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Abstract— The usual application of feedback stabilization is
based on linearization and the assumption of linear controlla-
bility. Least squares optimal control is often used to determine a
set of feedback gains that will stabilize the system. In addition
to the commonly acknowledged challenges arising when this
methodology is applied to open-loop unstable systems with sig-
nificant nonlinearities, there are also significant problems which
are not given prominence in the literature. These include the
role of high gain feedback in exciting vibrations in unmodeled
modes and the possibility of lightly damped oscillatory modes
accentuating the effect of the nonlinearities. In this paper we
report some experimental results relating to these points and
suggest some techniques for dealing with them.

I. I NTRODUCTION

This paper describes an experimental effort concerned with
the stabilization of a rotary double link pendulum. This
problem, and several related ones, has a long history going
back several decades. In the literature the name of Furuta
stands out because of his early interest in these problems
and the steady stream of experimental results reported by
his group [2], [5], [1]. Our approach differes from those
previously reported not in terms of the basic form of the
mechanics, but rather in terms of important aspects of the
experimental apparatus. Most notably, we are working with
a system with the following attributes:

1) All measurement signals are transmitted over a wireless
link delivering 50 samples per second. This removes
the need for wires connecting the moving parts to a
fixed platform but introduces some latency in the data
path and limits the sampling frequency.

2) The apparatus is light weight and has low inertia. This
results in a structure with low stiffness and a tendency
to vibrate.

3) The motor is a low torque, completely integrated
amplifier/motor/controller unit rather than a high per-
formance direct drive motor. This makes it necessary
to design around the possibility of torque saturation.

In attempting to further develop the rotary link double
pendulum stabilization technology, several challenges present
themselves. The principal ones are.

1) The emergence of vibrational modes associated with
unmodeled dynamics associated with the elasticity of
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the structure.
2) The problem of avoiding high feedback gains which

can lead to torque saturation, noise amplification, and
undesirable vibration.

3) A reduction in the size of the domain of asymptotic
stability.

The general problem of stabilization via feedback has
received considerable attention in both a linear and nonlinear
context. Indeed, one of the central questions in classical
control theory is the problem of avoiding instability in
feedback systems. In this paper we are concerned with the
problem of designing a control law that provides an adequate
domain of attraction for a nonlinear problem of the form

ẋ = f(x) + g(x)u

under the hypothesis thatf(0) = 0 ; g(0) 6= 0. We assume
that f and g are smooth functions and that the linearized
system is controllable. Such questions are widely studied
in the literature, being motivated by a variety of concrete
problems including experimental work on stabilizing various
types of open loop unstable mechanical systems.

Because we assume that the linearization of the system at
x = 0 is controllable, in theory there always exists a linear
control law that stabilizes the null solution. Moreover, there
exists a change of coordinates valid in a neighborhood of the
origin that makesg equal to a constant vector so we can carry
out the first step in the feedback linearization procedure.
A precise question along these lines can be formulated as
follows.

Linear Feedback Stabilization Problem:Given a system
of the form ẋ = f(x) +G(x)u with f(0) = 0 andg(0) 6= 0,
find the linear time invariant control lawu = Kx such that
the null solution ofẋ = f(x) + G(x)Kx is asymptotically
stable and the domain of attraction of 0 is as large as possible
in the sense that it contains a ball of the form||x|| ≤ a with
a maximal.

II. A H IERARCHY OF MECHANICAL SYSTEMS

Our ultimate goal is to shed further light on the problem
of enlarging the domain of attraction for nonlinear control
systems. The platform that we use for the experiments to
be described later consists of a horizontal link, driven by a
servo motor, and two vertical links that moves freely in the
plane perpendicular to the horizontal link, as shown in Fig. 4.
Both this type of system and several other simpler mechanical



systems have been extensively studied in the literature. In
order to maximize the usefulness of this paper and to put
our results in a broader context, we compare this system with
a general version of the well known ball and beam system
and the double pendulum on a cart system. We will see that
these form a progression with the ball and beam being the
least complex, the double pendulum being of intermediate
complexity and the rotary pendulum being the most complex.
For more about classical mechanics, see Whittaker [4].

A. The Ball, Beam, Cart

This is the least complicated system in our hierarchy.
Consider the system ball and beam on a cart as shown in
Fig. 1. The kinetic energy is

K = 1
2m5[(ẋ5 + ẋ1 cosx3)2 + (x5ẋ3 − ẋ1 sinx3)2]

+1
2I5( ẋ5

r5
− ẋ3)2 + 1

2m3ẋ
2
1

+1
2I3ẋ

2
3 −m3l3ẋ1ẋ3 cosx3

Wherex5 is the position of the center of the ball relative
to the joint of the beam.r5 is the radius of the ball.x3 is
the angular position of the beam.x1 is the position of the
cart. All xi’s are on the same vertical plane.m3, m5, I3,
andI5 are the mass and momentum of inertia of the ball and
beam respectively. We assume to have direct control over the
acceleration of the cart, i.e.,̈x1 = u. The potential energy is

V = m5gx5 sinx3 +m3gl3 cosx3.

The Euler-Lagrange equations take the form

F (x)ẍ+G(x, ẋ) + V (x) = ub(x)

with x = [x1, x3, x5]T
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Fig. 1. Ball, Beam, Cart

Linearization of the Ball-Beam on Cart

Fẍ+ V x = ub

with
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Transfer functionG(s) from u to x can be most easily
obtained from the linearization in second order form,

Fs2X(s) + V X(s) = U(s)b

This yields the transfer function

G(s) =



1
s2

p22s
2 + p20

q4s
4 + q2s

2 + q0

p32s
2 + p30

q4s
4 + q2s

2 + q0


with

p22 = −m5r5I5 +m3l3(m5r
2
5 + I5)

p20 = −m2
5r

2
5g

p32 = −m5r
2
5(I3 + I5) +m3l3I5

p30 = 2m3m5l3r5g

q4 = m5r
2
5(I3 + I5) + I3I5

q2 = 2m5r5I5g −m3l3g(m5r
2
5 + I5)

q0 = −m2
5r

2
5g



B. Cart with the double pendulum

The coupled equations of motion that describe the dynam-
ics of the pendulum, as shown in Fig. 2, are described by
the Euler-Lagrangian equation

F (θ)θ̈ +G(θ, θ̇) + V (θ) = ub(θ)

with θ = [θ1, θ2, θ3]T

F (θ) = 1 0 0
0 I2 +m3L

2
2 m3l3L2 cos(θ2 − θ3)

0 m3l3L2 cos(θ2 − θ3) I3



G(θ, θ̇) =

 0
m3l3L2θ̇

2
3 sin(θ2 − θ3)

−m3l3L2θ̇
2
2 sin(θ2 − θ3)



V (θ) =

 0
−(m2gl2 +m3gL2) sin θ2

−m3gl3 sin θ3


andb(θ) is given by

b(θ) =

 1
−(m2l2 +m3L2) cos θ2

−m3l3 cos θ3


WhereI2 andI3 are the moments of inertia of link 2 and link
3 with respect to their jointsp2 and p3 respectively.L2 is
the length of link 2, whilel2 andl3 are the distance from the
center of mass to their joints of link 2 and link 3 respectively.
In this problem, we can directly control the acceleration
of the motor. Thus the motor equation is simply a double
integratorθ̈1 = u. Its linearization is identical to the rotary
double pendulum as describe in the following subsection if
the motor positionθ1 is replaced byL1θ1.
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Fig. 2. The double pendulum on a cart

C. Rotary Double Pendulum

The coupled equations of motion that describe the dynam-
ics of the pendulum, as shown in Fig. 3, are described by
the Euler-Lagrangian equation

F (θ)θ̈ +G(θ, θ̇) + V (θ) = ub(θ)

with θ = [θ1, θ2, θ3]T

F (θ) =

 1 0 0
0 I2 +m3L

2
2 m3l3L2 cos(θ2 − θ3)

0 m3l3L2 cos(θ2 − θ3) I3


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

V (θ) =
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−(m2gl2 +m3gL2) sin θ2

−m3gl3 sin θ3


andb(θ) is given by

b(θ) =

 1
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−m3l3L1 cos θ3


Where
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1
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2
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I2 and I3 are the moments of inertia of link 2 and link 3
with respect to their jointsp2 andp3 respectively.L1 andL2

are the length of link 1 and link 2, whilel2 and l3 are the
distance from the center of mass to their joints of link 2 and
link 3 respectively. In this problem, we can directly control
the acceleration of the motor. Thus the motor equation is
simply a double integrator̈θ1 = u.

Associated with this nonlinear model is its linearization
aboutθi = 0, θ̇i = 0 The corresponding terms are given by

F θ̈ + V θ = ub

with

F =

 1 0 0
0 I2 +m3L

2
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0 m3l3L2 I3



V =
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0 −(m2gl2 +m3gL2) 0

0 0 −m3gl3
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Fig. 3. The Rotary Double Pendulum
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The transfer function fromu to θ is

G(s) =
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III. L INEARIZATION IN A NEIGHBORHOOD

If f(0) = 0 then the linearization of

ẋ = f(x) + g(x)u

aboutx = 0 to get

δ̇ =
∂f

∂x

∣∣∣
0
δ + g(0)u

leads to theorems on local controllability and, via least
squares theory, to feedback control laws resulting in asymp-
totic stability. However, in this case there are many stabilizing
control laws and if the goal is to design a controller that will
have a large domain of convergence, conventional lineariza-
tion may not provide the best solution. Here we develop an
alternative which we have found effective in controlling the
rotary double pendulum.

Let Ω represent an open set inRn that contains 0. If we
wish to find a matrixA such thatAx approximatesf on the
setΩ then we might chooseA so as to minimize

η1 =
∫

Ω

||f(x)−Ax||2dx

Of course ifΩ is very small the minimizing value ofA will
be close to∂f∂x

∣∣∣
0

but if Ω is large it can be expected to be
rather different. If we work with the Euclidean norm then
the optimal value ofA is easily seen to be

A∗ =
∫

Ω

f(x)xT dx
(∫

Ω

xxT dx

)−1

However, the possibility exists for improving the accuracy
of this approximation through the use of feedback. Consider
a refinement of the above procedure in which we select both
A and a feedback functionα so as to minimize

η =
∫

Ω

||f(x)− α(x)g(x)−Ax||2dx

In this case we can see that for a given value ofA the best
choice ofα is the choice that cancels the errorf(x) − Ax
in the direction ofg. This is given by

α(x) =
〈f(x)−Ax, g(x)〉
〈g(x), g(x)〉

Thus the best value ofA minimizes

η =
∫

Ω

||f(x)− 〈f(x)−Ax, g(x)〉
〈g(x), g(x)〉

g(x)−Ax||2dx

Thus we can characterizeA implicitly by the linear equation
in A,

A∗
(∫

Ω
xxT dx

)
=
∫

Ω

(
f(x)− 〈f(x)−A∗x, g(x)〉

〈g(x), g(x)〉 g(x)
)
xT dx

Thus

A∗
(∫

Ω

xxT dx

)
= M +

∫
Ω

(
〈A∗x, g(x)〉
〈g(x), g(x)〉

g(x)
)
xT dx

This equation does not necessarily have a unique solution
but the optimal value ofAx− α(x)g(x) is unique.

For the rotary double pendulum it is possible to “regular-
ize” the drift vector fieldf through of a preliminary feedback
as described here. In our experiments, this was an essential
step in arriving at a stable system.



IV. T HE HIGH GAIN DILEMMA

A major source of difficulty in achieving stability for the
rotary double pendulum to be described below is the possibil-
ity of oscillations corresponding to unmodeled dynamics. For
our system these are generally in the range of 6 to 8 Hz. and
are strongly destabilizing. It was observed experimentally
that these oscillations could be avoided if the gains could
be kept low. Sepulchre has several interesting examples on
the high gain dilemma [3].

However, when stabilizing open loop unstable systems
there are limitations on how low the gains can be. Letting
p(s) = det (Is − A), the effect of the feedback term
is to replacep(s) by p(s) + q(s). Suppose thatp(s) =
sn + pn−1s

n−1 + ... + p0 has real coefficients and that we
want to find the “smallest” polynomialq(s) = qn−1s

n−1 +
qn−2s

n−2 + ... + q0 such thatp(s) + q(s) has all its roots
in the left half-plane. Because the different entries inq have
different units we adopt a flexible characterization of size.
involving a scaling vectorα. Consider

|q|α =
∑

αi|qi|

with with the components ofα being positive numbers.
Recall that for a lossless mechanical systems,p(D) is

automatically an even function ofD.
Fact 1: p(s) is Hurwitz if and only if the zeros ofpe(s) =

(p(s) + p(−s) and the zeroes ofpo(s) = p(s) − p(−s) are
purely imaginary and interlace.

Fact 2: p(s) is Hurwitz with all roots real and negative
if and only p(s2) has all its roots on the imaginary axis. If
this is the case, and ifp′ denotes the derivative ofp then
p(s2) + p′(s2) is Hurwitz.

Example: Consider the polynomials2(s4−3s2+2). What
polynomials can we add to this to get a polynomial that has
all purely imaginary roots? Consider addingas4 + bs2 + c.
Conditions on the coefficients are

i)a− 3 ≥ 0 ; (a− 3)2 − 4b− 8 ≥ 0

Possible solutions includea = 3, b = −2 (minimal for
αi = 1 for all i’s) andb = −1, a = 3 +

√
6, etc.

This analysis shows that there is a lower bound on the
minimum gain required to stabilize an unstable mechanical
system and that this can be characterized in terms of the
determinantal polynomial.

V. EXPERIMENTAL RESULTS

The platform that we use for the experiments consists of a
horizontal link, driven by a servo motor, and two vertical
links that moves freely in the plane perpendicular to the
horizontal link, as shown in Fig. 4. system thus provides
us with enough bandwidth for controlling the pendulum.
In order to measure the position of the vertical links, a
rotary electric encoder is mounted on each of the joints. The
encoder measures the absolute angular position (instead of
incremental) and outputs analog signals. Then each analog

Fig. 4. The experimental setup

signal is converted into12bits binary and then sent to the host
computer through a RS232 radio link. The radio link can send
50 readings of both the encoders per second which limits
the sample frequency of the whole system to50Hz. Each
encoder has accuracy of.04deg. The base of the pendulum
is leveled with an error of.06deg.

We want to stabilize the pendulum at its inverse position.
If we let x = (θ1, θ̇1, θ2, θ̇2, θ3, θ̇3), the linearized system
equations become

ẋ = Ax+ bu,

The parameters we used in the double pendulum setup:

g = 9.81; gravitation constant
L1 = 0.32; L2 = 0.264;

m2l2 = −0.0042; m3l3 = 0.0023; m3 = 0.0795;
I2 = 0.0241; I3 = 7.5642× 10−4.

Thus at its inverse position,x = 0,

A =


0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 5.6491 0 −0.6213 0
0 0 0 0 0 1
0 0 −4.5347 0 30.3274 0



b =


0
1
0

−0.1640
0

−0.8414


The open loop transfer function is

G(s) = C(sI −A)−1b =


1
s2

−0.1635s2 + 5.4862
(s2− 5.536)(s2− 30.44)

−0.8493s2 + 5.5392
(s2− 5.536)(s2− 30.44)

 .
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Fig. 5. Experimental data of up-up stabilizing control

The linear feedback gain we used after feedback linear
approximation is

k = [0.7 2.18 200 79.2 − 126 − 27.4].

eig(A− bk) = {−3.4682± 0.5019i, −2.2113,

−1.3882± 2.3793i, −0.5776}

as shown in Fig. 5.
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