ASYMPTOTIC STABILITY AND FEEDBACK STABILIZATION

R. W. Brockett

Abstract. We consider the local behavior of control problems described

by (x=dx/dt)
).1=f(x,u) ; f(xo,0)=0

and more specifically, the question of determining when there exists a
smooth function u(x) such that X=X is an equilibrium point which is
asymptotically stable. Our main results are formulated in Theorems 1
and 2 below. Whereas it might have been suspected that controllability
would insure the existence of a stabilizing control law, Theorem 1 uses
a degree-theoretic argument to show this is far from being the case.
The positive result of Theorem 2 can be thought of as providing an

application of high gain feedback in a nonlinear setting.
1. Introduction

In this paper we establish general theorems which are strong

enough to imply, among other things, that

a) there is a continuous control law (u,v) = (u(x,y,2),v(x,v,2))

which makes the origin asymptotically stable for

Xx=u
y = v
z = Xy

and that

b) there exists no continuous control law (u,v) = (u(x,y,z),

v(x,y,z)) which makes the origin asymptotically stable for
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.

X =u

.

y=v

.

Z = yu-xv

The first of these implies that the null solution of Euler's
angular velocity equations can be made asymptotically stable with two
control torques aligned with principle axes. (See [1,2]for a general
discussion, but not this particular result.) The second provides a
counter example to the oft repeated conjecture asserting that a
reasonable form of local controllability implies the existence of a
stabilizing control law. Section 2 gives certain background material
in control theory. In section 3 we formulate our nonexistence result
and in section 4 we give a criterion for the existence of stabilizing
control laws.

Sussmann [3] gives an example of a system in Iszhich is controll-
able in a strong sense and yet fails to have a continuous feedback con-
trol law yielding global asymptotic stability. His example involves
both bounds on the controls and nonlocal considerations, ours involves

neither.

2. Control Systems

We intend to work locally in this paper, but even so it is perhaps
worthwhile to make a few remarks about a global formulation. A more
detailed and systematic account can be found in [3], but in any case
the reader familiar with control theory can go directly to section 3.

Let X be a differentiable manifold and let T:E~X be a vector
bundle over X. Let TX denote the tangent bundle of X and let W*TX
denote the pullback of TX over E. A section of T*TX is then an
assignment of a velocity vector in TX for each point in E. If we
choose a local trivialization of E and pick coordinates then a section

Y €T(E,T*TX) is equivalent (in an obvious notation) to
x = f(x,u)

such a y is called a control system.

A section 0 €T (X,E) is an assignment of a pair (u,&) corresponding
to each x and so locally it is given by a function 0(x). We denote by

Yu the section of I'(E,7*TX) defined in coordinates by
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x = f(x,u+a(x))

and say that Ya is obtained from Y by the application of the feedback
control law &. Associated with every control system Y there is a vector
field which is obtained by setting u=0. This vector field will be
denoted by Yo and is called the drift. We now state a precise problem.
Given Y €T (E,m*TX) and xOEZX under what circumstances does there exist
o €T(X,E) such that x_ is an equilibrium point of y‘;‘ which is locally
asymptotically stable. We call this the local feedback stabilization
problem.

Now the fibers of E and the fibers of T*TX are both vector spaces

and so it makes sense to ask if the mapping of T'(X,E) XTI (E,T*TX) ~
I'(E,m*TX) defined by (a,Y) — Ya is affine with respect to &. If so
we call the system input-linear.

Observe that input-linear systems have a local description of the

form
x(t) = £(x) +Zug, ()

By a standard linear control system we understand a section

Y €T (E,T*TX) with X=R", E=R"Xx R" (the trivial bundle) with Y

being given by

. m
x = Ax+ 2 biu.
+41 1

3. Nonexistence of Stabilizing Control Laws

There is one situation in which the stabilization problem has
been completely understood for some time. We formulate the results

here in such a way as to provide a guide to the latter developments.
Remark: Consider the standard linear control system

. n

x = Ax+3Bu ; x(t) €ER (*)

A necessary and sufficient condition for there to exist a control law
o which makes x=0 an asymptotically stable equilibrium point is that
there exists a neighborhood N of x =0 such that for each £ €N there is

a function of time ug(') defined on [0,%) such that the solution of (%)
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with initial condition x(0) =& and control u(*) =u£(') goes to zero as

t goes to infinity.

Proof: This condition is clearly a necessary one since solutions

starting near an asymptotically stable equilibrium point must approach
it as t goes to infinity. To see that this condition is sufficient
one observes that Range (B,AB,...,An-lB) is an invariant subspace for

A and by change of basis (*) can be written as

11 u,...,A;IlBu) = dim X Clearly the eigenvalues of

must have negative real parts if 3 is to go to zero as t goes to

with Range (Bu’A

A
22
infinity. On the other hand, it is well known and easily proven that

if (B,AB,...,An—lB) is of rank n then there exists an m by n matrix K

such that (A+BK) has its eigenvalues in the open left half-plane.
The remark then follows.

The rank condition just mentioned is necessary and sufficient for
x=Ax +Bu to have a certain controllability property. If for any given

pair x., and X, and any given T >0, there is a control u(+) defined on

1

[0,T] such that u(*) steers (*) from x, at t=0 to x, at t=T we say

1 2
that the control system (*) is controllable. The rank condition is
necessary and sufficient for controllability in this sense. A short

summary of all this reads as follows. The null solution of (*) is

stabilizable if and only if all the modes associated with eigenvalues

with non-negative real parts are controllable.

It is, in view of this background, not completely unreasonable to

hope that for nonlinear systems such as
x = +3
e f(x) uigi(x)

something similar might happen. A specific question in this direction
is, "If every initial state in a neighborhood of X can be steered to
X by a control defined on [0,®) does there necessarily exist a feed-
back control law which makes X, asymptotically stable?" 1In this paper
we show that the answer is no provided that we want a control law with

some smoothness. In general we need something more than just a
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controllability condition since, as we will see, the controls which
steer the trajectors to zero cannot always be patched together in a

smooth way.

We mention one more well known fact. If we have
x = £(x,u) ; £(0,0) = 0

with f(*,*) continuously eifferentiable with respect to both arguments,

and if we define A==(8f/8x)o and B = 3f/du, then the control system
).(=Ax+Bu

is called the linearized system at (0,0). If the linearized system
satisfies the condition Rank (B,AB,...,An—lB)==n then there exists a
linear control law u=Kx such that A+BK has its eigenvalues in the
open left half-plane. Moreover, if we recall that x =f(x) with ) =0
has 0 as an asymptotically stable equilibrium point provided the
eigenvalues of (9f/0x) have real parts which are negative, then we see
that feedback stabilization is possible for §==f(x,u) provided the
linearized system is controllable. In view of the previous discussion
this can be stated still more precisely. There exists a stabilizing

control law for §==f(x,u) with £(0,0) =0 provided the unstable modes of

the linearized system are controllable and there exists no stabilizing

control law if the linearized system has an unstable mode which is

uncontrollable. The negative result here depends on the well known

result of Liapunov asserting that an equilibrium point is unstable if
(3f/9x) at that point has any eigenvalue with a real part which is
positive.

From these remarks we see that insofar as local asymptotic
stability is concerned, the only difficult problems involve cases where
(3f/3%) has eigenvalues on the imaginary axis which correspond to
uncontrollable modes of the associated linearized systems and all
other uncontrollable modes of the linearized system correspond to
asymptotically stable behavior. In the study of stability, the cases
where (5f/9x) has one or more eigenvalues with a real part which

vanishes at the equilibrium point are called critical cases. The

study of the critical cases is still far from complete. (See, e.g. the
remarks of Armold in [ 5], page 59). We are then, in this paper,

primarily concerned with understanding certain features of the critical.
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cases.
The following theorem gives a necessary condition for the exis-

tence of a stabilizing control law which, under (i) and (ii) summarizes

our previous discussion and in (11i) introduces a new element which

is decisive as far as large class of problems, including the second

example of the introduction, are concerned.

Theorem 1: Let §==f(x,u) be given with f(xo,O) =0 and f(+,*) conti-
nuously differentiable in a neighborhood of (xo,O). A necessary
condition for the existence of a continuously differentiable control

law which makes (xo,O) asymptotically stable is that:

(i) the linearized system should have no uncontrollable modes

associated with eigenvalues whose real part is positive.

(ii) there exists a neighborhood N of (xo,O) such that for each
£ EN there exists a control ug(') defined on [0,%) such
that this control steers the solution of §==f(x,u£) from

x=£ at t=0 to x=x_ at t=w=,
(iii) the mapping
Y : AR+ R"

defined by v : (x,u) b— f(x,u) should be onto an open set

containing O.

Proof: We prove the necessity of (iii), the necessity of (i) and (ii)
having been explained above. If X is an equilibrium point of ;==a(x)
which is asymptotically stable we know from the work of Wilson [6] that
there exists a Liapunov function v such that v is positive for xaéxo,
Vf?ishes at X is continuously differentiable, and has Eivel sets

v " (o) which are homotopy spheres. The compactness of v (a) implies
that there exists o and € >0 such that on v_l(a), ]fav/axt{ <1/€ and
<ov/dx,a(x)><-€. This implies that if [1€]| is sufficiently small the
vector field associated with §:=a(x)-+£ points inward on v-l(a).

By evaluating at time t =1 the solution of §==a(x)‘+€ which passes
through x at t =0, we get a continuous map of {xkv(x)é(l} into itself.
Applying the Lefschetz fixed point formula we see that this map has a
fixed point which must be an equilibrium point of x=a(x) +¢&.
Alternatively, we could use a version of the Poincaré—Hopf Theorem
which applies to manifolds with boundary (see [7], page 41) to finish

off the proof. This, in turn, implies that we can solve a(x) = ¢
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for all £ sufficiently small. Now if

a(x) = f(x,u(x))

is to have x_ as an equilibrium point, and if X, is to be asymptotically

stable, it is clearly necessary that &= f(x,u) be solvable for £ small.
Remark: If the control system is of the form
x = £(x) +Tug (x) 5 x(©) ENcR"
then condition (iii) implies that the stabilization problem cannot have
a solution if there is a smooth distribution D which contains f(*) and
gl('),...,gm(°) with dim D <n. One further special case: If we have
x = Zuigi(x) ; x(t) ENcR"
with the vectors gi(x) being linearly independent at X then there

exists a solution to the stabilization problem if and only if m=n.

In this case we must have as many control parameters as we have

dimensions of X. Of course the matter is completely different in the

set {gi(xo)} drops dimension precisely at X - In this sense, distri-
butions with singularities are the only interesting kind.

Remark: There is no stabilizing control law for x=u, y=v, z=XV-yu.
This system satisfies conditions (i) and (ii) of the theorem, but it

#
fails to satisfy condition (iii).

4. Existence of Stabilizing Control Law

As mentioned above, in the study of asymptotic stability of the
null solution of i==f(x) ; £(0) =0 one singles out for special attention

the critical cases, i.e. those for which (3f/3x) has an eigenvalue with

a zero real part. Liapunov showed that in a noncritical situation
there always exists a quadratic function whose derivative is negative
definite in a neighborhood of zero. In fact, it may be chosen so
that the derivative has a leading term which is a negative definite
quadratic form. In such cases, be they stable or unstable, there

exists in a neighborhood of 0 a function v{(x) such that <3v/9x,f(x)>
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is negative for x# 0 and which has the further property that it remains
negative definite for some reasonable class of perturbations.

Consider the control system }.(=f(x,u) with f(xo,O) =0. We will

say that this system has finite gain at X, if there exists a function
v(*) mapping a neighborhood of x, into R such that v(x,) is 0, v(x) >0

for x#xo and for some k
<3v/9x, f(x,u)> € -d(x) +k<u,u>
with ¢(x) >0 and O only when x = X,

Remark: Note that if ¢ is continuously differentiable with £(0,0),
fx(0,0) and fu(0,0) all zero then

X = Ax +Bu + f(x,u)

has finite gain at zero provided the eigenvalues of A have negative
real parts. (We can take v(x) =x'Qx with QA+A'Q=-1I.) More
generally, if x = f(x) has zero as an asymptotically stable equilibrium
point then ;(=f(x) +ug(x) has finite gain at zero provided that there
exists a Liapunov function v(x) for ;:=f(x) whose rate of decay
satisfies v é—Mvp+2, M>0, with <’\7v,g>/vp/2 bounded in a neighborhood
of (0,0). To establish this last assertion we note that setting

28 = <Vv,g>/v allows us to write

voul [P 5] (v
<Vv,f(x)+ug(x)>—ku2 <
!B -kJ |u

and this quadratic form can be made negative definite by taking k

large enough.
We now use this definition to study stability in some critical

cases.
Lemma: Consider the coupled differential equations

Ax +By + g(x,y)

Moe
It

h(x,y)

e
1]
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with g(*,*), h(*,°*), gx(-,-) and gy(-,*) all continuous in a neighbor-
hood of (0,0). Suppose that the eigenvalues of A have negative real
parts and suppose that g, h, 8y and gy all vanish at (0,0). Let Y be
the continuous solution of AY(y) +By+g(Y(y),y) =0 which vanishes at
y=0. Then this pair of equations has (0,0) as an asymptotically
stable critical point provided }.r=h(u—\p(y),y) has finite gain at y=0.

Proof: Change variables according to x=x-y(y), y=y. Then

4
dt

X = AX+AY(Y) +BY + g(xHp(¥), )

AX + gAY (M, -8 X,

AX+2(%,Y)

where E not only vanishes together with its first derivatives at x=0.

3;.: 0 but, in fact, vanishes when X=0. We have, then

T Ax +g(x,y)
435 hEvE®,D
dt ’

Let n be the Liapunov function which establishes the finite gain

property for the ; equation. Using the Liapunov function

v(x) = oc';'Q;(l+ n(';;)

where QA +A'Q=-1, we compute

v = —(1<X,X> +<QX,8(;,Y)>

+ <Vn,h(x-¥(¥),¥)

Since g(;,y) is second order and vanishes when x does u<;,;>
dominates the second term and by virtue of the finite gain hypothesis,
the left-hand side is negative definite for a sufficiently large.
Asymptotic stability then follows from standard Liapunov arguments.

Notice that the effect of this lemma is to reduce the study of
the stability problem to the study of a lower dimensional problem (the

y equation) by elimination of the "uninteresting" noncritical part.
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This can also be interpreted in terms of time scales. The solution of
the X part goes quickly to zero whereas the ')7 represents motion which

occurs much more slowly in the manifold defined by x=0.

Remark: If there exists a control law which makes x=0 an asymptoti-

cally stable equilibrium point for
x = Ax +3Bu

then there exists a control law which makes x, an asymptotically
stable critical point, provided Axo+Buo= 0 can be solved for u - In
fact, if u=Kx makes x=0 an asymptotically stable equilibrium point
then u=Kx+uo makes x, an asymptotically stable equilibrium point.

Thus if x=0 can be made asymptotically stable then there is a whole

subspace U= {X!Ax€ Range B} of points which can be made asymptotically
stable. Incidently, in view of part (iii) of theorem 1 we see that we
can apply Sard's theorem to conclude something similar for x= f(x,u).
Namely, if there exists a feedback control law which makes x=0
asymptotically stable then for some neighborhood N1 of x=0 and some
neighborhood N of x=0 for all EENl, except a possible set of measure
zero, {(x,u)|f(x,u) =£}NN defines a manifold in (x,u) space.

The idea behind the following theorem is that it makes sense to
divide up the question of finding a stabilizing control law into two
parts, one being the choice of a slow mode behavior which is asymp-

totically stable on a submanifold and the other being the choice of a

linear control law to drive the system to- the slow mode regime.

Theorem 2: Let f and g be continuously differentiable in a neighbor-
hood of (0,0,0), and suppose they vanish at (0,0,0) together with

their first derivatives. A sufficient condition for

»
1

Ax + Fy + Bu+ f(x,y,u)

<
L]

Gy + g(x,y,u)

to be stabilizable at (0,0,0) is that there exist a pair (K,uo(')) such
that A+BK has its eigenvalues in the open left-half-plane and for

Y the continuous solution of (A+BK)y(y) +Fy+Buo(Y) + (Y (y) ,Y,UO(Y)

+ KY(y)) =0 which vanishes at 0

U s

e

P A RS, PR
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y = Gy +g(x-(y),y,u, (Y)HKY(G))

has a finite gain at (0,0) with x regarded as the input.

Proof: This is an immediate application of the lemma with u being
taken to be Kx-fuo(y).

Remark: To apply this to the first example of the introduction,

;<=u; }.r=v; é-xy, we let u=-x+2, v=-y-zz. The slow mode equation is
. 2

then z =--z3+>t:22 -y2 -xy and n(z) =z shows that this equation has

finite gain at O.
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