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Abstract

This paper establishes a theoretical framework
for analyzing and classifying actuators that gener-
ate their output by rectifying small-amplitude me-
chanical vibrations, such as might be generated by
piezoelectric elements. These ideas are of special
interest when designing for microfabrication, be-
cause motors based on these principles: (a) can
generate translational output directly without use
of rotary bearings; (b) appear to be scalable over
several orders of magnitude of the length scale;
and (c) appear to be capable of generating me-
chanical power proportional to driving frequency
over one to two orders of magnitude of frequency.
In order to achieve this performance, it is neces-
sary to be able to fabricate features, or at least
control surface irregularities, on the scale v/w
where v is velocity of the actuator and w is the
operating frequency.

Introduction

Over the past few years there have been a
number of papers written about the design of
small electric motors. For the most part, the
designs considered have been based on the use of
electrostatic forces [1-3]. Such systems are partic-
ularly attractive if high speed, low torque, rotary
motion is desired. Although intended for larger-
scale applications, recently several interesting
designs based on other principles have also ap-
peared, such as standing wave (‘inchworm’) de-
signs [4] and the traveling wave motor [5]. In this
paper we consider generic designs of high force,
low velocity, motors, with the study of linear
motion generation being of special interest.

Our point of view is derived from the following
observations:

(a) A variety of materials are available which
convert electrical energy to mechanical energy
through the piezoelectric effect. These are low
strain, high force effects.

(b) Such materials can effectively generate
low-amplitude mechanical vibrations in the 200-
200 000 Hz range, with higher frequencies yielding
greater power per unit volume.

(c¢) In order to generate large-amplitude dis-
placements using this transduction mechanism, it
is necessary to ‘rectify’ the mechanical oscillation.

We will refer to devices that transform recipro-
cating mechanical motion into unidirectional,
rectilinear or rotary motion as mechanical rec-
tifiers.

It may be useful to draw attention to an anal-
ogy with microwave engineering. In the 1930s and
1940s efforts directed toward solving problems
arising in connection with generating and trans-
mitting high-frequency power for radar, commu-
nication, and eventually microwave heating,
changed the subject of electrical engineering in a
profound way. Key developments included the
coupled wave analysis of traveling wave tubes,
parametric amplifiers, the frequency power (Man-
ley—Rowe) equations and the steady development
of ever better materials. Of course, high-frequency
mechanical vibrations in the ultrasonic range are
already widely used in acoustical imaging, non-
destructive testing and in a variety of niche
markets. Recently several different types of
piezoelectric motors have become available, and
consumer products based on them have been
announced. Surface acoustic wave devices and
optoacoustic elements have already found a place
in electronics. Clearly this is a time of rapidly
expanding possibilities for ultrasonic engineering,
paralleling at least vaguely the earlier growth of
microwave engineering.

It has been suggested in the literature that
certain aspects of mechanics need to be rethought
insofar as they are to be applied to high-frequency
vibratory systems. In particular, static friction
seems to be reduced when the contacting surfaces
are subjected to a small-amplitude, high-frequency
oscillation. The attention of the reader is directed
to the survey [9] for a discussion of a number of
interesting questions related to these and other
matters.

The Classical Situation
The slider/crankshaft mechanism is, of course,
the usual model for mechanical rectification.

It converts reciprocating motion to rotational
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motion and can, with the addition of a rack and
pinion, convert reciprocating motion into rectil-
inear motion. There are two reasons why this
mechanism does not seem to be particularly well
suited for microfabrication. In the first place, the
rotational velocity of the crankshaft equals the
frequency of the reciprocating motion; high-
frequency vibration equates to high rotational
speeds. A second problem is that this coupling
produces no mechanical advantage. If mechanical
advantage is required, it must be generated by a
separate mechanism such as gearing. It is also
worth noting that the offset of the crankshaft
equals one-half the amplitude of the reciprocating
motion. Thus for piezoelectric systems, the offset
of the crankshaft would appear to be unaccept-
ably small and the rotational velocities unaccept-
ably large.

In view of this, it is not surprising that the
commercially available piezoelectric motors do
not use slider/crankshaft kinematics, but instead
use a variety of more subtle methods. In this
paper we suggest a classification for a range of
possibilities making use of a geometric viewpoint.
Our goal is to establish the framework for a
general theory and to illustrate its applicability
with examples.

Differential Equation Models

From the point of view of classical mechanics,
rectifiers are necessarily non-holonomic systems.
This remark is to be understood in the following
sense. When the vibrating transducer completes
one cycle, returning to its original position, the
output element to which it is coupled must not
return to its initial position. If it were to do so, no
rectification could have occurred. Instead after
one cycle, the output element will be offset by a
certain amount; this is the essence of the function
of the rectifier. Thus although the vibrator and the
output must be coupled, there can be no finite set
of smooth functions ¢(x;, x,, ..., x,) such that
the only constraints relating the position of the
vibrator and the output are of the form
o(x, X5, ..., x,) = 0. It will typically happen that
the relation between the position of the vibrator
and the output will take the form of one or more
relationships between the velocities of the separate
pieces, these constraints being of such a form that
they cannot be integrated to give position con-
straints. Standard textbooks on dynamics usually
cite the example of a disk or a ball rolling on a
surface without slipping. See, e.g., Whittaker [6].
In addition, there is a second type of non-holo-
nomic situation that arises. This occurs in systems
for which there are certain regimes during which

parts are in contact and move together con-
strained by structural features or friction, and
other regimes during which they are separate and
go their own ways. A formalism for studying such
‘piecewise holonomic’ systems has been developed
[10].

In this paper we will discuss a number of
mechanisms that realize rectification. We organize
the discussion along the lines suggested by Fig. 1.
The distinctions drawn there are based on the
number of driving vibrators (this is analogous to
the classification of electric motors as single phase
or multiple phase) and on the type of coupling
(distinguishing between smooth non-holonomic
systems and piecewise holonomic systems). In all
cases we will be able to model the input/output
relations by a set of differential equations.

The remainder of this Section is devoted to the
discussion of some aspects of ordinary differential
equations that are important for the results on
vibratory actuators which follow.

Of course, there is no theory of periodic solu-
tions of non-linear differential equations that is
both quantitative and completely general. How-
ever, there is an effective theory based on the
assumption that the non-linear part of the differ-
ential equation is small and certain aspects of this
theory are useful here. Starting with a vector
equation

X(1) = f(x(1), 1)

with f(x,+) being periodic, one introduces a
change of coordinates of the form z(¢) = P(1)x(¢)
with P being periodic. This gives

() = PP~ (0z(1) + P(Of(P~'(Dz(2), 1)

It is then postulated that P has been selected so
that this can be rewritten as

(1) = eg(z(1), 1)

with ¢ a small parameter, g(0, ) =0 and g(z, *)
periodic with respect to ¢. This being the case, we
suppose that g(z, *) is periodic with period T and
look for a solution z( *), which is the sum of a
constant, a periodic term and a linear term, with

Piecewise

Smooth Smooth
Contact Contact
Multiple A B
Driver
Single C D
Driver

Fig. 1. A mechanical rectifier taxonomy.



weights €°, ¢!, €2, respectively. That is, we search
for a solution of the form

2(t) = zy + ep(1) + €at

with z, and a being constant vectors and p(?)
being periodic with period T. The e2xt term is
often said to be a secular term. In the situation of
interest here, the vector z represents the state of
the entire system (e.g., the positions and velocities
of all elements if we are discussing a lumped
mechanical system). Since we want to convert
periodic motion into rectilinear motion, we see
that the secular term is of critical importance.

The analysis of Z(¢) = eg(z(r), r) for ¢ small
proceeds by integrating both sides and using a
Taylor series expansion. This yields

t

L OIHE: Jg(zo + ep(0) + €%a0, 6) do
0
so that

t t

0
2T ~¢ Jg(zo, 6)do +¢ Ji (ep(o) + €*a0) do
0 0

We define G(z,) as

1

G(zy) = Jg(zo, o) do
0

If G(zy) =0 and if the constant n by n matrix
obtained by evaluating (0G/0z) at z = z, is of full
rank, then there is a solution with & = 0 and this
solution is unique in the sense that there is no
other soltution for small ¢. That is not, for our
present purposes, the interesting case, because if
0G0z is of full rank, there is no secular term. If
(0G/0z) is not of full rank, then there exists « such
that (0G/0z)a = 0. If

T

€2aT = €2 f(@g/az)p(a) do

then, at least to first order in ¢, z(¢) = zy + ¢p(t) +
€ar is a possible solution. This kind of thinking
can be worked into a rigorous theory (involving
some additional assumptions, see Chapter 18 of
Hale [7]) and we will use it to guide our later
developments.

The Role of Area
Since the vector « represents the velocity of the

rectified output, we are interested in determining
how a depends on the properties of the system.
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The following remarks will be useful in this
regard.

Of course the area between the x-axis and the

graph of the function y = f(x) can be expressed as
t

A(f) = f yx do

0
provided that x itself is a function of a monoton-
ically increasing variable, say time. The area can
also be expressed by integrating by parts:

t

A() = x(o)y(o)|s — fy'x do

0
If x(¢t + T)=x(f) and y(t + T) = y(¢), then the
curve (x(*), y(*)) i1s closed and the signed area

encompassed by the curve is
t

A= 1 ny‘ — yx dt
2

0
We want to state this in a different, but com-
pletely equivalent, way. If we have an input/
output system described by the equations

*(t) = u(f)
(1) =v(5)
2() = x(Do(r) — y(Du(t)

and if u(*) and v(*) are periodic functions with
zero average value, then x(*) and y(-) are periodic
and

z(¢) =27A°t+p(t)

where 4 = the area enclosed by the closed curve
(x(*), y(*)) for 0<t<T and p(¢) is a periodic
function. Arguments given in our earlier paper {8]
show that this control system is a canonical form
for a two-input controllable system with no drift
term. We now describe a sense in which it can be
thought of as a canonical form for smooth vibra-
tional rectification.

If we have two vibrators driving a dynamical
system and include in our model dynamic effects
as well as kinematic effects, the equation of mo-
tion will typically take the form

X =f(x) + g1 (¥)u + g (x)p

with u and v being the displacements of the vibra-
tory elements. On the other hand, if only the
kinematics are being modeled, then f can be taken
to be zero and the equation will take the form (x,
is a reduced version of x obtained by omitting the
components which represent velocities)

X, =g (xJu + & (x
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As a control system, u can drive x, in the direction
defined by the vector g, and v can drive x, in the
direction defined by the vector g, but, and this is
one of the things that makes non-linear control
theory interesting, by working together they can
also drive x in the direction defined by the vector
Gl = Brg,— %2

£1, 82 = ox & 6xg1

If we choose coordinates so that x, =0 is the
nominal operating point, and so that

1 0
1
a0= || &0=

0

then we can see that for 4 and v periodic of period
T and x(0) =0,

Xr(T) z[gwlsng] <A

with the vector [§,, £,] being evaluated at x, =0
and A4 being the area defined by the closed curve
described by the first and second components of
x,. Thus in an average sense

xrz[glag2] .A/T

Type A Kinematic Realization

We wish to describe prototype mechanisms for
producing rectilinear motion by rectification using
piecewise smooth kinematics. The basic mecha-
nism is only slightly different from the complete-
ly smooth version to be discussed in the next
Section.

Consider a beam supported at each end and
which is being driven in such a way as to excite
the first and second harmonics (see Figs. 2 and 3).
If the beam is shaped so that these modes can be
effectively excited at the same frequency and with
arbitrary phase, then the shape takes the form

W, w) = Ap(w) sin wt + By(w) sin(wt + 6)

Suppose that at point w, along the beam we
add a small rectangular structure extending per-
pendicularly from the beam as shown. Since the

gl

A

Fig. 2. Modes for the generation of linear motion.

driver elements

Fig. 3. Beam with normal extension.

extension is normal to the beam and since the
vertical component of the unit normal to the
beam at w is (subscript denotes derivative)

n,(t, w) =
A, (w) sin ot + By, (w) sin(wt + 8)

[1+4 (40, (w,) sin wt + B, (w) sin(wt + 6))?]'?
we see that the x(¢) and y(r) displacements of the
tip of the extension are, for small values of 4 and
B, approximately
¥(t, wo) = h + Ap,(w) sin wt + By(w) sin(wt + 6)
x(2, wy) = hA¢(w) sin wt + hBo  (w) sin (wt + 0)
Thus the top of the extension moves in an ellipse.
The principal axes of the ellipse are lined up with

the vertical and horizontal axes and the area is
proportional to 4B.

Type B Kinematic Realization

In a type A realization the governing equations
are only piecewise smooth, because during part of
the cycle the vibratory element and the output
element are not in contact and no forces can be
transmitted. Although this mechanism is easily
described and appears to be rather easy to realize
in various ways, there is one major disadvantage;
the behavior of the driven member, being out of
contact for part of the cycle, is not constantly
under control. With a somewhat more compli-
cated kinematic set-up involving two such mecha-
nisms operating 180° out of phase with each
other, this difficulty can be eliminated.

In Fig. 4 we show a smooth non-holonomic
realization of our basic (x, y, z)-equation intro-
duced above. It consists of a torsional shaft that has
a thin disk attached and oscillates with two modes.
In this case the disk rolls without slipping on a
movable output member A, which slides to produce
the output motion. The orientation of the disk
changes as it rolls over the output member in such
a way that it slants in one direction as it moves back
and to the left and in the opposite direction as it
moves forward and to the right. Even though there
is some coupling between the torsional mode



mode 1 =

mode 2

Fig. 4. The twisting rod kinematic realization.

and the first and second transverse modes, there
are still only two modes of vibration.

Dynamical Version

The formula that gives the velocity of the
rectilinear motion in terms of the area of the
closed curve defined by x(*) and y(-) makes it clear
that insofar as purely kinematical solutions are
concerned, rectification necessarily involves two
degrees of freedom with an independently control-
lable phase angle between them. The control of
the phase angle is necessary to control the speed
and direction of the output.

There are also single-driver versions of these
mechanisms that stand in relationship to the two-
driver situation as ‘split phase’ electrical motors
stand to multiphase electrical motors. Their real-
ization depends on the use of phase shifting to
generate a (u, v)-pair from, say, v alone. In this
case the model has only one input

X =f(x) + g(x)u

In order to make the system reversible in the sense
that the sign of the secular term can be controlled,
it is necessary to rely on effects related to a change
in the frequency of u. The idea is well explained by
recasting the model in second-order form. Con-
sider

X +ex + x =u(l)
ZI=Xx"'Uu

If u(t) = sin ot and ¢ is positive but small, then for
w < 1, x is approximately given by

x(5) ~ (1 — w2 ~!sin 0t

and z is approximately the average value of
(sin® 1)/(1 —w?) ~'. If w is greater than one, then
the same formula applies, except that there is a
minus sign because x and u are then nearly 180°
out of phase. Thus in this model the direction
of the output motion is controlled by shifting
the frequency from one side of the resonance
frequency to the other. In this case the speed
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can only be controlled by controlling the amplitude
of u.

Small-amplitude Gain

It is to be observed that unlike the situation
one finds in treating conventional systems, the
mechanical advantage cannot be evaluated by
computing the Jacobian of some map as in the
law of levers. In fact, as the amplitude of the
driving oscillation goes to zero, the mechanical
advantage goes to infinity, reflecting the quadratic
nature of the kinematic coupling.
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