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Abstract— The usual application of feedback stabilization is the structure.
based on linearization and the assumption of linear controlla- 2) The problem of avoiding high feedback gains which

bility. Least squares optimal control is often used to determine a ; ; P
> . > » can lead to tor turation, noise amplification, an
set of feedback gains that will stabilize the system. In addition e_ d to 0. que. sa 0 oIse pificatio d
undesirable vibration.

to the commonly acknowledged challenges arising when this - ' 5 . .
methodology is applied to open-loop unstable systems with sig- 3) A reduction in the size of the domain of asymptotic
nificant nonlinearities, there are also significant problems which stability.
are not given prominence in the literature. These include the  Tne general problem of stabilization via feedback has
role of high gain feedback in exciting vibrations in unmodeled . - o . .
modes and the possibility of lightly damped oscillatory modes received considerable attention in both a Ilngar aqd nonlmear
accentuating the effect of the nonlinearities. In this paper we context. Indeed, one of the central questions in classical
report some experimental results relating to these points and control theory is the problem of avoiding instability in
suggest some techniques for dealing with them. feedback systems. In this paper we are concerned with the
I. INTRODUCTION problem of designing a control law that provides an adequate

. . . .%omain of attraction for a nonlinear problem of the form
This paper describes an experimental effort concerned wit

the stabilization of a rotary double link pendulum. This z = f(z)+g(x)u

problem, and several related ones, has a long history gom%der the hypothesis thai(0) = 0 ; g(0) # 0. We assume

back several decades. In the literature the name of FurLla : ; :
. . . at f and g are smooth functions and that the linearized
stands out because of his early interest in these problems

and the steady stream of experimental results reported Fs)g;stem is controllable. Such questions are widely studied

his group [2], [5], [1]. Our approach differes from those the I|te'raturez being motlvated by a varlety_ c_)f congrete
- : . roblems including experimental work on stabilizing various

previously reported not in terms of the basic form of th es of onen l0op unstable mechanical svstems

mechanics, but rather in terms of important aspects of théP X P y ’

) . .. Because we assume that the linearization of the system at
experimental apparatus. Most notably, we are working with : . ; .
. . . s x = 0 is controllable, in theory there always exists a linear
a system with the following attributes:

) ) ) control law that stabilizes the null solution. Moreover, there

1) All measurement signals are transmitted over a wireleg5ists a change of coordinates valid in a neighborhood of the
link delivering 50 samples per second. This removegygin that makeg equal to a constant vector so we can carry
the need for wires connecting the moving parts 10 3¢ the first step in the feedback linearization procedure.
fixed platform but introduces some latency in the datj\ precise question along these lines can be formulated as
path and limits the sampling frequency. follows.

2) The apparatus is light weight and has low inertia. This | jnear Feedback Stabilization Problem: Given a system
results in a structure with low stiffness and a tendencys he formi — F(2) + G(z)u with £(0) = 0 andg(0) # 0,
to vibrate. ) ) find the linear time invariant control law = Kz such that

3) The motor is a low torque, completely integrateqna null solution ofi — f(z) + G(z)Kz is asymptotically

amplifier/motor/controller unit rather than a high per-giapie and the domain of attraction of 0 is as large as possible

formance direct drive motor. This makes it necessany, e sense that it contains a ball of the fofim| < a with
to design around the possibility of torque saturation. , maximal.
In attempting to further develop the rotary link double s
pendulum stabilization technology, several challenges present |- A HIERARCHY OF MECHANICAL SYSTEMS
themselves. The principal ones are. Our ultimate goal is to shed further light on the problem

1) The emergence of vibrational modes associated wi®f enlarging the domain of attraction for nonlinear control
unmodeled dynamics associated with the elasticity giystems. The platform that we use for the experiments to
be described later consists of a horizontal link, driven by a

*This work was supported in part by the National Science Foundatiogeryg motor, and two vertical links that moves freely in the
under Yale prime CCR 9980058 and the US Army Research Office underI dicular to the hori tal link h in Eig. 4
Boston University prime GC169369 NGD, the National Science FoundatioR'aN€ Perpendicular to the horizontal ink, as shown in Fig. 4.

grant number EIA 0218411 Both this type of system and several other simpler mechanical
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systems have been extensively studied in the literature. In
order to maximize the usefulness of this paper and to put
our results in a broader context, we compare this system with
a general version of the well known ball and beam system
and the double pendulum on a cart system. We will see that
these form a progression with the ball and beam being the
least complex, the double pendulum being of intermediate
complexity and the rotary pendulum being the most complex.
For more about classical mechanics, see Whittaker [4].

A. The Ball, Beam, Cart

This is the least complicated system in our hierarchy.
Consider the system ball and beam on a cart as shown inf jnearization of the Ball-Beam on Cart
Fig. 1. The kinetic energy is

K = %ms[(-ﬁs + 21 cos 333)2 + <$5.’i73 — i Sina:3)2]

‘l‘%]g)(% - $.3)2 + %mgl'%

Where x5 is the position of the center of the ball relative
to the joint of the beamws is the radius of the ballzs is

the angular position of the beam; is the position of the
cart. All z;'s are on the same vertical plane.s, ms, I3,
and 5 are the mass and momentum of inertia of the ball and
beam respectively. We assume to have direct control overthe vV = | 0 —mslsg msg
acceleration of the cart, i.et; = u. The potential energy is

+%131‘§ — mgl3T1T3 cos T3

V = mggxs sinxz + magls cos rs.

The Euler-Lagrange equations take the form

F(z)i+ G(z, &) + V(r) = ub(x)

with = = [z1, 23, 25])7

1 0 0
F(IE): 0 m5$§+I5+13 —£—§
1
0 —% ms + é
0
G(z,2) = | 2msx583Ts
7m51'5.f§
0
Vix) —mglsgsin x3 + msgxs cos T3

msg sin xs

andb(x) is given by

b(z) =

1
msxs sin 3 + msls cos T3

—Mmy COS I3

Fig. 1. Ball, Beam, Cart

Fi+Vz=ub
with

1 0 0 ]

=0 Is+1I3 —7{—2
I I

0 —% m;,—I—é

0 0 0 1
, b= | mals

0 msg 0 | —ms

Transfer functionG(s) from « to = can be most easily
obtained from the linearization in second order form,

Fs*X(s)+VX(s)=U(s)b

This yields the transfer function

1
2
_ P2’ Hpan
G(s) = qas* + q25” + qo
1313282—+2z)3(1
48" +q28° + qo
with
p = —msrsls + mgls(msr? + I5)
pao = —m3rig
p32 = —msr2(I3 + I5) + mslsls
P30 = 2mgmslzrsg
@ = msr2(Iz+I5) + 315
@ = 2msrslsg —malsg(msr + I5)
q = —m3rig
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B. Cart with the double pendulum C. Rotary Double Pendulum

The coupled equations of motion that describe the dynam- The coupled equations of motion that describe the dynam-
ics of the pendulum, as shown in Fig. 2, are described HgS of the pendulum, as shown in Fig. 3, are described by
the Euler-Lagrangian equation the Euler-Lagrangian equation

F(0)0 +G(6,0) + V(0) = ub(9)
with 0 = [91, 92, 93]T

F(0)0 + G(0,0) + V(0) = ub(0)

with 0 = [91, 92, 93]T

1 0 0
F(a) = F(@) = 0 Iy + mng mgalsLs 005(92 — 93)
1 0 0 0 mglng COS(92 - 93) Ig
0 IQ + mng mglng COS(GQ — 03) 0
0 IsL 0, — 0 I . ;
mst3 2COS( 2 3) 3 G(@,@) _ 92(079)
0 93(97 6)
G(e’ 9) — mglngﬁg sin(92 — 93) 0
—mglngé% sin(92 — 93) V(G) = 7(m2912 + m3gL2) sin 0
—mggl3 sin O3
0 L
V(6) —(magls + msgLs) sin 0 andb(#) is given by
. 1
—mszglsz sin 6
3903 3 b(6) = —(maly + m3La) L1 cos 0y
andb(#) is given by —msls Ly cos B
1 Where
b(0) = —(maly + mgLa) cos 0y g2(0,0) = —[%(Ig + mgL2) sin 205 + msl3 Ly cos 03
—mgl3 cos O3

sin 03}9% + m3l3L29§ sin(92 — 93)
Wherel, andIs; are the moments of inertia of link 2 and link G é)
3 with respect to their jointg, and ps respectively.Ls is ’
the length of link 2, whilg, andis are the distance from the —m3l3L26'§ sin(fz — 603)
center of mass to their joints of link 2 and link 3 respectlvely
In this problem, we can directly control the acceleranon
of the motor. Thus the motor equation is simply a doubl&’
integratorf,; = w. Its linearization is identical to the rotary
double pendulum as describe in the following subsection
the motor positiord; is replaced byl 6;.

—(%13 sin 203 + m3l3L2 sin 92 COS 93)0%

5 and I3 are the moments of inertia of link 2 and link 3
with respect to their jointg, andps respectively.l; and L,
are the length of link 1 and link 2, whilg, andl; are the
qlstance from the center of mass to their joints of link 2 and
link 3 respectively. In this problem, we can directly control
the acceleration of the motor. Thus the motor equation is
simply a double integratof; = u.

Associated with this nonlinear model is its linearization
aboutd; = 0,6, = 0 The corresponding terms are given by

FO+ V0 =ub
with
1 0 0
F = 0 Is+ mng mslsLo

L16: 0 0 0
V=10 —(magly +msgLs) 0

Fig. 2. The double pendulum on a cart 0 0 —mggls

3301



Fig. 3. The Rotary Double Pendulum

1
b= | —(maly +msLy)Ly

—m3l3L1

The transfer function from: to 0 is

1
2
P25’ + pag
Gl8) = | st + 0s° + 0
P43282 +2]930
qa4S” + q28” + qo
with
po2 = —(mala +msLlo)lsLy
P20 = (malag +m3Llag +malzLlo)mslzLy
ps2 = —(I2+mgL3)(mals +msLay)Ly
p30 = (malag +msLlag + mslsLa)(mala + maLla) Ly
@ = (Io+msl3)ls
@2 = —[(I2+mgL3)msls + (maly + m3L2)Is]g
g = (malag?® +msLag? — mal3L3)msls

IIl. LINEARIZATION IN A NEIGHBORHOOD

If f(0) = 0 then the linearization of

&= f(z)+g(@)u
aboutz = 0 to get

. of
0= ox 05+g(0)u

leads to theorems on local controllability and, via least
squares theory, to feedback control laws resulting in asymp-
totic stability. However, in this case there are many stabilizing
control laws and if the goal is to design a controller that will
have a large domain of convergence, conventional lineariza-
tion may not provide the best solution. Here we develop an
alternative which we have found effective in controlling the
rotary double pendulum.

Let ©2 represent an open set R* that contains 0. If we
wish to find a matrixA such thatdz approximates on the
set() then we might choosel so as to minimize

"= / 1/ (x) — Azl *da

Of course ifQ2 is very small the minimizing value ofl will
be close toaf’ but if Q is large it can be expected to be

rather dlfferent If we work with the Euclidean norm then
the optimal value of4 is easily seen to be

/ f(x)z" dx ( / xde:r>

However, the possibility exists for improving the accuracy
of this approximation through the use of feedback. Consider
a refinement of the above procedure in which we select both
A and a feedback functioa so as to minimize

n= /Q 1/(2) — ala)g(x) — Az|*de

In this case we can see that for a given valuedathe best
choice ofa is the choice that cancels the errpfr) — Ax
in the direction ofg. This is given by

(9(x), g(x))

Thus the best value oft minimizes
() — Az, g(x)) 2
n=[ 5@~ g(2) — Av|?ds
(9(z), g(z))
Thus we can characteriz& implicitly by the linear equation
in A,
A* ([ zaTdx)

_ _ @) =Awg@) o o
= Jn (110 - L o))

Thus
A (/Q ;chdm> - M+/Q (%g(m)) oTdz

This equation does not necessarily have a unique solution
but the optimal value ofix — a(z)g(x) is unique.

For the rotary double pendulum it is possible to “regular-
ize” the drift vector fieldf through of a preliminary feedback
as described here. In our experiments, this was an essential
step in arriving at a stable system.

1
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IV. THE HIGH GAIN DILEMMA

A major source of difficulty in achieving stability for the
rotary double pendulum to be described below is the possibi
ity of oscillations corresponding to unmodeled dynamics. Fo
our system these are generally in the range of 6 to 8 Hz. ar
are strongly destabilizing. It was observed experimentall
that these oscillations could be avoided if the gains coul
be kept low. Sepulchre has several interesting examples ¢
the high gain dilemma [3].

However, when stabilizing open loop unstable system
there are limitations on how low the gains can be. Letting
p(s) = det (Is — A), the effect of the feedback term @r&,
is to replacep(s) by p(s) + ¢(s). Suppose thap(s) =
s" 4+ pp_18""1 + ... + po has real coefficients and that we
want to find the “smallest” polynomia}(s) = ¢,_1s" " + Fig. 4. The experimental setup
Gn_25""2 4+ ... + qo such thatp(s) + ¢(s) has all its roots
:jnifgreelnetﬁul:iitg s&znzdgpicguﬁeex?glee déﬁg:gg:;ggﬁgﬂ'h;\/iiZesignal is converted intd2bits bin_ary_ and then sgnt_to the host
involving a scaling vectoty. Consider Comput(_ar through a RS232 radio link. The radio link can gepd

' 50 readings of both the encoders per second which limits
1q]a = Zo‘i|qi| the sample frequency of the whole system5tif z. Each

] ) ) - encoder has accuracy df4deg. The base of the pendulum
with with the components ofi being pqsmve numbers._ is leveled with an error of06deg.

Recall that for a lossless mechanical systeptd)) is We want to stabilize the pendulum at its inverse position.

automatically an even function dp. - If we let = = (61,0y,0,,0,,0s,05), the linearized system
Fact 1: p(s) is Hurwitz if and only if the zeros of.(s) = equations become

(p(s) +.p(—§) and the.zeroes &b, (s) = p(s) — p(—s) are &= Az + bu,
purely imaginary and interlace. _
Fact 2: p(s) is Hurwitz with all roots real and negative The parameters we used in the double pendulum setup:

if and only p(s?) has all its roots on the imaginary axis. If g = 9.8I; gravitation constant

this is the case, and if’ denotes the derivative gf then Ly = 0.32; Ly, = 0.264;

p(s?) +p/(s?) is Hurwitz. mols = —0.0042; msls = 0.0023; ms = 0.0795;
Example: Consider the polynomial?(s* —3s2+2). What I, = 0.0241; Is = 7.5642 x 10~*.

polynomials can we add to this to get a polynomial that h

all purely imaginary roots? Consider adding* + bs? + c. “Fhus at its inverse position; =0,

Conditions on the coefficients are 0 1 0 0 0 0
. 9 0 0 0 0 0 0
)a—3>0; (a—3)"—4b—-8>0 4 0 0 0 1 0 0

Possible solutions include = 3, b = —2 (minimal for 0 0 56491 0 -0.6213 0

o; = 1 for all i’s) andb = —1, a = 3 + /6, etc. 00 0 0 0 1

This analysis shows that there is a lower bound on the 0 0 —45347 0 30.3274 0

minimum gain required to stabilize an unstable mechanical 0

system and that this can be characterized in terms of the 1

determinantal polynomial. ) 0

V. EXPERIMENTAL RESULTS —0.1640
The platform that we use for the experiments consists of a 0 2414

horizontal link, driven by a servo motor, and two vertical
links that moves freely in the plane perpendicular to thdhe open loop transfer function is

horizontal link, as shown in Fig. 4. system thus provides 1

us with enough bandwidth for controlling the pendulum. 52

In order to measure t.he position of the vertica_l _Iinks, a  O(s] — A)-1p — —0.163552 + 5.4862
rotary electric encoder is mounted on each of the joints. The(s) = C(sl —A)" b= (s2 — 5.536)(s2 — 30.44)
gncoder measures the absolute ar_lgular position (instead of —0.849352 + 5.5392
incremental) and outputs analog signals. Then each analog (s2 — 5.536)(s2 — 30.44)
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el (blue), 92 (red), 63 (black)

5 10 15 20 25
time (sec)

Fig. 5. Experimental data of up-up stabilizing control
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[1]

[2]

(3]
[4]

[5]

The linear feedback gain we used after feedback linear

approximation is
k=107 218 200 79.2 —126 —27.4].
eig(A —bk) = {—3.4682+ 0.5019i, —2.2113,
—1.3882 4+ 2.3793i, —0.5776}

as shown in Fig. 5.
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