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Abstract

Although it has been traditional in the study of mech-
anisms to separate kinematic issues from elastic ones,
there is a significant set of problems whose solutions re-
quire the application of techniques from both fields. In
this paper, through an emphasis on a geometrical in-
terpretation of these subjects, we formulate and solve
a number of questions which arise in the design of com-
pliant devices. An important part of the paper is the
development of a certain extension of the Frenet-Serret
equations which describes the elasto-geometric proper-
ties of a thin beam viewed as a non zero cross-sectional
extension of a space curve.

1 Introduction

The subject of kinematics plays an important role in
robotics as does the study of compliance. Often these
are treated as independent disiplines but, because of
certain practical issues that arise in robotics, some uni-
fication is desirable. In this paper we consider a class
of problems involving both kinematics in the sense of
references [1] [2] and elastic behavior in the sense of {3].
The areas of potential application include the design
of mechanisms for hard and soft automation, including
remote compliance devices, as well as the more tradi-
tional areas of application associated with the design
of mechanisms.

The literature on these matters has coalesced in a
variety of places. On one hand there has been vari-
ous treatments of mechanical systems based on bond
graphs, of which we may mention the recent paper of
Breedweld [4]. The paper of Anderson and Spong [5]
adopts a more mathematical style but has the same
general goal. Loncaric [6] [7] has examined a number
of fundamental ideas in compliance synthesis, develop-
ing a geometric approach along the lines of reference
[8]. The analysis of concrete problems, such as those
found in Whitney [9] and Asada and Kakumoto [10]
has, however, usually been viewed as the main source
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of motivation for this type of work. Standing some-
what apart from the applications literature are the
more mathematical approachs to these problem areas
as exemplified by Marsden and Hughes [11] and Arnold
[12]. Our motivation comes from desire to merge and
extend aspects of classical kinematic design with as-
pects of the design of elastic systems so as to make
available suitable tools for the synthesis of assemblies
and mechanisms .

The paper is organized as follows. In section 2 we
discuss the geometric structure associated with the
combination of elastic members and holonomic rigid
body kinematics. The key idea here is to make ex-
plicit a basic methodology which allows one to extend
the earlier geometrical treatments in such a way as to
cover aspects of elasto-kinematics not resolved by ear-
lier workers. In section 3 we discuss the interconnec-
tion of elasto-kinematic systems. The basic building
blocks available for the synthesis of elasto-kinematical
systems are nonelastic kinematic chains and simple
elastic two ports. In section 4 we work out a descrip-
tion of the latter which is suitable for our purposes.
We develop an infintessimal method for characteriz-
ing the spatial compliance of a quasi one-dimensional
continuum, expressing the end to end compliance as a
function of the geometric and elastic properties along
the member. The last section is devoted to examples.

2 Elasto-kinematics

In physical terms our starting point is this. We assume
that there is a base structure, which we may imagine to
be fixed in space, and that relative to this base struc-
ture there are certain ports. At each of these ports
there is attached to the base structure one rigid body.
This rigid body may be partly constrained by the base
structure so as to give it between one and six degrees of
freedom, relative to the base structure. Levers, shafts,
switches, and joysticks, etc. should come to mind. We
assume that there are springs, gears, levers, etc. in-
side the base structure and that these may provide
some relationships among the variables at the ports.
Qur goal is to derive the general properties of such sys-
tems and to do this in a setting that does not require
linearization.
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Figure 1: The ports

We assume that the configuration space relatlve to
the base structure for the rigid body at the #** port can
be identified with a differentiable manifold );, the di-
mension of J; being the number of degrees of freedom
associated with the i** port when the rigid bodies at all
the other ports are completely unconstrained. We de-
fine Y as the product manifold Y = Y1 x V2 X V.
Clearly each configuration of the port variables can
be identified with a point in the manifold Y although
not every point in ) will necessarily arise as a con-
figuration because there may be constraints between
behavior at port ¢ and behavior at port j. Indeed,
one of our goals is to describe the ways in which these
relationships can manifest themselves.

With this goal in mind, we recall a few ideas from
differential geometry. If M is an n-dimensional differ-
entiable manifold then in a nelghborhood of a point
m, € M there is a map from M into R" given by

m = (q1(m),g2(m), - - aa(m))

which prov1des local coordinates for M near myp

If m(-) is a parametized path on M that passes through
mg say m(0) = myg then dm/dt can, at t = 0 be
thought of as deﬁnmg a point in R", namely the point
(dg1/dt,dga/dt, - - -dgy/dt). We denote by TimoM the
n-dimensional vector space of possible values of the
derivative of curves in M at the pomt mg. It is called
the tangent plane at mo. The union over all mo of the
tangent planes of M is denoted by TM and is called
the tangent bundle. It can be thought of as a differ-
entiable manifold of dimension 2n.

There are many different notations in common use
for the representation of linear functionals, including
“dot” asin f -, the inner product notation < f,z >,
the notation f[z], etc. If v belongs to a vector space
V we denote by V* the set of all linear functionals
on V and use the notation f[v] to denote the value of
the linear functional f evaluated on v. The set of all
linear functionals on Tp,, M will be denoted by Ty, M
and the union of the T, M over all mg by T*M ;
it is called the cotangent bundle. Like the tangent
bundle it can be thought of as a differentiable manifold
of dimension 2n.

It is now a more or less standard idea in geometri-
cal mechanics to think of the force/torque vector and
the configuration variable as being a point in a single
space, namely the cotangent bundle of the configura-
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tion space. (See, for example, Marsden and Hughes
[11] ). One pictures 7*M as being obtained from M
by attaching the n-dimensional vector space consisting
of the possible force/torque vectors to each point of M.
The vectors in this vector space are to be thought of as
being linear functionals on the tangent space. Think-
ing of 17, M as the vector space of possible velocities
associated with trajectories in M that pass through
the point m, the expression for the work done by a
force acting on a moving particle

:/abf[r'n}dt

gives a physical meaning to the process whereby we
identify forces with linear functionals on the velocity

Suppose that we map a nelghborhood of a pomt in
M to a neighborhood of zero in R" with (g1, 2, - gn)
being a representation for the point R". In a simi-
lar way (QIa 42, *y4qn, P1,P2," " ;pn) is to represent
a point in T*M. We may take (p1,p2,- - pn) to rep-
resent a point in 7M. By a ¢- dependent change of
basis in that space we can arrange matters so that
the linear functionals py, ps, - - - pn, when evaluated on
components of the velocity vector g1, ¢z, - - -, gn, satisfy
the equation

i lis] =8

with 8;; being the Kronecker symbol.

There is a distinguished bilinear form w defined on
Tmo M Ty, M which we may specify in terms of the
special coordinates just described

w((‘ja;]’a): (e, Pb)) =Pa [gs] — po [da]

In terms of a choice of coordinates for T M obeying
the above rule, any n-dimensional submanifold L of
T*M that has the property that for each path ¢(-) €
M N L any two pairs (§q,pe) and (s, ps) satisfy:

b [da] ~ palde] =
will be said to be a Lagrangian submanifold.

The main idea is that if Y = Y1 x V2 X -+ X Y
is the configuration space of an elasto-kinematic sys-
tem then T*) can be thought of as the space in which
the forces (including torques) and displacements co-
exist. If the interconnections within the system arise
through reciprocal springs (i.e. spring forces derivable
from a potential) and holonomic kinematics, then the
set of force position pairs which actually occur will lie
in a Lagrangian submanifold of 7*). In symbols, we
may say that a reciprocal holonomic elasto-mechanical
system defines a Lagrangian submanifold L C T*M
and that each such submanifold defines such a sys-
tem. This statement has appeared in the literature in
varying degrees of generality, see e.g. Loncaric {7} and
Marsden and Hughes [11]. Here we want to pursue cer-
tain aspects of this idea which arise when one does not
assume that elastic effects are pervasive but, instead,
assumes that the kinematic and elastic effects are on
a more or less even footing. (Compare with Loncaric

[7)-



Our first goal is to bring out the role of two integers
that, differentiate between the number of elastic de-
grees of freedom and the number of kinernatic degrees
of freedom.

The intuitive idea is this. If 7)Y is the set of
force-displacement pairs for an elasto-kinematic sys-
tem then, at a given configuration y, it will happen
that a virtual displacement anywhere in a certain r-
dimensional subspace of T, Y will produce no change in
the force. There will also be a subset of T;y in which
an applied force/torque will produce no displacement.
Geometrically speaking, let L be the Lagrangian man-
ifold of the system. At each y € J, T, ) intersects the
tangent space to the Lagrangian manifold 7L in a v-
dimensional space. That is v(y) = dim (7, L NT,Y).
Likewise L intersects 7Y in a u(y) dimensional space.

We can express these ideas in physical terms by say-
ing that there is a v-dimensional space of velocities
that do no work and a p-dimensional space of forces
that do no work.

These remarks suggest the form of the constraint
equations. At each point y € Y there are relations
that constrain the forces and velocities. These can
be organized by constructing an n by 2n dimensional
matrix [A,B] having the property that

M. s [ 1] =0

Theorem 1: If J : R — R™ is given by

0 I
=] 5 %
and if Az + Bf = 0 defines a Lagrangian submanifold
of R*" relative to J , then by means of a change of co-
ordinates of the formz +— ¢ =Tz ; frrp= (TT)"1f
one can arrange matters so that the Lagrangian sub-
space is described by

L, 0 01[ 4 00 0 P
0 Q 0 2 |+ 0 H 0 Py | =0
0 0 0]/ gs 00 I, P3

with @ and H invertible and @Q~'H symmetric.
Proof: If A is invertible then Az + Bf = 0 implies

that ¢ + A~'Bf = 0. If any two solutions, say z; +
A"IBf; = 0 and 29 + A"'Bfs = 0 are to have the
property that < z1, fo > — < 22, fi >= 0 we see that
A71B—BT(A~YT =0 and so A™!B is symmetric. If
A is not invertible we can choose nonsingular matrices
R and S so that

I 0

00

RAS = [
If = is to be replaced by ¢ = S~'2 then we must re-
place f by p = ST f in order to perserve the symplectic
form J. This means that we can re-express matters as

flq+§p=0
with
5 -1yt __ | Buin Bz
B=RB(5™) _[321 Bas
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If Ag; + Bp; = 0 and Agy + Bps = 0 is to imply
that < ¢1,p2 > — < ¢o2,p1 >= 0 then, since the last
part of ¢; and ¢ is unconstrained, we see that the
last part of p must be zero. Thus it is necessary that
By, = 0 and that By is invertible. Given that Bagg is
invertible, and given the structure of A, it is not hard
to see that we can take Bss to be I, for some integer
v. Moreover, by choice of a suitable pre multiplication
matrix we can combine rows so as to make Bys = 0.

We have, then
I 0 Qu T B 0 pu | _ |0
00 Q 0 I p |0

For the final steps we can ignore ¢; and p;. As we
have seen, Bj; is symmetric. If its rank is r then by
an orthogonal transformation By; — ©B;;0T we can
put Bi; in the form

0 0
0 B

@BHGT = [
from which the theorem follows.

At the " port there is a force-configuration space
T*Y; and if we impose zero force at all the other ports
we will be able to split the tangent space of Y; into
two parts according to the criterion that in the first
part motion requires no force where as in the second
it does. We write this as

Ty, Vi = Vy, + Wy,

By analogy with electrical network theory we can
think of V,; as the subspace in which the open circuit
impedance is zero. Likewise, if we freeze the positions
at all ports except the i*" port then we can split the
force space

T Yi = Ve + Wy
with W,; being the space in which an arbitrary force
produces no displacement.

Theorem 2: Let J be an m dimension configu-
ration manifold for an input-output elastomechanical
system. Let L be the Lagrangian submanifold of T*)
that describes the generalized force-displacement rela-
tion. Let v(y) and u(y) of theorem 1 be independent of
y. Then any realization of the elastomechanic system
requires at least n — v — p scalar spings.

This is just a physical interpretation of the structure
revealed by theorem 1.

Definition: We will say that a system is purely
kinematic if dim(y) = v(y) + ¢(y) at each point y €
Y. It is said to be purely elastic if v(y) = p(y) =0

3 Interconnection

One of the reasons for introducing ports and describing
the systems without reference to internal variables is
so that interactions between different systems of this
type can be easily understood. In this section we want
to model the interaction process.

Let S; and S» be elasto-kinematic systems with



configuration spaces YV; X Y2 X -+ X Ym and X =
X1 x X3 x -+ x Xp. There are many ways in which
interaction between these systems might occur but we
limit the discussion to rigid interconnections between
variables at port ); and variables at port X';.

Definition: Let X,Y and Z be given by X = &3 x
Xax  xX,Y=Y1xY2x---xYs;and Z = Z1 xZ3 X
--+x Z,;. We will say that the elasto-kinematic system
L, C T*Z is the result of an interconnection of the
elasto-kinematic system L, C T*X and the elasto-
kinematic system L; € T*) if for some ordering of
the factors

X.' :y,' ; i= 1,2-«-,a

and Z = Xgq41 X -+ X Xp X Yat1 X -+ - X Y, with the
port variables at X'; ; being equated.

4 Stiffness of a curved beam el-
ement

Our point of view here is that it is useful to think
of a general elasto-kinematic synthesis problem as be-
ing separable into units which are then interconnected.
The interconnection itself will require that one take
into account both spatial relations and force/torque
relations. Typically the spatial relations will consist of
a nominal relative positioning of the parts followed by
an analysis of the effects of incremental deformations.
In order to bring this kind of analysis within the scope
of our theory we give here a geometrical analysis of the
stiffness properties of a common connector, namely a
thin curved beam of variable cross section. Our devel-
opment includes both the “in the large” geometry of
the beam and the incremental stiffness analysis in a
unified way.

The notation follows that of Simo [14]. A thin rod
can be described geometrically by a curve ®(s) in R,
which passes through the centroid of the rod, together
with an orthogonal basis E(s) which is parameterized
by the arc length along the curve s. The tangent vector
to the centroidal curve at s is denoted Eg(so), where

8@!3!

3s

8@!3!
“ 8s “

The cross-section associated with point s on the arc
is a compact subset of the plane spanned by the or-
thonormal vectors Eq (sq) and Eg(so) To describe the
evolution of these vectors as a function of arc length,
let

E3(s) =

Eq7(s)
Eo"(s)
E37(s)

Ao(S)T =

Ag (A
The skew-symmetric matrix f2o = 28q ()Z0ls) (;3 ols) o

2171

taken to be :

0 Kz —Ks
20 = —-K3 0 K,
K, —-K; 0

Following deformation, the line of centroids is denoted
@(s). Consider a basis e; adapted to the deformed
element. The basis vectors eq(so) and ea(so) re-
main in the plane of the original cross-section. Given
this choice, eg(so) is determined. Because of shear-
ing strains, the vector tangent to ¢(s) at so, denoted
t(so), is not necessarily parallel to eg(so). The basis
vectors E; and e; are related by the equation:

e;(s) = A(s)E;

The skew-symmetric matrix §2 = AT (s)?—%12 is taken
to be:

0 K3 —K2
Q = —K3 0 K1
K2 —K1 0

We define the shearing and extensional strain mea-
sure by the expression:

P ATATER0)

and the bending strain w = (k1, k2, k3), which is re-
lated to the skew-symmetric matrix §2 in the standard
way (see [8]). We will use the notation [w] = §2

The equations for balance of forces and torques in
the static case are:

a-f“_l-—'o
and: 4
6m 0 .

where m and f are the applied moment and linear force
per unit arclength.

By making the assumption that the beam is thin
compared to the radius of curvature, we can establish
the approximate relations between the strain and the
force components. These approximations are:

f = diag(GA, GA, EA)T
m = diag(, E, LE,GJ)K

where GJ is the torsional stiffness, EI; is the bending
stiffness about the i axis, GA is the shear stiffness, and
FE A is the axial stiffness.

It is of interest to determine how the nominal curva-
ture of the beam together with the bending and twist-
ing stiffnesses can be used as controls to generate a spe-
cific driving-point compliance at the tip of the beam.
For this purpose consider “growing” a curved beam,
ignoring shear and axial elongation.

At the point s the stiffness relationship is:

K(s)a(s) = f(s)
The generalized force vector f(s) = (f, m) has compo-
nents of linear force and torque expressed in terms of
the E; basis. (undeformed beam-following) basis and




the displacement vector
z = (x1, 29, 23,01, 02, 03)
where
#(s) = ®(s) + ziEs(s)
and
8
6is) = / ki(0) do
0
We consider only the first term in the expansion for
A(s) =1+ / (o) do
0
First we give some definitions. The relationship:

(70) -1 (1))

m(0) m(s)
Ao(S) 0

T =

( [¥(s)]Ao(5) Ao(S))
gives the force at the beam base due to a tip force with
components given with respect to the moving reference
frame at sg

The matrix T evolves according to:

where:

. Q 0
T:TQw$UJQJ
or
T:TA

Theorem 3: The stiffness as a function of arc length
satisfies the differential equation:

K(s) = K(s)AT (s) + A(s)K(s) + K(s)BK(s)
where A is identified above and:
0 0 )

B= (0 diag(LE, LE,JG)™!

For the planar case, we investigate a segment with
curvature given as a function of arclength: k(s). In
this case it is possible to explicitly write:

@@w=ﬁ”(wmmw)

sina(s)ds

where

Let:
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and:

Figure 2: Curved Planar Beam

To explicitly formulate the compliance relations it is
necessary to choose coordinates. We choose to express
the components of force and displacement with respect
to the basis vectors F; of the undeformed structure.
Given:

¢(s) = ®(s) + w1 (s)E1(s) + ua(s) Es(s)

and
f = fiE(s) + faEa(s)

together with the simplified constitutive relations,
the infinitessimal compliance relations are:

i 0 K -1 g 0 o0 u
i3 -K 0 o0 0 ﬁ 0 u3
61 _| o o o o 0 IF ]
ATl 0 o 0o o K 0 fi
fs 0 0 0 -K 0 0 fs
m 0 (V] 1 0 ] m

5 Example: A Planar End-

Effector

In descriptions of end-effectors, the center of compli-
ance has been shown to be of importance. Consider
the design of the wrist as shown in Fig. 3. The two
curved beams are reflection symmetric. By altering
the curvature only (the bending stiffness is constant)
it is possible to alter the ratio of horizontal to vertical
stiffness as well as the center of compliance. Consider
two curves for which ET = 102 and the total arc length
is 2.5. Let Kgz be the stiffness in the x direction, and
K¢ be the term which couples rotation and horizontal
motion, and & the nominal curvature of the structure.

In case 1 we have:
k(s) = —0.1%sin(1.25%s)
K., = 1987.85
Kgg = —1632.15- 5988.c+ 1987.85d
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Figure 3: A compliant wrist
76598.8

3977.49 — 6489.5¢ + 76598.8¢”
3264.3d — 11976.cd + 1987.85d%

K,,
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In case two we are able to get:

k(s) = —0.4sin(1.25%s)
+ 1.4sin(2.51%s) ~2.5sin(3.76 * s)
K.z = 3763.81
Kye = 609.5—17539.9¢+ 3763.81d
K., = 33620.5
Kgo = 4834.2—19514.8¢+ 33620.5¢
+ 1219d — 15079.7cd + 3763.81d>

By a specific choice of the distance between the tips
of the curved beam tips (c), it is readily possible to
choose an offset (d) for the center of compliance. It
is also shown that the ratio of vertical to horizontal
stiffness is readily controlled.
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