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1 Introduction

Although textbooks often regard the problem of gen-
erating the dynamical equations of a kinematic chain
as being just an exercise in classical mechanics, the
complexity one encounters in this process has lead to
repeated attempts to organize the computations in a
efficient and transparent way. The literature has not
stabilized on any particular scheme, however, and one
is tempted to guess that this is because the attempts
at simplification usually involve the use of a number
of ad hoc definitions and choices of notation. In this
paper we show that certain standard ideas from geom-
etry, especially the idea of a one parameter group of
transformations, when used systematically, lead to a
reasonably elegant general formulation of the dynam-
ics of open chain manipulators. We build on ideas
which have been applied to manipulators kinematics
by Brockett [3] and McCarthy [5], for example, and to
the description of mechanical compliance by Loncarcic
[4].

In this paper we develop a general expression for
the kinetic energy associated with a kinematic chain
and use it to derive the dynamical equations. In
our expression for the kinetic energy, the dependence
on the chain’s parameters is particularly transpar-
ent. Such a representation is desireable in applica-
tions such as adaptive control and robot calibration,
where one needs to isolate distinct physical quantities.
The kinetic energy is expressed using standard geo-
metric operations e.g., group multiplication, exponen-
tiation, and adjoint mappings. We take advantage of
Lie-theoretic identities to simplify the expressions for
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those derivatives of the inertia matrix which appear in
Lagrange’s equations. For example, an elegant expres-
sion for the Coriolis terms is provided. The equations
of motion for a serial chain are written in a general
form which requires no adaptation for specific prob-
lems. Finally, we use this representation to classify
dynamically balanced chains.

2 Geometric Formalism

2.1 Background

We begin with a few definitions and an explanation of
our notation. Denote euclidean 3-space by E3. The
special Euclidean group is the group of rigid trans-
formations on E3, i.e., transformations of the form
z — Rz + p where R is an orientation preserving or-
thogonal transformation and p is in E3. The group of
such transformations will be denoted by SE(3). The
group of orientation-preserving orthogonal transfor-
mations is called the special orthogonal group and
will be denoted by SO(3). Given a reference frame, a
transformation may be represented by the 4 x 4 matrix
T = (B?), 0 that (%) — (B 2)(5). The path of a
rigid body in euclidean space corresponds to a path in
SE(3) in the following way. Let a be a fixed reference
frame, and b be a frame attached to the body. At time
t, the position of the origin of & with- respect to a is
given by pay(t), and the columns of Rg(t) are the unit
vectors of the axes of of frame b with respect to a. The
definition Ty = (®* P:*) then implies a convenient
rule for composition of transformations: T33Tpc = Tgc.

We recall that a Lie group G is a smooth manifold on
which is defined continuous group operations of mul-
tiplication and inversion. The Lie group structure of
SE(3) is utilized extensively in this paper. The Lie
algebra g associated with G is a vector space together



with a bilinear map [-,]:g x g — g, called the Lie
bracket, such that (i) [z,y] = —[y, 2] (anti-symmetry)
and (ii) [[=,y], 2] + [[v, 2], 2] + [[2, 2], 4] = O (Jacobi
identity).

We represent elements of SE(3) by 4 x 4 matrices
of the type described above. It is sufficient for the
purposes of this paper to think of Lie groups and al-
gebras as consisting of square matrices. The matrix
representation of the algebra g can then be found by
differentiating one-parameter paths on the group at
the identity. The Lie bracket is defined as the matrix
commutator: [4, B] = AB — BA, where A,B are in g.
For matrix representations of the group, Ady, : g — g
is simply

Adgn=gng™! 1)
for ¢ € G and 1 € g both matrices. The map ad, :
g — g is given by:

ad, v = [n,v]

where 7, v € g. The following identities for Ad and ad
will be used frequently:

Ad; Ady = Adg

and
Ada(ady v) = adag, n(Ada v)

They can be verified directly by the definitions. Fi-
nally, since we are dealing with matrices, the expo-
nential mapping exp: g — G is just the familiar matrix
exponential: exp(A) =I+ A+ 3A%+.. . for A€g.
The 4 x 4 matrix representation of the algebra se(3)
associated with SE(3) is readily seen to consist of all
matrices of the form: (xg '(;) where Q is a 3 x 3 skew-
symmetric matrix and v € R3. Velocity vectors associ-
ated with paths in SE(3) are identified with the algebra
in two canonical ways (Abraham and Marsden, 1978).
These two identifications have an appealing physical
interpretation. Let the 4 x 4 matrix Tg,(2) describe
the path of body b relative to frame a. %Tab [to 18
a tangent vector at Ty5(to) € SE(3) which is mapped
into the matrix representation of the algebra by mul-
tiplication on the left by the inverse of Tgs:

Qav  vabd
0 0
Vab € 9¢(3) is often referred to as the “body-fixed” gen-
eralized velocity of body b because it is independent
of the position of the fixed reference frame a. The sec-

ond form, %TabTa‘bl, is commonly called the “spatial”
velocity of the rigid body.

4
dt

def

Tab(to) def def

-1
ab = Vab
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3 Rigid Body Dynamics

In this section, we will explore the dynamics of a rigid
body in terms of the 4 x4 matrices described above. Of
course, the standard approach in this case is to write
the equations in terms of the center of mass/ principal
axes and separate equations for conservation of linear
and rotational momentum. The complexity encoun-
tered in multi-link chain dynamics, however, makes a
general 4 x 4 matrix formulation of rigid body dynam-
ics a useful building block.

3.1 Kinetic Energy

We first will write the equations of motion for a rigid
body with a frame at the center of mass, aligned with
the principal axes. Let V € se(3) be the “body-fixed”
velocity with respect to this frame. frame on the body.
Straight-forward calculation yields that the kinetic en-
ergy of the body may be expressed as

T= %(tr(VMVT) +tr(JVIVT)) @)

with M and J 4 x 4 matrices defined as

1= a1y )

)

Here, I = Diag(11, I, Is), and m, I; are the mass and
principal moments of inertia of the rigid body.

The kinetic energy of course can be expressed in
terms of another frame, which we index by p. The
“body-fixed” velocity of this frame is V,, V, =
Adr,_ V, where T, is the transformation from the cen-
ter of mass frame ¢ to frame p. The kinetic energy:

M= (Diag(0,0,0) 0
0 m

1
T= §(tr(GpV;’MP )+ tr(JPVPJPVpT))
where:
G, =TET,
Mp = T,.MTL,
Jp= T},CJT:;

This kinetic energy defines an inmer product on

T SE(3):
Vo, Vo) = tr(G’PVpMpV;,T) + tr(JprJPV;,T)



3.2 Equations of Motion

Lagrangian dynamics are derived by requiring that the
first variation of the integral:

L= [(¥)

be zero. For any W € se(3), the trajectory Vj, V,, of
the rigid body must then satisfy:

(Vo, W) = (v, W, V5]) 6))

This form of the equations will be useful for deriving
general “euler-angle” equations of motion, and for the
multi-link chain.

As an alternative to Eq. 3, a matrix-form of the
equations of motion takes the form

Gp%Mp + JPVpJp = (I_G,,)T[J,,V,,Jp, V;rT]

where I = (Dias(ol’l’l) 8).

We now show how Eq. 3 can be used to equations
of motion in six coordinates. Let z = (z1,z2,...Z¢)
be coordinates of the second kind for SE(3). That is,
the position/orientation of frame p with respect to an
inertial frame 0 is

Top = exp(A121) exp(Azzz) . .. exp(Aszs)
Then: o
Vp = ZAdTﬁ Az

i=1

for Tre = exp(Arxr) exp(A2232) . . .exp(Asze) and:
6
Vo = D Adr, Aidi+
i=1

6 6
3 3 [Adr,; A, Adg,, 4;)i;
i=1j=i+1

Letting W = Adr,, Ax the kth equation of motion is:

6 6 6
Do orEi+ ), mdid; =0
i=1

i=1 j=1
where:

gei = (Adr, Ai, Adz,, Ar)

por = 5(([Adry Au, Adn, Aj) Adr, A) +

([Achk A, Ade.‘ Ai]’ Ade,‘ Aj) +
([AdTe,. Ap, AdTém Am]a Adek Ak)
and m = max(¢, j),» = min(¢, j). This formula, while

not as simple as the usual rigid body equations of mo-
tion, generalizes nicely to the multi-link chain.
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4 Serial Linkages and the Prod-
uct of Exponentials Formula

The serial linkage to be considered in this paper is
shown in Fig. 1.

framen

x@®

Figure 1: Serial Mechanism

Recall that Ry, por are the orientation and position
of frame k relative to frame 0. Frame k is at the cen-
ter of mass of link k¥ with axes corresponding to the
principle axes of the link. It has been observed that
Tor = (Rg" Pok) can be expressed as the product of
one-parameter subgroups of SE(3), i.e. group elements
of the form exp(6B) where 8 is a parameter and B is
a constant element of the algebra. The expression:

(4)

is often called the product of exponentials formula for
the kinematic chain. The vector ¢ = (q1,42,---qn)T
represents the joint configuration. A; € se¢(3),N; €
SE(3) are constant. For a physical interpretation of A;
in terms of twists, see for example Paden and Sastry
[6]. N is the position/orientation of frame k with
respect to frame 0 at ¢ = 0.

The velocity in frame i-fixed coordinates of link 7 is
given by:

Tor(g) = exp(q141) exp(g242) . . .exp(qrAr) Nk

N7YOQ D PO AePesn)Ni = Voi - (5)
k=1

T6: t To,‘

where: .
1

Pii= H exp{9i4i)
j=k+41
To minimize the number of subscripts, we will fre-
quently make use of the notation Adp,; = Ad;;. It
follows that:

i
Voi = AdN'__x (Z Adix Argy)
k=1

(6)



4.1 Lagrange’s Equations

The kinetic energy T of the kinematic chain is a sum
over the kinetic energies of the individual links, T =
Yoie1 Ti, where T; = (Voi, Vai)i.

1 . ) )
T = 5 (VM Vo) + e(J Ve VE)) - (7)

M? | J* are defined as M and J in the above section for
the mass and inertia properties of link 7. In order to
write the kinetic energy in terms of the joint velocities,
Egs. 6 and 7 are combined.

T = Z Z {Adg Ax, Adim, Am)iqu'h
k=1m=1
where:

()= (tr(')Mp(')TGp) + tr((‘)jp(‘)ij))

M, = N,M?NT
Jp = NpJPNT
G'p = (NP-I)TNP—I
The coefficients g;; of the quadratic form: T =
Ei’j gijqig; are simply given by:

N
2 (Adpi Ai, Adpj Aj)p (8)

p=max(i.j)

. g’JZ

We now consider in this framework the equations
of motion for a kinematic chain where only kinetic en-
ergy contributes to the Lagrangian. Trajectories of the
mechanism may then be associated with geodesics on a
manifold. When kinetic energy given by the quadratic
form: g:j(¢)did; the Coriolis term for the k** equa-

- . . d 8L 8L . .
tion of motion (i.e. B0~ Bar ) is given by

1 4., Baxi  Ogiin . - .
S + 30l — B )didi = Tijhdid;

Proposition : The Christoffel symbols I';; take the

N
form: I = 2p=max(i,j,k)7fjk‘ The 7}’].,: are symmet-
ric in 4, j, and for m = max(3, j),n = min(, ),

oo = 3UAdp Ar, Ady; Aj], Adgi Ay +
([Adpk Ax, Adpi Ail, Adpj 4;)p +
([Adpn Apn,Adpm Al Adp: Ak>p
Proof: This fact can be directly shown by repeated
application of the identity:
d

7 Ady; Aj = [Adpj Aj, Adpr Ax)
qdk

for j < k < p, and 0 otherwise.
Using the expressions for I';;; and g;;, the equations
of motion for the n-link chain are simply

9eid; = Tijrdid;

where summation over repeated indices is implied.

5 Dynamically Balanced Mech-
anisms

Let us agree to say that a kinematic chain is dynami-
cally balanced if the mass matrix (Eq. 8) is constant.
Clearly, in this case, the dynamics take the simple form
Mg = 0. In this section, our formulation is used to
study the structure of dynamically balanced mecha-
nisms.

Our example involves the design of planar mecha-
nisms with rotational joints for which a general solu-
tion is straight-forward. Requiring the diagonal terms
in the inertia matrix to be constant is necessary and
sufficient. The planar mechanism and notation is
shown in Fig. 2 Frame k is located at the center of

Figure 2: Planar Mechanism

mass of body k, and frame k is fixed to body k, with
origin corresponding to the location of the kth joint.
Pi; is the distance between joint i and the center of
mass of link k, and Ry is the 2 x 2 rotation matrix
between frames i and k. Following the notation above,
Ty = (% 7).

We define for the planar mechanism:

0 10
E=1-1 00
0 0 0



(L 00
J’= 0 I,' 0
0 0 0

The ith diagonal term of the mass matrix is

N

gi = I t(TETM*(TqETy)") +
k=i
tr(JE T ETs J ¥ (T ETy)T)

Only the first term on the right hand side of the
above equation depends on the joint positions. This
term, which we will call d; is equal to:

N
&= m|

k=i

If the mechanism is to have a constant mass matrix,
all d; must be constant. By inspection d, is always
constant, and dy,—; is constant only when the center
of mass of link n is at joint n. Setting dn_o constant
provides a “first moment” condition, namely, that the
mass of link n — 1 and mass of link n — 1 must be
balanced about joint n — 1, or more specifically

Mp—1P(n=1)n—-1 = MnP(n=1)n

where p(n=1)n—1 is the position of the center of mass
of link n — 1 with respect to joint n — 1, and prz1)a
is the position of the center of mass of link n with
respect to joint n — 1. Using back substitution, the
requirement for di—; to be constant is simply:

n
mepix = ( Z ™5 )PE k41
j=k+1
Spatial mechanisms can also be dynamically balanced,
and examples are readily constructed.

6 Conclusion

The dynamical problems that one encounters in the
study of robotics are often quite complex. For this
reason, the examples appearing in the literature are,
for the most part, either overly simplified or quite spe-
cific. In this paper we have attempted to maintain
an appropriate level of generality while avoiding spe-
cialized notation. Our efforts can be compared with
earlier work applying general mechanical network-like
analysis to this class of problems [1] [7], [2].
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