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Abstract

In some settings the deliberate introduction of noise can
have a beneficial effect on the rate of convergence of numeri-
cal algorithms for finding the minima of functions. This is an
important aspect of simulated annealing. However, there are
situations which, in contrast to simulated annealing, do not in-
volve reducing the noise level with time and which are also of
interest in a computational and control context. In this paper
we consider problems of this type. The effect of the addition of
a noise term to the solution of a differential equation is investi-
gated via properties of the associated Fokker-Plank operator.
In the last section of the paper we indicate the relevance of this
to our earlier paper on the descent equation H = [H, [H, N||.

1. Introduction

If we are given a function ¢ which takes on real values and
if we wish to find the value of the argument of ¢ for which it
takes on its minimum, an obvious thing to do is to set + = —
¢(z) and integrate this equation. This method can fail to give
satisfactory results for several reasons. The most commonly
cited problem is that the descent leads to a local minimum
which is not a global one. A second difficulty also observed
in numerical work is that the descent proceeds very slowly
because of unfortunate topological features such as ridges or
the existence of one or more saddle points for ¢, near which
V¢ is quite small. If it happens, as in our recent work [1,2],
that the function ¢ is defined on a manifold which, by its very
nature, demands that any differentiable function defined on it
has a number of saddle points, then this second difficulty can
be quite significant.

In order to correct the problem of convergent to a local
but not global minimum the advocates of simulated annealing
recommend the addition of a time dependent noise term so as
to obtain

i=—-v¢+e(t)n(t)
with n a stationary stochastic process and ¢ a deterministic
function which goes to zero as t goes to infinity. Problems
which arise in this context include the question of how to choose
€ so as to get a satisfactory rate of convergence without signif-
icantly degrading the accuracy of the final answer.

The main point of this paper is to investigate a sample
problem for which the addition of a noise term is i) useful in
avoiding slowdown at saddle points or ii) useful in achieving
stochastic stability in settings where topological considerations
exclude the possibility of obtaining a control law which makes
the desired equilibrium point asymptotically stable in the large.
The particular problem which we study is a disguised form
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of the matrix equation I
investigated in {1-30

LU N whose properties are

Consider a deterministic equation
&= f(z)

Suppose that z belongs to a compact Riemannian manifold
and that z(0) is a random variable distributed uniformly with
respect to the Riemannian volume on M. In this case we can,
in principle, evaluate £7, the expected value of the time it
takes for z to arrive within ¢ of some stable equilibrium point.
On the other hand, if we add white noise to the equation to
get an Itd equation of the form

dr = — (f(z) - %gg—:g) dt + ag(z) dw
then the probability density satisfies
ap a? 3%
ETR Y

and we can ask if, in some probabilistic sense, this improves the
rate of convergence. Since these calculations cannot be done
explicitly, it seems worthwhile to do some numerical work.

2. The Finite State Case

Consider a finite state continuous time jump process z(t)
taking on real number values in the set s;,s$s,...,8,. Letting
pi(t) be the probability that z(t) = s; we assume that the
probabilities evolve according to

p= Ap+ uBp

where u is a parameter (such as the noise level) which we can
adjust. Our goal is to minimize a function which is obtained
by balancing a desire that p(t) should reach its steady state
quickly and a desire that in the steady state there should be
very little spread in the values of z, e.g. that

E(z - €2)?

(€2%) - ()"

E(P;S.')z - (EIRS.‘)Z

should be small. Since p belongs to a compact set and since
n has a lower bound, ¢ will have an infinum and it is not

unreasonable to we expect it to have a minimum if « belongs
to a compact set.
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Of course the matrix A + uB, being an infinitesimal gen-
erator, has zero as an eigenvalue. We let p,, denote the cor-
responding equilibrium probability vector. Taking the rate of
decay of the slowest mode as a measure of the speed of con-
vergence and taking the variance as a measure of the quality
of convergence we would be led to the consideration of combi-
nations of the form
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1= f(M) +[E(pis)® - (Spise)?)

The A which shows up here is the real part (necessarily neg-
ative) of the eigenvalue of A + uB which is “the next to the
largest”. Because 0 is an eigenvalue, A measures the gap be-
tween zero and the rest of the spectrum. Its fundamental role
in this kind of problem has been observed and studied by others
(4].

The problems that we are investigating here involve Fokker-
Planck equations which correspond to Itd equations of the form

dz = f(z) dt + adw

In the scalar case we get

dp ol dp

E 2 82
There is a large literature on how to derive finite state models
for such equations. The second order term presents no partic-
ular difficuities but we want to point out one aspect of the first
order operator.

1]
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For smooth functions f and rho the equation

dp

5=
will evolve in such a way as to keep [ pdzr constant. This insures
that the probability is appropriately normalized. If we want
the p; to generate an approximation of p, we should insure that
p satisfies

*%f(r)p

p= Ap

with A having columns which sum to one and which are non-
negative off the diagonal. This can be accomplished by approx-
imating —3fp/dz by a forward difference when f is negative
and a backward difference when f is positive

A= f(z ~ h)o(z ~ k) — f(z)p(z)] if f(z) >0
R f(z)o(z) — flz + Rh)p(z + h)] if f(z) <0
If we associate a p; with each equilibrium point and if we use
this scheme, we get a matrix A which has the properties of an

infinitesimal generator.

9
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3. The Perturbation Formula

Given
p=Ap+uBp

with A and B square matrices whose diagonals are nonpositive,
whose off-diagonals are nonnegative and whose columns sum
to zero, by the Peron-Frobenius theorem, 0 is an eigenvalue
of A and there exists eigenvector p,, with nonnegative entries,
summing to one, such that A + uBp, = 0. If A+ uB is
irreducible, there is only one choice for p,,. We investigate
how p,, depends on u for

(A+uB)p =0
To do so, we introduce the vector
c

and look for v such that ¢Tv = 0 (so that p., + cTv is a proba-
bility vector) and such that

¢(u) = (4 + uB)(Px (0) + uv(u))
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cmay as vetl oot ta he emall and to require the

chit-hand side vo vamisn 1o st oraer inou. This would he
completely routine if 4 were invertible but it cannot be so we
need a special device. Note that Ap,, = 0 and at u = 0

9

b_u = Bpm + A‘U(O)

Because of the form of 4 and B, ¢TA = ¢TB = 0. Thus if
0 = Bp + Av(0)

then
(A+ccT)v(0) + Bpo, =0

Conversely, if (A+¢T¢)v(0)+Bpo, = 0, then a premultiplication
by cT shows that cv = 0 and Bpo, + Av(0) = 0. However, if A
is irreducible, then (A + ccT) is invertible and we may write

v(0) = (A + cc")Bpos

thus obtaining, to first order, the effect of u on the steady state
probability pe.

4. An Example
Consider the stochastic equation
dx = —coszrdt + adw
Because the related deterministic equation
I=—cosz

has a periodic right-hand side we can regard this as an equa-
tion defined on a circle. The deterministic equation has two
equilibrium points; one at £ = 7/2 and one at z = 37/2. The
former is unstable and the latter is stable. The Fokker-Planck
equation associated with the stochastic equation is

o¢(t,z) 8 a? dp
—d = 35S zp(t, z) + 2 922

It is not difficult to verify that e~2(n=)/2” ig annihilated by the
operator on the right-hand side and so for

N = /z’re~2(!inz)/a2dx
0

we see that N-le~2(sinz)/a® js the steady state density associ-
ated with this equation. Near z = 37/2 we have —sin(37/2 +
6) =cosé~1=26%2and so

2 2/42
Poo R N-le—'l/a et Ja

A linearization of the stochastic equation near the same point
yields
dé = —6dt + adw

which has a steady state variance of £6* = a®/2; this is fully
consistent with the actual solution.

The operator

2 52

a® o

L =— + —
cos T 922
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defined on a suitable subset of the space of all functions peri-
odic of period 27 has one zero eigenvalue, corresponding to the
eigenfunction e~2(n2)/%* and all remaining eigenvalues have




real parts which are negative. This operator is not self-adjoint
as written but it is similar to a self-adjoint operator and so its
spectrum is real. If the first order term was absent, then the
spectrum would be {0, —a?/2, ~?/2, —4a?/2,—4a%/2,...}. On
the other hand, if « is zero, then we have to solve

di:c cos zp(z) = Ap(z) ; p(0) = p(2m)

et+n/2
but this has no solution because / 1/ cos A dA diverges.

G+w/2

5. Numerical Experiments

Because the Fokker-Planck equation cannot be solved ex-
plicitly it is worthwhile to use numerical work to investigate
the trade-off between the speed of response and the accuracy
with which the zero is ultimately found. We discretize the cir-
cle as 50 segments of length 27 /50 a2 .125. In this way we get
a Fokker-Planck equation of the form

p=(A+uB)p
with u being the diffusion constant (a® in the above context).

We see that L is the sum of an operator which comes from
5"; cos z and which we approximate as indicated above and an
operator which comes from ;—:, and which we approximate by
a symmetric circulant matrix of the form

-2 1 1

The results of a numerical integrations of p = Lp for a =
V2 are shown in Figure 1. Measurement of the asymptotic
rate of convergence of the probability vector indicates that the
nonzero eigenvalue with the largest real part decays at the rate
of ~ exp —1.3t.

Figure 1. The numerical approximation of the time

X 3 _ 2 32
dependent solution of 3¢ = 3= coszp + 32%p
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6. The Double Commutator Equation

One reason for investigating this question for § = cos# is

that the equation
H ={H,[H,N|| ; H(0) = HT(0)

whose properties as an analog computer are discussed in [2],
has, for typical values of N and H(0), n! equilibrium points,
exactly one of which is stable. Even the modest simulation
results reported [2] deal with a system having 5040 equilibrium
points and thus slowdown near saddle points can be a problem.

In (3] we show that in the two by two case this equation

can be reduced to
6 =sin#

We indicate briefly how one can see the present paper in the
more general context. The H-equation evolves in such a way
as to keep H symmetric and to keep its eigenvalues constant.
The set of real symmetric matrices with a fixed set of distinct
eigenvalues admits the structure of an n(n — 1)/2-dimensional
compact, connected manifold. In fact, it is identifiable with
the proper orthogonal group acting on E™ modulo the 2" ele-
ment discrete subgroup consisting of diagonal matrices whose
diagonal values are +1. Denote this so-called hyperoctahedral
group by D. Because SO(n) has a natural Riemannian metric,
the coset space S0(n)/D can be thought of as a Riemannian
manifold with its metric structure coming from that of S0(n).
The correspondence between © and H is given in terms of the
diagonal matrix of eigenvalues of H, say A, and is given by

0~ 0Tr0

Because D;AD, = A for any D, in D, one can show that if
the diagonal entries of I' are distinct this establishes a smooth
invertible map between S0(n)/D and the set of symmetric ma-
trices with a fixed set of eigenvalues.

A key point of (1] is that H = [H,[H, N|] can be viewed as
a gradient flow associated with the function ¢(H) = tr(HN)
and the Riemannian metric on H alluded to above.

Now consider the possibility of speeding up the convergence
of H by adding a suitable noise term. Of conrse there are an
infinity of possibilities. We consider just one; a natural one in
that it is as “isotropic” as possible. Recall that on any Rie-
mannian manifold there is an analog of the Laplacian, called
the Laplace-Beltrumi operator. Like the Laplacian in E", this
operator occurs as the right-hand side of a Fokker-Planck equa-
tion associated with a stochastic differential equation (which
we write in central difference form)

dH = HdQ - dQH

where (1 is a skew-symmetric matrix of Wiener processes. For
this equation the density p(t, H) satisfies

dp(t,H) 1
——~==Lp(t,H
at Lot H)

with L being the Laplace-Beltrumi opetator.

Of course, what we really want to consider is the equation
which results when we add this noise term to the gradient
eqiatinn

H = <7 tr(HN)




In this case we get

d¢H = ytr(HN)dt + e(Hd0 — dQH)

where ¢ is the noise level.

This equation has an associated density p(t, H). If it were

not for the fact that the gradient term we present, the invari-
ant density on H would coincide with the Riemannian volume
S50(n)/D. It is not difficult to show that the effect of the drift
term in the present context is to yield an invariant density

which is proportional to e

—tr(NH)_
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