a condition on the second derivative if all possible solutions are to look like pulses.

Notation: Define sε(u) as

sε(u) =
{

0, if |u| ≤ ε
1, if |u| ≥ ε

du/dt

U

Figure 2. Illustating pulse space as a subset of phase space.

Definition 2: We will say that u : [0,∞) → R is an (α,β, ε)−pulse train if

i. α2 < u̇2(t) + α2(u(t) − 1)2

ii. ε2β2 < u̇2(t) + βu2(t)

iii. either u̇2(t) + α2(u(t) − 1)2 < α2(1 + ε)2 or u̇2(t) + β2u2(t) < 2β2ε2

iv. |ü(t) + u(t) − 1|sε(u(t)) < ε

Notation: The subset of T 2R that is defined by these conditions will be denoted
Pε(α,β). If u is an m-dimensional vector then we write u{2} ∈ Pm

ε (α,β) if each component
of u{2} belongs to Pε(α,β) and no two components of u(t) have an absolute value that
exceeds ε at any one point in time.

Lemma 3. If u{2} ∈ Pε(α,β) then

i. The minimum period between successive pulses, Tε(α,β), approaches (2π/α) + (π/β) as
ε goes to zero.

ii. If sε(u(a)) = sε(u(b)) then the integral

I(u) =
∫ b

a
u(t)sε(u(t))dt
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approaches (2π/α) times the number of pulses in [a, b] as ε goes to zero.

iii. If u(t) begins and ends at 0, the time integral of

1
2π

θ̇ =
1
2π

(ü(t)u(t) − u̇2(t))
(u2(t) + u̇2(t)

is the number of pulses.

Proof: From the definition of Pε(α,β) we see that for u(t) > ε the pair (u(t), u̇(t))
is confined to an annulus in phase space centered at (1, 0) and that the thickness of this
annulus goes to zero with ε. Thus if u(t) exceeds ε and its derivative is positive then it must
continue to increase until it reaches at least 1 − ε. At such a point, the fourth inequality
implies that ü(t) is approximately −2 and so u̇(t) is strictly decreasing. The only possible
motion in the annulus is then for u(t) to decrease returning to a value near zero. In this
portion of the trajectory |ü(t) + α2u(t)| is small and goes to zero as ε goes to zero. Thus
the time required to pass around the annulus approaches 2π/α. Near (u̇(t), u(t)) = (0, 0),
however, the second inequality implies that u(t) must pass around a second smaller annulus
of width ε. In this annulus |ü(t) + β2u(t)| goes to zero as ε goes to zero and so as ε goes
to zero the time required to pass through a half-circle approaches 2π/β. Thus we have the
statement on the minimum period. The statement on the area is an immediate consequence
of the fact that as ε goes to zero the solution approaches a sine wave with average value 1
and there is no effect from the small loop because of the sε(u(t)) factor. The final assertion
is a consequence of the fact that the point (1, 0) in the phase space is encircled once per
pulse.

We remark that the role of the small annulus is to enforce a refractory period between
pulses. Having completed a pulse, u may linger for a long time before starting the process
again; the small annulus prevents it from starting a new pulse right away. In fact, there is
a minimum latency of about 2π/β.

We will use this definition and the claims of the lemma in the next section. These
conditions should be thought of as but one example of the type of input constraint mentioned
in the first section of the paper. We devote the rest of this section to aspects of the general
question.

The kth order tangent bundle T kU is, of course, a manifold in its own right. Given
K ⊂ T kU we distinguish between arbitrary curves in K and those curves in K that are of
the form (u, u1, ..., u(k)). We will call the latter lifts. The set of lifts that come from curves
that start and end at a point of the form (a, 0, ..., 0) ∈ Uk can be composed in a way that is
analogous to the way in which curves are composed in arriving at the rule for multiplication
in the definition of the fundamental group of a space. The difference is that one can not
rescale the parametrization because that would change the value of the derivatives.

In the final assertion of the lemma, we used the derivative of tan−1(u̇(t)/u(t)). In other
situations different closed expressions may be needed. The general idea behind the choice
of such terms is this. Expressions of the form φ(u, u(1)...., u(k)) that are linear in the highest
derivative,may or may not have the property that at each point in K ⊂ T kRm there is a
locally defined function θ(u, u(1)...., u(k−1)) such φ = dθ/dt. If K is not simply connected
then φ′s with this property are candidates for generating the first de Rham cohomology
class of K. The general situation is clarified by the following lemma.
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Lemma 4. If K ⊂ T kRm, if φ(u{k}) maps K into the reals, and if

∑
(−1)i di

dti
∂iφ

∂x(i)
= 0

then in any simply connected neighborhood of 0 one can define a function θ such that θ
vanishes at 0 and φ = dθ/dt in a connected neighborhood of 0 with θ being given by

θ(u{k−1}) =
∫ u{k−1}

0
φ(u{k})dt

Proof: Pick any path in in a simply connected neighborhood of the origin in K and
evaluate the integral along any path joining the origin and the point u{k−1}. The Euler-
Lagrange operator appearing in the lemma defines the linear functional expressing the first
order variation of the integral when the path changes. That is,∫ b

a
φ((u + δu){k})dt =

∫ b

a
φ((u){k}) + 〈δu,

∑
(−1)i di

dti
∂iφ

∂x(i)
〉dt + e

with e being second order in δu. The fact that the linear functional vanishes identically
means that the the integral is independent of path.

Functions satisfying the hypothesis of Lemma 4 will be said to be closed.

5 Automata and Pulse Driven Systems

Associating automata with systems whose inputs are pulses requires a different analysis
than that which was required in section 3. If the inputs are pulses the state will not simply
follow the input in a quasistatic way, always remaining close to equilibrium. Instead, the
state follows closely the integral curves associated with a certain input, passing quickly from
one equilibrium state to another, or even back to the original equilibrium. The input set
will consist of homotopy classes in K ⊂ T k(U). We will need to establish a relationship
between paths in K and transitions between equilibrium states.

Definition 3: Let X and U be differentiable manifolds. Assume that x(t), taking on
values in X, and u(t), taking on values in U , are related by

ẋ(t) = f(x(t)) +
∑

gi(x)ui(t))

Let E0 denote the set of points in X where f vanishes and ∂f/∂x has eigenvalues whose
real parts are negative. Assume that there is a positive number ρ such that the domain of
attraction of each stable equilibrium point includes a ball of radius ρ. If for each xk ∈ E0

and each i the solution of ẋ(t) = gi(x);x(0) = xk, evaluated at t = 1 belongs to E0 we will
call the system control-periodic .

Examples: The system

ẋ(t) = − sin(2πβx(t)) + (1/β)u(t)
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can be thought of as being defined on the circle or on the real line. In either case it is
control periodic for all β > 0. Vector systems of the form

ẋi(t) =
n∑

i=1

aij sinxj(t) + 2πui

can be thought of as being defined on the n-torus or on Rn. Again they are control periodic
in either setting.

The following example from [3] suggests how the definitions of Pm
ε (α,β) and control

periodic can be used to describe systems that model automata. Consider

ẋ(t) = − sin(2πx(t)) + u(t);x(0) = 0

We make the change of variables

z(t) = x(t) −
∫ t

0
u(σ)dσ

The differential equation for z is

ż(t) = − sin(2πz(t + 2π
∫ t

0
u(σ)dσ)

We can expand the sine function to display the dependence on the input more explicitly.
This gives

ż(t) = − sin(2πz(t)) cos(2π
∫ t

0
u(σ)dσ) + cos(2πz(t)) sin(2π

∫ t

0
u(σ)dσ)

If z is nearly zero, the effect of a quick pulse on this system is to perturb ż only slightly
because the terms

a(t) = cos(2π
∫ t

0
u(σ)dσ

and

b(t) = sin 2π
∫ t

0
u(σ)dσ)

are both bound by one and of short duration.
An analysis of this expression makes it clear that if u consists of a series of narrow pulses

having approximately unit area then x(t) will advance by one each time a pulse is received.
Suppose that u{2} belongs to Pε(α,β). By taking α large, β = 1 and ε small and letting
u = αv we insure that u consists of pulses of nearly unit area and short duration. The
solution of

ẋ(t) = − sin(2πx(t)) + αu(t)

starting at x(0) = 0 and u(0) = 0 advances from the domain of attraction of one equilibrium
point to that of the next each time a pulse arrives.

In generalizing this example we will define an automaton whose inputs are identified
with elements of Pm

ε (α,β). To insure that the pulses are sufficiently sharp we chose α and
β as in the example.

13



Theorem 3. Let u and x be related by a control periodic system

ẋ(t) = f(x(t)) +
∑

gi(x)ui(t);x(0) ∈ E0, u(0) = 0

with f bounded. Suppose that u = (α/2π)v with v{2} ∈ Pm
ε (α,β). Then there exists a

map φ : E0 × π1(Pm
ε (α,β)) → E0 and α,β and ε, all positive real numbers, such that if

u(t) → u(0) as t → ∞ then xc(∞) = φ(xc(0), [v{2}]).

Outline of Proof: The hypothesis implies that the initial state is a stable equilibrium
point. For α sufficiently large the effect of the input is either to leave x near its present
equilibrium point or else to move it to the neighborhood of another, as dictated by the
particular gi that the pulse interacts with. By suitable choice of the parameter β one
can force the time between pulses to be as large as desired. Thus, between pulses, the
asymptotic stability of the equilibrium points will bring x(t) as close to the equilibrium
point as is necessary to make sure that the effect of the next pulse is such as to place x(t)
within the domain of attraction of the appropriate equilibrium point.

6 Automata and Coadjoint Orbits II

As in the case of Theorem 1, this theorem is nicely illustrated by introducing a class of
systems on coadjoint orbits. In the interest of brevity we continue with the special case
used above. The notation is as in section 3.

Consider systems evolving in Sym(Λ) with evolution equation

Ḣ(t) = [H(t), [H(t), N ]] + 2π[H(t), U(t)]

N is a diagonal matrix with unrepeated eigenvalues and U(t) is skew-symmetric. The
corresponding equation on the covering space is

Θ̇(t) = [ΘT (t)QΘ(t), N(t)]Θ(t) + 2πU(t)Θ(t)

Before describing the space Kε we remark that in the two by two case with N = diag(1, 0)
the equation for

Θ =
[

cos θ sin θ
− sin θ cos θ

]
can be expressed as

θ̇(t) = − sin θ + 2πu12(t)

Thus this system is control periodic and we can take K ⊂ T k to be the to be the set Pε(α,β)
as defined above.

Returning now to the general case, we see that if we take U to be tridiagonal and ask
that the elements (ui,i+1) belong to Pn

ε (α,β) then we have a control periodic system.

Theorem 4. Suppose N ∈ GSym(n) and Q ∈ GSym(n). Assume that U = −UT is
tridiagonal and that the vector (u12, u23, ..., un−1n) belongs to Pn−1

ε (α,β). Then there
exists a map

φ : SO(n) × π1(GSym(n), U(0)) → SO(n)
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and an (α, β, ε) triple such that if U(t) approaches a constant and

Θ̇(t) = [ΘT (t)QΘ(t), N ]Θ(t) + αU(t)Θ(t)

we have
Θ(∞) = φ(Θ(0),π1(u{2}))

.

Sketch of Proof: The stable equilibria of this system are the diagonal elements of
SO(n). The distance between a diagonal orthogonal matrix with one particular sign pattern
and a diagonal orthogonal matrix with a second sign pattern differing only in two places
is 2π as measured by the standard Riemannian metric on SO(n). By restricting U to be
tridiagonal with only one pair of elements larger than ε at any one time, we make sure that
the effect of a rapid pulse of area 2π is such as to transfer the system from one equilibrium
point to the domain of attraction of another. Further details will not be given here.

It may be noted that the automata defined here are closely related to the automata
defined by Theorem 2.

7 Hybrid Systems

The systems described by Theorems 3 and 4 operate as automata if their inputs are re-
stricted in a suitable way. In order to use them in a computational system processing
general analog data one would need to have a way of generating these structured inputs
from less well structured inputs.

Example. Let α and β be real numbers with 0 < α < β. Consider a twice differentiable
function u related to an input v by an equation of the form

ü(t) + u(t) = f(e(t))v(t)

where e(t) = (u2(t) + u̇2(t)) and

α2 ≤ u2(0) + u̇2(0) ≤ β2

Assume that f(α2) = f(β2) = 0 and that f is nonzero between α2 and β2. For example, we
may assume

f(2e) = (2e − α2)(2e − β2)

Under these circumstances (u(t), u̇(t)) remains for all time in the annulus

α2 ≤ (u2(t) + u̇2(t)) ≤ β2

regardless of the choice of v. Moreover, given any twice differentiable function u that
satisfies the given inequality, there exists a v such that (u, v) satisfies the given equation.

Of course the annulus of this example is not exactly the shape required by the theorems
above. More generally, we can seek to code an input in such a way as to generate a response
such that u{2} remains in some set K ∈ T 2R by generalizing this example. Consider

ü(t) + a(u̇(t), u(t)) = b(u̇(t), u(t))v(t)
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If the vector field in the phase space defined by ü(t) + a(u̇(t), u(t)) = 0 leaves K invariant,
and if b(u̇(t), u(t)) vanishes on the boundary of K, then this system will act as a coder,
mapping arbitrary time functions into elements of K.

Analog computations are usually thought of as proceeding in a continuous fashion, with-
out discrete events, whereas digital computations are thought of as being clocked by means
of a “external” timing signal. One aspect of the coding scheme defined by the example is
that there is an angle, whose time derivative meets the conditions of Lemma 4, which is
monotone increasing and which can be thought of as a way of marking time.

If we combine a coding system of the type just discussed with a dynamical system of
the type discussed in Theorem 3 we get an overall system of the form

ü(t) + a(u̇(t), u(t)) = b(u̇(t), u(t))v(t)

ẋ(t) = f(x(t)) +
∑

gi(x)ui(t);x(0) ∈ E0

Such systems can make robust computations on the input data stream represented by v. For
the purpose of analysis, however, it may be desirable to simplify this system by replacing
the second differential equation by the automaton that is related to it by virtue of theorem
3. This brings us into the realm of hybrid systems as discussed in reference [4].

Consider the model
ẋ(t) = f(x(t), z.p/, u(t), v.p/)

ṗ(t) = r(t)

z0p1 = f(z.p/, v.p/)
y(t) = c(x(t), u(t))

w(.p/) = h((z.p/, v.p/)
where0p1, .p/ are the ceiling and floor functions defined with the following conventions

0p1 = smallest integer greater than or equal to p

.p/ = greatest integer smaller than p

The function r is required to be nonnegative so that p is monotone increasing; V and Z are
finite sets. The times at which the finite state part of such a system makes a transition
from one value of z to another is determined by the times at which 0p1 changes value. We
refer to these as a hybrid models . Some of their properties are described in the reference
cited.

The mapping of the analog system onto this form is straightforward except, perhaps for
the identification of the trigger function r. In the case discussed in in Theorem 3, however,
we can take r to be the closed form whose integral marks the advance of the winding number
associated with the pulse generation process.
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8 Final Remarks

There is a well developed theory of coding for information transmission and storage that was
initiated by Shannon [10] and developed extensively in the context of information theory.
This theory takes as its starting point the hypothesis that there are a finite number of
symbols that can be used to represent information and that there is a noisy channel that
will be used to transmit these symbols from one location to another. Important parts of this
subject center around the question of how one codes the input so as to make most effective
use of the given channel (source coding) and the question of how, and to what extent, one
can introduce redundancy so as to make possible the error free transmission of data in spite
of the noise that the channel introduces.

Three difficulties associated with the standard model of analog computing, all somehow
related to the same problem area, are:

1. The representation of data is completely localized in time and space, making it vulnerable
to the effects of noise.

2. The model postulates precise and instantaneous transmission of information in violation
of the basic principles of information theory.

3. No distinction is made between computations that are especially sensitive to error in the
data or implementation and those that are robust.

In this paper we have tried to address some aspects of these questions by developing a
theory of models that are less vulnerable to transmission error as well as the inaccuracies
that may enter the devices locally. In the present setup signals are transmitted as pulses
characterized by the homotopy classes they define. This provides a conceptual method
for both communication and computation, perhaps allowing one to build more substantial
bridges between the two.
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