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Abstract— In this paper we motivate the need for an algo-
rithmic solution to the problem of segmenting and representing
vector-valued functions of time with the goal of identifying a set
of standard parts which can be used as the basis for a efficient
description of an entire family. We motivate the use of such an
approach in a feedback control context where one can use such
efficient descriptions together with concatenation and scaling
operations to generate quite general trajectories. Our results
include a procedure for jointly specifying feedback gains and
open-loop controls leading to the definition of efficient motion
control languages.

I. I NTRODUCTION

In [1] we gave a mathematical definition of attention
suitable for use in a control context and discussed its use
as a means to establish a trade-off between the quality of
the trajectories and the cost of implementing the control law.
In this paper we build on these ideas, now turning more
specifically to problems arising in robotics. More specifically,
there is a growing literature devoted to the theory and ex-
perimental results concerned with motion control languages.
These languages go beyond the basic pick and place robotic
languages developed in the 1970’s in that they incorporate
the capability of scheduling feedback gains as an integral
part of the language. Reference [2] is an early paper in this
direction. More recent results appear in the work done at
Maryland [3] and Berkeley [4]. In their most primitive forms,
these languages steer systems of the form

ẋ = f(x) + g(x)u

using strings of triples of the form(u, k, T ) which cause the
system to follow trajectories that satisfy

ẋ(t) = f(x(t)) + g(x(t))k(x(t)) + g(x(t))u(t)
; ti ≤ t ≤ ti + T.

The motivating force behind this development is based on
the observation that the use of such languages allows one to
rein in the complexity associated with specifying trajectories
in a high dimensional space while achieving a degree of ro-
bustness with respect to the effects of environmental change.
However, part of the preliminary work required to make
good use of this approach is the construction of a suitable
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“dictionary” of such triples. In a biological setting it might
be argued that suitable families of these(u, k, T )’s would
be learned from trial and error. In an engineering setting it
is possible to reason in a similar way. We envision an off
line algorithm which analyzes successful paths, originally
generated from a variational principle or a human operator,
with a view toward finding simpler description through
smoothing and merging segments. The specification of such
procedures is the subject of this paper.

Of course segmentation is an important part of the anal-
ysis of signals arising in other areas such as speech and
video. In speech it has been studied using hidden Markov
models; in computer vision, where there is a somewhat
less universal and/or clear performance measure, a variety
of techniques have been used. In all cases the goals are
similar; simplify through segmentation and tokenization. The
techniques investigated here can be thought of being in
the spirit of Grenander’s treatise,General Pattern Theory
[5]. Important steps in learning the suitable primitives for
describing a language involve merging and parsing of an ob-
served sequence into segments. We propose one such parsing
algorithm here. Our basic approach could be described as a
modified principal components algorithm in which we allow
a warping of the time axis along with the usual projection
onto maximal energy subspaces.

II. M INIMAL ATTENTION AND THE L IOUVILLE

EQUATION

Associated with the control model

ẋ = f(x) + ug(x)

is a second evolution equation, the linear partial differential
equation

∂ρ(t, x)
∂t

= 〈∇, (f + ug)ρ(t, x)〉.

This is usually called the Liouville equation. If we letρ(0, x)
be a distribution of initial conditions onx, then the value of
ρ at timet gives the corresponding distribution at timet. For
example, ifx has an initial distribution of values defined by
ρ0(·) and if x satisfies the linear equation

ẋ = Ax + bu

then the solution of the Liouville equation is

ρ(t, x) =
1

etrAt
ρ0

(
e−Atx−

∫ t

0

eA(t−σ)bu(σ)dσ

)
.



One interpretation is to think ofρ as being a probability
distribution evolving in time under the deterministic flow
defined byẋ = f(x) + g(x)u. This is consistent with the
observation that the Liouville equation is just the Fokker-
Planck equation for the Itô equation

dx = (f(x) + g(x)u)dt + b dw

with b set equal to zero. However, in principle, there is
nothing stochastic about the Liouville equation.

For our purposes it is significant that the Liouville equa-
tion, like the Fokker-Planck equation, is sensitive to the
distinction between expressingu in open loop form verses
expressing it in somex-dependent way, even though the
solution of the ordinary differential equatioṅx = f(x) +
g(x)u for a single initial condition is indifferent to such a
change.

With this background and notation we can consider the
problem of choosing a control law foṙx = f(x) + ug(x)
which is easy to implement in the sense that it makes only
modest requirements on the sampling rate and is insensitive
to quantization errors in the data paths. As in [1], we propose
to capture these ideas using an attention functional of the
form

ηa =
∫

[0,∞)

∫
Rn

La

(
∂u

∂t
,
∂u

∂x

)
dx dt.

Specific choices of interest include the family

ηa =
∫

[0,∞)

∫
Rn

a

(
∂u

∂t

)2

+ b

(
∂u

∂x

)2

dx dt.

In order to assure that the trajectories will be well behaved,
we include in the performance measure a more conventional
trajectory dependent term of the form

ηp =
∫

[0,∞]

∫
Rn

Lp(x, u) ρ(t, x) dx dt.

Because we want the feedback control law to work for a
range of initial conditions, we postulate a density of initial
conditionsρ0(x) which evolves according to the Liouville
equation given above.

As contrasted with a standard optimal control problem
formulation we can make the following points:

1) The cost of control law implementation and the distinc-
tion between open and closed loop implementations is
captured by this formulation.

2) The addition of a penalty on the sizes of the partial
derivatives ofu will make the solutions less sensitive
to changes caused by approximate implementations
involving sampling and quantization.

3) On the negative side, we must now deal with an evolu-
tion equation that is a partial differential equation, even
though the individual trajectories for the system under
consideration are described by an ordinary differential
equation.

III. O PEN LOOP VERSESCLOSED LOOP

As discussed in the introduction, an important element of
the motion description languages under discussion here is the
fact that the motion is being described using feedback. The
purpose of the feedback term is to simplify the description of
the control and to give the system the ability to adjust to the
environment. It is essential in most situations to constrain the
set of possible feedback laws because of limitations on the
gain or a desire for stability. The constraints on the open loop
part of the control can be more directly determined by the
desire for a simple description. This suggests the following
class of problems.

The Optimal Segment Specification Problem:Given a
system ẋ = f(x, u) ; y = h(x) and given a class of
admissible feedback control laws,K, find k ∈ K and v
such that the solution oḟx = f(x, k(x) + v) generates
a pre specified desired trajectory on[Ti−1, Ti] and ||v̇|| is
minimized.

The following lemma describes a setting in which the
splitting of the control into a feedback term and an open
loop term can solved algorithmically.

Lemma: Suppose we are given am-input, m-output
controllable, observable and invertible linear system

ẋ = Ax + Bu ; y = Cx

and an admissible class of feedback controls of the form
k(x) = K(x − x0) with K coming from a convex set̂K.
Then given a desired outputyd(·) defined on[Ti, Ti+1] which
can be achieved through choice of a differentiable inputu,
the choice of(K, x0, v) that generates the desired trajectory
while minimizing

γ =
∫ Ti+1

Ti

∥∥∥∥ d

dt
(u−Kx−Kx0)

∥∥∥∥2

dt

can be found by solving a finite dimensional convex pro-
gramming problem.

Proof: Notice that because the linear system is invert-
ible, there is a unique input tȯx = Ax + bu that achieves
the trajectory and there is a unique state trajectory as well.
Thus if we express the control asu = K(x − x0) + v we
can writeγ as

γ =
∫ Ti+1

Ti

||u̇−Kẋ||2dt

Because bothu andx are known, we can integrate to get a
functional of the form

γ = a + trKB + tr(KQK)

with K constrained to a convex set.



IV. M ODIFIED PRINCIPAL COMPONENTANALYSIS

Having an algorithm to minimize the attention require-
ments over a single segment of the motion, we can now turn
to the problem of finding clusters of language elements with
a view toward simplifying the dictionary when this will not
lead to a loss of expressiveness. To this end we investigate
a suitable modification of principle component analysis.

In the usual approach to principal component analysis one
begins with a fixed inner product space and a collection of
vectors in that space. Assuming that the vectors have sample
mean zero, one forms the sample covariance matrix

W =
1
n

n∑
i=1

xix
T
i

and finds the eigenvectors and eigenvalues ofW . Because the
eigenvalues of a symmetric, nonnegative definite matrix are
all real and nonnegative, we can arrange the eigenvalues in
order,λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0. We can expand each of the
x’s in terms of the corresponding normalized eigenvectors,
which we denote byf1, f2, ..., fn,

xi =
n∑

i=1

aijfj

If the eigenvalues are all about the same size, ignoring the
contribution of any one of the eigenvectors will result in a
significant error. On the other hand, if one or more of the of
the eigenvalues are much smaller than the others, then we can
drop their contribution to the expansions without introducing
a large error. More precisely,

n∑
i=1

||xi −
n′∑

i=1

aijηj ||2 ≤
n∑

i=n′+1

λi

Recalling that the eigenvalues are assumed to be arranged in
decreasing order, we introduce the quantity

m =
1∑
λi

n∑
i=1

iλi

to measure the rapidity with which the sequenceλ1 ≥ λ2...
falls off. Clearly 1 ≤ m ≤ n(n + 1)/2, with the lower limit
corresponding to the caseW has only one nonzero eigenvalue
and the upper limit corresponding to the case where all the
eigenvalues are equal. We refer tom as thefirst moment
of the eigenvalue sequence. Clearly it measures some kind
of average performance associated with the entire range of
trade-offs one might make between accuracy and complexity.
Obviously the main interest in principal component analysis
comes from the situations in whichm/n is small.

Principle component analysis often fails even on data with
apparent common features because of an inability to align
the samples. This is particularly true when it is applied in a
function space setting. In contemplating its use in clustering
(u, k, T ) elements, this is particularly true because there is no

aprori choice of the time interval. The following refinement
of PCA is sometimes of interest. Let{xi} be as above and let
G be a Lie group. Letφ : G×Rn → Rn be a group action. By
the PCAφ problem, we understand the problem of finding a
sequence ofG’s, G1, G2, ...Gm such that the first moment as-
sociated with the vectorsφ(G1, x1), φ(G2, x2), ...φ(Gn, xn)
is as small as possible. Some aspects of this are similar to
the work in [6].

The PCAφ Algorithm: Given the collection{xi}, define

W{Gi} =
n∑

i=1

φ(Gi, xi)φT (Gi, xi)

Starting with all theGi set equal to the identity element
of G, chooseG1 such thatm(W{Gi}) is minimized. Repeat
with G2 and continue, cycling through the entire set with
successive adjustments to minimizem(W{Gi}). Clearly m
remains the same or decreases at each step. It is bounded
from below and so repeated cycling leads to a stationary
point which is a local minimum.

Notice that this procedure works directly with the sam-
ple variance and does not require the identification of the
coefficients of expansion. It also does not require an aprori
choice as to how many principle components will be used
in the final expansion. This can be decided after the optimal
G-scaling has been done.

The set of differentiable monotone increasing functions
mapping the interval[Ti−1, Ti] into itself form a group under
composition. Thus the following problem fits into the class
described above.

The Optimal Warping Problem: Suppose that we have
n functions,{xk(·)} defined on[0, T ]. Find a collection of
n monotone increasing functions{φk} that map[0, T ] into
itself and have the property that the mean of the sample
variance matrix is minimized.

Remark: It would be desirable to have an algorithm for
solving versions of the PCAφ problem in which the cost
function included terms that penalized the group elements in
proportion to their distance from the identity. In the optimal
warping problem one might incorporate the penalty term

η =
∫

(φ(1)(t)− 1)2dt ≤ ε

V. THE SYNTHESIS

We have argued that the use of complex systems in
complex environments can be made more practical by the use
of suitable motion description languages. At the highest level,
the system is conceptualized as a transducer that accepts
symbolic descriptions of the tasks to be done and then
complies these into detailed control laws. The compilation
process involves identifying a suitable segmentation of the
trajectories and the identification of a splitting of the indi-
vidual control laws into an open loop and closed loop pieces.
Because we want to keep overall operation as simple as
possible, it is important to incorporate a complexity penalty



at each stage of the optimization. The use of attention min-
imization is designed to achieve this goal. The elements of
the motion description language are to be found empirically.
Based on human generated, or off line computed, desirable
trajectories, we propose the use of a scalable version of
principle component analysis to identify suitable building
blocks of the language. Experimental work incorporating
aspects of this program will be reported in future papers.
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