IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 7, JULY 2000 1279

Quantized Feedback Stabilization of Linear Systems

Roger W. BrockettFellow, IEEE,and Daniel LiberzonMember, IEEE

Abstract—This paper addresses feedback stabilization prob- n}, as well as the induceithfinity norm on R**™ defined by
lems for linear time-invariant control systems with saturating |4 oo = max{zz?_l |4;;]: 1 < i < n}. The set of nonnega-

quantized measurements. \We propose a new control designyye integers will be denoted 8- . We will let I, denote the
methodology, which relies on the possibility of changing the . . . =
indicator of a set4 € R, i.e.,

sensitivity of the quantizer while the system evolves. The equation
that describes the evolution of the sensitivity with time (discrete
rather than continuous in most cases) is interconnected with the 1, ifte A
given system (either continuous or discrete), resulting in a hybrid 14(t) == {0’ ift¢ A
system. When applied to systems that are stabilizable by linear
time-invariant feedback, this approach yields global asymptotic
stability.

Index Terms—eedback stabilization, hybrid system, linear con-
trol system, quantized measurement.

We find it convenient to use the followirfpor function: |z | :=
max{k € Z: k < z}. Functions denoted by the capital letters
F, G andH are assumed to be piecewise continuous in all their
arguments.

Given a positive integel and a nonnegative real number
I. INTRODUCTION A, we define thequantizerq: R — Z with sensitivity A and

HIS PAPER deals with quantized feedback stabilizatiorturation valuel! by the formula

problems for linear time-invariant control systems. A .
quantizer, as defined here, acts as a functional that maps a M, !f x> (M+1/2)A
real-valued function into a piecewise constant function taking ’ if o < (M +1/2)A
on a finite set of values. Given a system that is stabilizable by q(x) = {_ + _J , f—(M+1/2A <z
linear time-invariant feedback, the problem under consideration
is to find a quantized feedback control law that stabilizes the

system. Problems of this kind arise, for example, when tbﬁ1 .
-Thus on the interval(k — 1/2)A, (k + 1/2)A] of length A,
output measurements to be used for feedback are transmlgv%a;rek € Zand—M < k < M, the functiong takes on

via a digital communication channel. X
S : . the valuek. Suppose that we have quantizersg;: R — Z
A standard assumption in the literature on quantized contro - : ,
with sensitivitiesA; and the same saturation valié (: =

is that one is given éixed quantizer representing some finite .. n). We define the quantizeg R* — Z" with sensitivity

< (M +1/2)A

precision effects in the system to be controlled (see, amopgy ..., A,) and saturation valug/ as follows: g(x) :=
many sources, [5]-[7] and [17]). In this paper we adopt a dif 1(’3: ) T (), where(zy, - - -, z,,) are the égordiné_tes
ferent point of view. Namely, we treat the number of values of!\“1/> =~ "+ @l\&n))» Lo

the quantizer as being fixeal priori. but we allow ourselves of z relative to a fixed orthonormal basisRf*. Geometrically,
9 9 P ' R™ is thereby divided into a finite number of rectilineguanti-

to alter other quantization parameters while the system evolves,. . ) X
: . : . Zation blockseach corresponding to a fixed valuegofve will
This approach enables us to achieve asymptotic stability, a prop- .. X o
: . : . sbmetimes refer to the boundaries between these quantization
erty that cannot be obtained with the schemes previously inv

. L Brocks asswitching hyperplanedf all ¢;'s have the same sen-
tigated. Some examples of situations where the present assump-. . . . . .
sifivity A, we will call ¢ auniformquantizer with sensitivity\.

tions are meaningful will be discussed below. T
. : . _ The above notation is similar to the one used by Delchamps
We now introduce some notation and give a definition that

: . in [6], but an essential feature that makes our definition different
makes the above concepts precise. We will denotfaflythe is that the set of values taken on by the quantizer here is finite
standard Euclidean norm of a vectore R™ and by||A]| the y q

; . X . rather than countable. In fact, we are especially interested in sit-

induced norm of a matrid € R™*". We will also use thenax- . . .

imum normon R" defined by|jz||e. := max{|zi|: 1 < i < uations where the saturation vallieis small. For example, we
oo "7 = " = will consider the case whel/ = 1. The corresponding quan-

tizer can be thought of as describing a sensor which determines
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a temperature sensor with limited capability of the kind men- Secondly, in the continuous-time case quantized feedback
tioned above, it is reasonable to assume that one is allowedtmtrol laws lead to differential equations with discontinuous
adjust the threshold settings. As another example, a camera wigiht-hand sides. When the existence and unigueness of solu-
zooming capability and a finite number of pixels can be modions in the classical sense cannot be guaranteed, they are to
eled as a quantizer with varying sensitivity and a fixed saturatitwe interpreted in the sense of Filippov [8]. This issue will arise
value. More generally, our approach fits into the framework @f Section IV where we will use a sliding mode control law
control with limited informatior{[12], [24]) in the sense that the based on quantized output measurements for the case when the
state of the system is not completely known, butitis only knowsaturation value is small. Other control strategies described in
which one of a fixed number of quantization blocks contains thbis paper do not rely on chattering, and the analysis of the re-
current state at each instant of time. Changing the size of thesdting closed-loop systems does not explicitly require a concept
guantization blocks, one can extract more information about thégeneralized solution.
behavior of the system, which appears to be a very natural thingr'he outline of the paper is as follows. In Section |l we develop
to do when such manipulations are permitted. techniques for stabilizing continuous-time linear systems with
The control policy will usually be divided into two stagesquantized state feedback. In Section Il we present analogous
First, since the initial state is unknown, we will have to “zoomesults for discrete-time systems. Section IV deals with quan-
out,” i.e., increase\ until the state of the system can be addized output feedback stabilization. In Section V we describe
guately measured. Second, we will “zoom in,” i.e., decrease control strategies that involve state observation. In Section VI
in such a way as to drive the state to 0. This can be formalizea briefly discuss quantized feedback stabilization of nonlinear
by introducing a discrete “zoom” variabigaking on the values systems. We make some concluding remarks and sketch direc-
1 and—1. In essence, our goal is to demonstrate that if a lineions for future research in Section VII.
system can be stabilized by linear time-invariant feedback, then
it can also be stabilized by quantized feedback with the help pf QUANTIZED STATE FEEDBACK STABILIZATION : CONTINUOUS
the approach described here. TIME
For continuous-time systems, we will describe the evolution

of A with time by an equation that might take the form This section deals with state feedback stabilization problems

for the continuous-time linear system
A(t) = Gla, [t/7], a(x([t/7]7)), A(lt/7]7) 5= Az + Bu @

where is a fixed positive number. The above equation d%\?herex € R" « ¢ R™ andA and B are matrices of suitable

fines a “strictly causal” functior\ that is continuous from the dimensions. If (2) is controllable in the unstable modes, then
left everywhere and maintains a constant value on each interw@re exists a matri¥ such that all eigenvalues of — BI’(
(k7, k7+7], k € Z>0. Inthe control policies considered belowy,, negative real parts (see [22, Sec. 6.3)). In this case it seems
such an eq_uatlon fox_: W"I‘I be f:oupled fo'th the given linear logical to try to implement a quantized state feedback control
system. This results in a “hybrid system” of the form law of the formu = — K Aq(), whereg is a uniform quantizer
with sensitivity A. Our first result shows that this control law
Az(t) + Bu(t, o(x(2)), A1), yields global asymptotic stability when combined with a suit-
A(t) =G(z, [t/7], q(x([t/7]7)), A(lt/7]7)). (1) able adjustment policy foA.

Theorem 1: Suppose that all eigenvalues af— BK have
This system falls into the general framework for hybrighegative real parts. Then there exists a control policy of the form
systems presented in [2]. Clearly, for every initial condition
(z(0), A(0)) there exists a unique solution trajectory. The A(t) =Gz, |t/7], q(=([t/7]T)), A(|t/7]T))
system (1), as well as all other systems of differential-difference u(t) = — K Iy 7. o0) (A q(2(1))
equations considered in this paper, is of “hereditary type,” o

and as such is covered by the theory of hereditary systefiereq is a uniform quantizer with sensitivit\(£) and ko

developed in [10]. The logic governing the construction q 4 positive integer, such that the solutions of the closed-loop
closed-loop systems such as (1) will become clear later. system

Two technical comments are in order. The first one concerns
our usage of the term “asymptotic stability.” The desired propr(t) = Az (t) — BKIjyr oo)()A®)q(z(t)), (0) arbitrary
erties of the control policies to be considered below, which WeH — ; ; Allt A0) =0
will refer to loosely as “asymptotic stability,” are thatd)= 0 is E‘( ) (z Lt/7], alalt/r]m)), AL/7]7)). ©0)
an equilibrium state of the first equation in (1), thatii) it is Stablﬁpproachd 0 at — oo.

8.
~
-
o
|

in the sense of Lyapunov, and that iii) we haxe), A(¢) — 0 Proof: Consider the system
ast — oc. However, this does not really mean that the system
(1) is asymptotically stable because, as we will see, the state @ = Az — BK Ag()

z = A = 0 will typically not be an equilibrium state of the

overall system (1). Since the validity of i) and ii) will usually beyhich we can also write as

obvious, in the proofs to follow we will concentrate on verifying

the property iii). 2 =(A—-BK)x+ BKs(z) 3)
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thus displaying the “error” vector(z) := = — Aqg(z). When by virtue of (5). We can thus define

zlloe < (M = 3) A ) .
ko := ming k > 1: ||g(z(k7))||
the quantizer does not saturate (i:ehelongs to the union of

the quantization blocks of finite size), so that we have < <M 3 1) Amin(Q) @}
)\max(Q) 2

[s(@)]] < Av/n/2. 5)
which implies
We will let \pin(P) and Ayax(P) denote the smallest and the
largest eigenvalue of a symmetric mati#k respectively. Re- X
call that by the standard Lyapunov stability theory there exist |lz(kor)|| € A(koT) <M — _> M
positive definite symmetric matriceg and D such that{ A —
BK)TQ+Q(A—BK) = —D. Whenever (4) holds, the deriva-

tive of 27’ Qx along the solutions of (3) is given by Therefore,
d r T T T(k, ko) < (A(kor))? (M — L)% A 8
%a: Qr=—x"Dx + 22" QBK s(x) z* (kom)Qu(koT) < (A(koT)) ( 2) min(@).  (8)

. 2
< = Auia(D)l|#]” + 2|z |@BE||AVR/2 Next, we come to the “zooming-in” stage £ —1). Observe

= —[lz|(Amin(D)llz]| - [|QBK|[AvR).  (6) that (4) holds withA = A(k,r) for any = that belongs to the
ellipsoid
The last expression is negative outside the Kall ||z| <
OA , Where
v Ry o= {27 Qu < (Ahn)? (M — 5 Main( @}
© := [|QBK||/Amin(D). . . .
SinceQ < 1, we have in particulatM — 1/2)\/Amin(Q) >
In what follows we will use the simple facts that the radius dP vV Amax(Q). From this and (6) it follows that if we let
the ball inscribed in an ellipsoid of the forf: #7Qxz < 42} w(t) = —KA(t)q(x(t)) with A() = A(kor) for kor <t <
equals,-y/ /)\max(Q) and the radius of the ball Clrcumscnbec{ﬂ;g'f + 7, thenz W|“ not Iea.VeRl, hence the quant'zer will not
about the same ellipsoid equals,/ A (Q). Fix an arbitrary Saturate. We claim that
¢ > 0. Define thescaling factors} by the formula
L (ko +7)Qu(koT 4 7)

o [Ae(@ (T < (A(Eom)? (O + ) Amax(@Q)
Q= (Oyn +e) Amin(@Q) <M ) (@A) (M — 1) A @). ©

and take the saturation valié of ¢ to be large enough so thatSuppose that (9) is not true. Then we have
Q < 1. Define '

e 120 @) = O+ ) Aa(@) (= (o HIQallr ) > (Alkor)) (O + d )
(©v/n + €) Amin(D)e and therefore

Sincef? < 1, itis easy to see that > 0.
We now describe the “zooming-out’ stage of the control [|z(t)|| > A(ko7) (©v/n +¢€) forallt € [kor, koT + 7].
strategy ¢ = 1). Set the control to 0 and l&X(0) = 0. Increase (11)

A fast enough to dominate the rate of growth|ef*!||, e.g., But(6) and (11) imply that fokor <t < ko7 + 7 we have
let A(t) = ¢4/ 7)™ Then there exists a positive integer
such that

%xTQx < —(A(kom))* (©v/n + €) Amin(D)e.

l=(km)|] < A(kT) <<M - %) “i‘“L((QQ)) - ﬁ) Comparing the last inequality with (7), (8) and (10), we arrive

at a contradiction, which establishes the validity of (9).
The basic idea that allows us to achieve asymptotic stability
is to decreasé by means of multiplying it by the scaling factor

Q. After we do that, by virtue of (9) the state of the system
la(z(kn))| < <M _ }) Amin(@) will still belong to the union of the quantization blocks of finite
- 2 Amax(Q) size, and so we can continue the analysis as before. Thus we let

hence

i
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u(t) = —KA(t)g(x(t)) with A(t) = QA(keT) for ko7 + 7 < This observation suggests that, at least qualitatively, there is no

t < kot + 27, which yields degradation in performance of the quantized feedback system
compared with that of the linear time-invariant system. As can
&' (kot + 21)Qu(koT + 27) be seen from the simple example

< (Q2A(kor))* (M = 3)* Auinl Q).
& = ax — kAqg(x), z€R, k>a>0 (12)
Similarly, we letA(t) = Q2A(kor) for kot + 27 < t <
kot + 37' Repeating this procedu_r(_a, we obtam_ the desired Qe lower bound on the rate of convergence is smaller than in
trol policy. Indeed, Lyapunov stability follows directly from thethe absence of quantization, although for some valuasthé
adjustment policy fon (note that the amount by whick needs convergence in the quantized system is actually faster.
to be increased initially is proportional {fx(0)[]). Moreover, We will now address in passing the issue of time sampling in

we haveA(t) — 0ast — oo, and by the above analysis theye ¢ontext of equation (12). Suppose that the valuegatt))

sa_rphe IS Lrue fox (?). 7ed feedback | sy are not measured continuously, but instead they are sampled at
e above quantized feedback control strategy calls~or timeso0, 6, 26, - - -, where$ > 0 is thesampling periodThis re-

taking on a cou_nFabIe set of values rather than a continuumQfi< in the equatio(t) = ax(t) — kAq(|/6]6). Do we still
values. In fact, itis npt hard to see from th? proof tha_t the Pave asymptotic stability? The answer is yes, provided that no
posed approach, suitably modified, will still work & is re-  uarshooting” occurs. Namely, we have to make sure that if,
stricted to take values in some given Seprovided that: say,z(0) < 0, thenz(t) remains negative for all future times.

1) S contains asequene®y;, Az, ---thatincreasestso.  This can be done by means of a simple calculation. Suppose

2) Each A, from this sequence belongs to a sequenggat the sampling is performed at= 0 andz(0) = —A/2

Air, Agg, ---in S that decreases to 0 and is such that Wehe most “dangerous” case). Then we will hayg) < 0 for
have2 < A; j11/A; for each; € Zxo. allt > 0if 6 < (1/a) In(2k/(2k — a)), i.e., if the sampling

In some applications there may only be a finite set of possihle performed frequently enough (see [14, p. 23] for details). It
values forA (for example, if the values oh have to be passed s important to notice that this upper bound fodoes not de-
through a quantizer with fixed sensitivity). Adjusting our conpend onA, so we can still change the sensitivity in the way
trol policy to this case, we would only obtain practical stabilityjescribed above. In other words, we see that the sampling con-
and not global asymptotic stability claimed in Theorem 1 (c&iderations are decoupled from the issues regarding the imple-
Section IV below). mentation of the quantized feedback stabilizing control policy.

The control policy described above uses a variant of théjs pasic idea was independently explored in [11] in the gen-
so-calleddwell-time switching logi¢16] in the sense that the grg| context of the system (2). That paper also contains a detailed
value of A is held constant on time intervals of fixed lengthyiscussion of performance and robustness characteristics of the
7. Another possibility is to change every time||q(z(¢))||  resulting quantized feedback control system.
becomes smaller than or equal to a certain prescribed valuerhe stabilization strategy of Theorem 1 employs a quantizer
To demonstrate how this alternative method works, we Willhose (fixed) saturation value is assumed to be sufficiently
use it in proving the discrete-time counterpart of Theorem|arge. As we are about to see, it is possible to stabilize the
(Theorem 3 in the next section). The main advantage of t8gstem (2) with quantized state feedback even if the saturation
dwell-time switching approach is that it can also be applied {Rjue A of the quantizer is substantially smaller than that
quantized output feedback stabilization problems (cf. Sectiopsyuired in the above proof. In fact, let us show that we can
IV and V below). In specific applications, one might want tgchjeve global asymptotic stability using a (nonuniform)
compare the effectiveness of these two methods with respgghntizerg with A7 = 1. What we will do is basically design
to various performance characteristics, such as the speedh Gfampled-data feedback control law using generalized hold
convergence of solution trajectories to zero (time-optimality) @finctions. The procedure will be based on the following
the frequency of switching hyperplane crossings which caugga: if the state of the system at a given instant of time is
the control function to change its value (“minimum attentiognown to belong to a certain rectilinear box, and if we pick
control™—cf. [3], [4]). the sensitivities so that the switching hyperplanes divide this

We see from the proof of Theorem 1 that the state of thgyx into smaller boxes, then on the basis of the corresponding
closed-loop system belongs, at equally spaced instants of tijgantized measurement we can immediately determine which
to ellipsoids whose sizes decrease according to consecutivegfe of these smaller boxes contains the state of the system,
teger powers of2 (where0 < £ < 1). Thereforex(t) con-  thereby improving our state estimate.
verges to zero exponentially &s— oo. To make this argument  Theorem 2: Suppose that all eigenvalues af— BK have
precise, note that for > ko we have negative real parts. Then there exists a control policy of the form

lz(®)]] < QU A(kT) (O + ¢)

Ai(t) =Gz, |t)7], q(z([t/T]T)), i=1,---,n,
Ve @ el @ u(®) = H(t = /717, a(a(Lt/r))
6(7‘71 log Dty—ko—1 r e
- ; Alkor) (Bv +) whereyq is a quantizer with sensitivityA, (¢), - -, A,(t)) and

-\/)\maX(Q)/)\mm(Q). saturation value 1, such that the solutions of the closed-loop
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system

#(t) = Ac(t) + BH(t — [t/7]7, q(x(|t/7]|7))),
2(0) arbitrary
Ai(t) =Gilz [t/7], ale(t/7]7))),  A0)=0
approach st — oo.
Proof: Fix a number € (0, 1). Since||{||.. = 1, we can
find anumber > 0 such thaf|e?!||., < 1+eforallt € [0, 7].

If we let u(t) = 0 andA(t) = 24/ 77 then there exists a

well-defined integetky := min{k > 1: g(z(kt)) = 0}. We

1283

such that|u(¢) + Kz(t)||.c — 0 ast — oo. The same state-
ment is therefore true for the Euclidean nota(t) + Kz (¢)]|.
This, combined with an argument of the type used in the proof
of Theorem 1, implies that(¢) — 0 ast — cc. O

Remark: Again, if the set of possible values fd; is finite,
global asymptotic stability is replaced by practical stability (see
also Section IV below).

I1l. QUANTIZED STATE FEEDBACK STABILIZATION : DISCRETE
TIME

In this section we will establish counterparts of Theorems 1

have||z(ko7)||co < Eo, WhereEq = 241k /2 Thus 0 can and 2 for the discrete-time system

be viewed as an estimate ofky7) with the estimation error
whose maximum norm is at mogy. Our goal is to construct a

z(k+1) = Az(k) + Bu(k) (13)

sequence of state estimates with estimation errors approaching

0 ast — oo.
Forkor < t < kor + 7, letu(t) = 0. This givesz(t) =

with x € R* andu € R™. For illustrative purposes, to prove the
next theorem we use a different approach than that described in

e A=k z(kor), hence||z(t)]|oo < (1 + ¢)Eo. The quantized the proof of Theorem 1.

measurement(z (ko7 + 7)) with A; (ko7 + 7) = (1 + €) Eq,

Theorem 3: Suppose that all eigenvalues4f— BK lie in-

¢+ =1, .-+, n singles out a rectilinear box with edges at mosiide the unit circle. Then there exists a control policy of the form

(1 4 ¢)Eo which containse(kor + 7). Denoting the center of

this box byz (ko7 + 7), we see that
l|z(kom +7) — T(koT + T)||loo < (1 +€)Ep/2.

For kor + T < t < kot 4+ 27, let

u(t) = —KeA-BE—kom=T)z(Lor + 7). This gives

% (a:(t) _ G(A—BK)(t—kO‘r—‘r)f(koT+T))

=A (a:(t) — e(AfBK)(FkOTfT)E(kOT + 'r))
hence

- - |

oo

AR oo+ 7) = T(kor + 7))
< (1+e)?Ep/2.

oo

The quantized measuremeit:(ko7 + 27)) with
A(koT + 27)
) | (G(A—F)'K)‘r
— T(koT + T))Z| if (G(A_BK)TE(/{OT + T)) 0

(1+ ¢)2Ey/2 if (=B (ko +7)), = 0

singles out a rectilinear box with edges at mgst ¢)?Ey /2

which containse(ko7 + 27). Denoting the center of this box by

Z(koT + 27), we see that
lz(kor + 27) — Z(koT + 27)||eo < (14 €)*Ey/4.

For ko + 27 < t < kot + 37, let u(t) =

— KA BE) kot =27 7(Lor 4 27). Proceeding in this
fashion, we obtain a piecewise continuous control function

Ak +1) =G(z, k, q((k)), A(k))
w(k) = =K1, 00) () A(K)g(x(k))

whereg is a uniform quantizer with sensitivitA(k) and kq
is a positive integer, such that the solutions of the closed-loop
system

z(k 4+ 1) = Ax(k) — BK Iy, 00y (k) A(R)q(z(k)),
.’L'(O) a’lrbit"‘(lﬂl‘y

Alk+1) =Gz, k, q(z(k)), Ak)), A(0)=0

approach Gsk — co.
Proof. Consider the system

x(k+1) = Ax(k) — BKAq(z(k))
which we can also write as

z(k+1) = (A — BK)z(k) + BKs(z(k)) (14)

with s(z) = = — Ag(x) as before. By the standard Lyapunov
stability theory for discrete-time linear systems, there exist
positive definite symmetric matrice§ and D such that
(A — BK)TQ(A — BK) — Q = —D. If the inequality (4)
holds, the bound (5) is valid. For the solutions of (14) this
implies

e (k+1)Qu(k + 1) — 2" (k) Qu(k)
= —27(k)Dx(k) + 227 (k)(A — BK)"QBK's(x(k))
+ sT(2(k) K* BT QBK s(z(k))
< = Auin(D)lz(R)]|* + 2[jz (k)|
(A= BK)'QBK||Av/n/2
+ |[KT BT QBK || A%*n /4.
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The last expression is negative outside the Ball ||x|| <
©A./n}, where

1

0 =—F-—
2)\min(D)

<||(A—BK)TQBKII

VI BRY QB + huia DI K7 57QBK] )

(cf. [6, Proposition 2.3]). Define the scaling facteby the for-
mula

)‘min(Q)
. )\max(Q) < _ 1>_1
min(Q) M 2

for some fixede > 0, and take the saturation valud of ¢
to be large enough so th& < 1. If we letw(k) = 0 and

oo (50 )
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Whenk = ki, change the sensitivity tth(k;) = QA(ko).
Arguing as before, we can show that if we letk) =
—KA(E)q(z(k)) with A(k) = A(ky) for k > k1, then (4) will
still hold, and there exists a well-defined number

ko = min{k > k1 + 1: ||g(z=(B)||

)\max(Q) I s

NZD
<OV I\ R@ T2 } |
When &k = k2, change the sensitivity toA(k,) =
QA(k,). Repeating this procedure, we obtain a sequence
Alko), Alky), A(ks), A(ks), --- — 0. We conclude that
x(k) — 0 ask — oc. O

Our analog of Theorem 2 for the discrete-time case contains
one additional hypothesis which means, loosely speaking, that
the state of the uncontrolled systerfk + 1) = Ax(k) is “not
excessively unstable.”

A(k) = ||A||*! for k € Zso, then there exists a well-defined Theorem 4: Suppose that all eigenvalues 4f— BK lie in-

number
ko := min {k > 1t ||g(z(k)]|

<(m-3) A_@_g}

2V dnax(Q) 2
We have
bt =800 (4 3) 322

Thereforez(kg) belongs to the ellipsoid

Ry i= {o: " Qu < (ko)) (M = 5)* Aain(@)}
Observe that (4) holds with = A(kg) for all z € R;. Since
? < 1, it follows that if we letu(k) = — KA(k)g(x(k)) with
A(k) = A(ko) for k > kg, thenz will never leaveR,. More-
over,z will approach the ellipsoid

Ro := {a: 2" Qx < (A(ko))*©nAmax(Q)}.

Thus we can define

k1 := min {k 2 ko +1: |lg(=(R)|

<(ovie 28 + 7 |
which implies
it (1954 3G + 7).

side the unit circle. Suppose also thiat||.. < 2. Then there
exists a control policy of the form

Az(k ) _Gz(zv k, (J(x(k)))v i=1,---,n,
u(k +1) = H(gq(x(F)))
whereg is a quantizer with sensitivityA (k), - - -, A, (k)) and

saturation value 1, such that the solutions of the closed-loop
system

x(k+1) = Az(k) + BH(q(z(k))),
Al(k + 1) :Gi(zv k? Q(x(k)))v

x(0) arbitrary
A(0)=0

approach 0 ag — oo.

Proof: If we let u(k) = 0 andA;(k) = ||A||** for k €
Z>q, then there existdy := min{k > 1: ¢(z(k)) = 0}.
We have||z(ko)||leo < Eo, WhereEy = || A||?* /2. We will
construct a sequence of state estimaigs such thaf|«(k) —
Z(k)||oo — 0 ask — co.

Let u(ko) = 0. Then||z(ko + 1)|loc = ||Az(ko)|loc <
||AllccEo. The quantized measurementz(ko + 1)) with
Ai(ko +1) = ||AllsoFo singles out a rectilinear box with
edges at mosiA||..Eo which containsz(ky + 1). Denoting
the center of this box b¥(%, + 1), we obtain

[[(ko + 1) = Z(ko + lloo < [|AllecEo/2.

Next, letu(ko + 1) = —KZ(ko + 1). We haver(ko + 2) =
Ax(ko+1)— BKz(ko+1) hence|x(ko+2)— (A— BK)z(ko+
Do < ||Al|%, Eo/2. The quantized measuremenit:(ko+2))
with

2|((A-BK)
= { z(ko+1))i| it (A=BK)z(ko+1)); # 0
JAIZEo/2 it (A= BE)F(ko+1)); = 0
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singles out a rectilinear box with edges at mfst||2_E,/2 hence
which containse(ko + 2). Denoting the center of this box by

Z(ko + 2), we obtain 27(0)Qx(0) < (A(0)? (M — 1) M\in( Q)
l|lz(ko + 2) — T(ko + 2)|leo < ||AII% Eo/4. This is completely analogous to (8) (witly = 0), and the rest
of the proof carries over from Theorem 1 with obvious minor
Next, letu(ko + 2) = —K=(ko + 2). Repeating the above modifications. O

procedure for each, we obtain a control function such that  The discrete-time case can be treated similarly. We now turn
||u(k) + Kz(k)||l.o — 0 ask — oo. The statement of the our attention to quantizers with saturation value 1. For sim-

theorem follows. O plicity, let us consider the single-input, single-output system
IV. QUANTIZED OUTPUT FEEDBACK STABILIZATION T = Ax + bu,
We now turn to the problem of stabilizing the system y=c'z (7)
4 = Az + Bu [generalization to the case of (15) is straightforward]. Suppose

(15) that there exists a feedback gainsuch that all eigenvalues
of A — bkec” have negative real parts. All such gaihscan

found by using the well-known Nyquist criterion (see, e.g.,

]). Without loss of generality we may assume thaf < 1.

. : . will develop a sliding mode control policy that yields asymp-

matrix K such that all eigenvalues of — BKC' have negative totic stability. It will be described by a differential equation

D . H “* 1 - ”

real parts. Ify € R. .W'th p<mn then_ the initial “zooming-out which makes the sensitivity change fast enough so as to domi-

stage of the stabilizing control policy of Theorem 1 cannot be . =

; . . nate the dynamics of the underlying linear system.

implemented. For this reason, in the next theorem the asymp- . : T
. S Theorem 6: Suppose that all eigenvalues.4f— bkc' have

totic stability is local.

Theorem 5: Suppose that all eigenvalues4f- BK C have negaﬂye real parts. For any numbiég > 0, there exists a con-
. . trol policy of the form
negative real parts. For any numbigs > 0, there exists a con-
trol policy of the form

y=Czx

loss of generality) thatC||.. < 1. Suppose that there exists

with quantized measurements of the output. Assume (With;t:%eg3
e

))
A(t) = G(A([t/7]7)), u(t) = —kA(t)q(y(t))/2
u(t) = —KAalu(*) wheregq is a quantizer with sensitivitsh (¢) and saturation value

. : . . L 1, such that the solutions of the closed-loop system
wheregq is a uniform quantizer with sensitiviths(¢), such that ! ut P sy

the solutions of the closed-loop system

K-
—~
o~
-
[l

i Ax(t) = kA q(c =) /2, [|l2(0)]] < Eo
Az(t) — BKA®)g(Cx(t)),  |=(0)]| < Eo Al) =Gla(y®)),  A0)=0
A(t) =G(A(t/7]m)),  A0) = F(Ep)

8.
~
-
o
|

(interpreted in the Filippov’s sense) approach @ as co.
Proof: We know that there exist positive definite sym-

approach 0 ag — . : ; D hthat A — bkeT\T A—
Proof. As before, there exist positive definite symmetri%?figgcjiitgceéﬁonz?g er tilécsygt::(n bhe? )7 @+ Q(

matricesy andD suchthaf{ A— BKC)TQ+Q(A— BKC) =
—D. Fix an arbitrarye > 0. Define®, © andr as in the proof

P = Ax — T <
of Theorem 1, and take the saturation valdeof ¢ to be large N Az gkAQ(c /2, (0}l < Fo
enough so thaf2 < 1. Letu = —KAg(Cx), whereq is a A=Qlglcx)-1)F,  A0)=0 (18)
uniform quantizer with sensitivith. The closed-loop system
can be written as where
i = Ar — BKAq(Cz) = (A— BKC)z + BKs(Cx) (16) B =2(||All + [|bl| k) E + 2
and

wheres(Cz) = Cz — Ag(Cx). Whenevel|yl|.. < (M — |QbE||2E0 Amax(Q)
1/2)A, the upper bound given by (6) is valid for the derivative E = maX<)\,—®v EO) Aon(Q)
of z7Qx along the solutions of (16). i m

Suppose thafz(0)|| < FEy. Let us choose the initial sensi-

fivity A(0) large enough to have The right-hand side of (18) is discontinuous whéhz| = A /2,

and we will interpret solutions of (18) in the Filippov’s sense [8].
We have| |cf'z(0)] — A(0)/2| < Ey, and it is not hard to
Ey < A(0) < M 1) Amin(Q) check thatd/de)(||c" = (1)| — A(#)/2|) < —1fort > 0 as long
2]\ Amax(@Q) as|c"z(t)| # A(t)/2 and||z(t)]| < E. But from the analysis
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of Section Il it follows that the solution trajectory will nevermodes (see [22, Sect. 6.4]). Since we are concerned with feed-
leave the regioqz: ||z|| < £}. This means that there is a timeback stabilization, it makes sense to assume(that’) is actu-
to > 0 such that/cTz(to)| = A(to)/2. It is not difficult to ally an observable pair. As it turns out, the hypothesis that (15) is
show that the solution trajectory stays on the discontinuity locstabilizable by linear static output feedback can then be relaxed
{(z, A): |cf'z| = A/2} forall t > . To complete the proof, considerably. Namely, we will only require that (15) be stabiliz-
it remains to use the fact that the systém= (A — bkc?)z is  able by linear statistatefeedback. This means that there exists
asymptotically stable. O amatrixK such that all eigenvalues af — BK have negative
The results of Theorems 5 and 6, although local, are wdal parts, but there might not exist ahysuch that all eigen-
“semiglobal” nature: given am priori upper boundEy, on values ofA — BKC have negative real parts.
the norm ofz(0), we can find a control law that drives the Since only quantized measurements of the output, and not of
state to 0. A drawback of the above solution is tlatis the state, are available, we have to develop a method for con-
changing continuously, which might be undesirable in sonstructing state estimates which we will denoteagy). We will
applications. As the most restrictive case, consider a sitoe using the history of quantized output measurements over a
ation whereA is only allowed to take on values in the setime interval, in contrast with the simpler techniques of the pre-
S:={-No, (-N+1)o, -+, —0,0,0,---, (N=1)o, No}, vious sections. The evolution @ft) can thus be described by a
whereg is a fixed positive real number arid is a fixed positive Volterra integral equation (this construction is based on a stan-
integer. Then we can replace (18) by a hybrid system of tlard technique and will become more transparent in the course
form of the proof).
Theorem 8: Suppose thatA4, C) is an observable pair, and
that all eigenvalues afi — BK have negative real parts. Then

i(t) = Aa(t) — bRA(De(c" 2(1))/2, 12Ol < Fo there exists a control policy of the form
At =A([t/7]T) + @lg(<Tx([t/7] )] = Do,
A(0) =0 (19)

W= [ re e,
t—7<s;<t, i=1,2,3

wherer := o((|| A||+]b||k) No+2) 1. Note thatA changes its Alss), ul(s3)) s dsa dss,
value by everyr units of time. Using our earlier developments,
we can easily establish the following stability property of (19).A(¢) =G(z, |¢/7], =(|t/7|T), q(z(|t/T]7T)), A(|t/7]|T)),

Proposition 7: Let@, D, o and N be as in the foregoing. _
Suppose thad is large enough anfly € R is small enough so ult) = H(t, #(t))
that

whereq is a uniform guantizer with sensitivitsh(¢), such that
the solutions of the closed-loop system

1nax<—”Qka(2EO + 0), E0> —)\maX(Q) < No/2.

)\min(D) )\min(Q x(t) = Ax(t) + _B_E[(t7 E(t)% ]}(0) (lTb?:tT(],Ty
_ AR =G |t 7 ([T, alz([t/T]T)),
Then the solutions of the system (19) eventually enter the region A([t/7]7)) A(0) =0
_)o..T |Qbk|20\ approach 0 as — .
flo = {x vQrs <)\min(D) Amas(Q) Proof: Let @, D and@ be as in the proof of Theorem 1.

Fix an arbitrarye > 0. Letr, > 0 be such thafje?|| < 1+ ¢

q here for all ) M N g and||e*"t|| < 14¢forall ¢ € [0, 7,,]. Denote byi¥’ theobserv-
and stay there for all future time. Moreover, we € il ian i i fTe AT AT A

y ave) ability Gramian i.e., the full-rank matrixf;* e* *CTCe* dt

forallz > 0. _ o _ (see, e.g., [1]). Define
One could also consider a situation wherean take on dif-

ferent values from a certain finite set. This would increase the .
domain of stability for (19) and make the attracting invariant re- Q= W (Ovi +0) Amax(Q) <M _ 1)

gion R, smaller. Amin(Q) 2
V. OBSERVABILITY AND QUANTIZED FEEDBACK STABILIZATION ~ WNere
We will now show that, by employing somewhat more so- U= ||WH |7 (1 4 )27

phisticated techniques than those presented in Section 1V, it is

possible to design a quantized output feedback control poli€gke the saturation valug/ of ¢ to be large enough so that
that makesall solutions of the system (15) approach 0. At th& < 1. Define

beginning of Section IV we made the assumption that (15) is

stabilizable by linear static output feedback. Thisiswellknown (M — 1/2)?X,in(Q) — U2 (©y/n + €)* Amax(Q)

to imply that (15) isdetectablei.e., observable in the unstable U2 (04/n + €) Amin(D)e )

TA =
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We will be updating the value ak everyra units of time while
updating the value of everyr, units of time. If we let.(¢) = 0
andA(t) = 24N/ 7alma thend kg > 0 such that

laCw(e) < <M - %) i_((g)) S

forallt e [/{JoTA, kota + Tu].

We have

koTAa+T7y T
/ oA (t—koTA)OTy(t) dt = Wa(kora)-
k

0 TA
Define

_ _ -1 RoTat T AT (t—kora) ~T
T(kota) =W e C* A(t)q(y(t)) dt.
k

vOTA

We have

[l (kora) — T(koTa )|
< W Hlr@ + OICT | Akora + Tu)Vn/2.

Denotinge™%(kora) by Z(koTa + 7..), We obtain
||$(/€0TA + Tu) - f(/{ioTA + Tu)” < \I/A(/{J()TA + Tu)\/ﬁ/z

Let w(kora + 7)) = —K#(koTa + 7). Pick @ number >
A(ko7a + 7.,) such that

[Z(koTa + 7|

<5 (3 1) 2D s

This implies

o 1 )\min(Q)
||,1'(/<:07'A+7_u)|| SA<M— 5) m'

Forkora +7, < t < koTa +7u + 7a, letA(t) = A,
Now, take any; € (ko7a, koTa+min{r,, 7a}],and assume
thatu(t) has already been defined fok ¢; + 7,,. We have

t1 47
/ cAT(t_“)C'Ty(t) dt = Wa(ty) + vy
t1

wherev; is a known vector that depends af¥) for t; < ¢ <
t1 + 7,. Letting

t1 47 -
() =Wt </ et I OT A(Hq(y(t)) dt — v1>
tq
we obtain

lo(t) = Z()I < (W71 + I CT[AVR/2.

Denoting byz (¢, + 7.,) the solution at time; + 7, of the equa-
tion & = Az + Bu with z(¢;) = T(¢t1), we have

2t 4+ 7u) — Z(t1 + 7)|| < TAVR/2.

We then let(t; +7,) = —Kz(t1 +7.,). Proceeding in this way,
we obtain a control function such that for alt € [ko7a + 7w,
koTa + Tu + Ta] we have

[u(t) + Kz(t)|| < |K|VAVR/2.

Using the same techniques as in the proof of Theorem 1, we can
show that

.’IZT(]{}()TA + 7y + 7A)Qu(koTA + Ty + TA)
< (UAY? (01 + ) Auax( Q).

Thus we letA(t) = QA for kora + 7o + 7a < t < koTa +
Tu + 27, A(t) = Q2A for kora + 7 + 274 < t < ko7a
+7,+37a, etc., while updating(¢) in the same way as before.
This givesz(¢) — 0 as needed. O
Remark: Another possibility, suggested to us by Steve
Morse, is to implement a dynamic observer fof kora + 7.
The next theorem is a counterpart of Theorem 8 for the dis-
crete-time linear system

ok + 1) = Az(k) + Bu(k),
y(k) = Cz(k). (20)

Its proof proceeds along the same lines and will not be given.

Theorem 9: Suppose thatA, C) is an observable pair, and
that all eigenvalues afi — BK lie inside the unit circle. Then
there exists a control policy of the form

n—1
z(k)= Y Fulaly(k —1), Atk —j), u(k — 1)),
4, 4,1=0
Alk+1) =G(z, k, T(k), q(«(k)), A(K)),

whereg is a uniform quantizer with sensitivitgs (%), such that
the solutions of the closed-loop system

x(k+1) =Ax(k) + BH(k

, Z(k)),  x(0) arbitrary
Alk+ 1) =G(z, k, z(k), ¢(z

(k
k), A(k)), A(0)=0

(

approach 0 as — oc.

VI. A REMARK ON NONLINEAR SYSTEMS

It can be shown via a linearization argument that by using
our approach one can obtain local asymptotic stability for a non-
linear system, provided that the corresponding linearized system
is stabilizable (see [11]). Here we briefly discuss the problem
of achieving global or semiglobal asymptotic stability for non-
linear systems with quantized measurements. Working with a
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given nonlinear system directly, one gains an advantage even ifn this case, for any given numbex, > 0 there exists a
only local asymptotic stability is sought, because the linearizpesitive integerd/ such that we have

tion of a stabilizable nonlinear system may fail to be stabiliz-

able. As we will see, the intrinsic difficulty that lies in the way 2(A)>m(d) VA E(0, Aol (23)
of extending _the ideas presented al_JO\_/e to the nonlinear_ 9"’_‘sﬁdﬁhermore, we can takef large enough to have

the need to find a control law that is input-to-state stabilizing

with respect to measurement errors. v2(Ag) > Eyp.

Consider the system ) )
The quantized feedback control strategy can then be described

x = f(z, u). (21) asfollows. SeA equal toA. Using (22) in much the same way
. as the inequality (6) has been used in the previous sections, we
Suppose that there exists a feedback controklaw k() that  can show that there exists a tityewith the property that

makes the system
la(e(t))I| < a7t o az0p (A (Va/2+ ) /A + /2

hence
input-to-state stabl€lSS) with respect to a measurement dis- .
turbancee, in the sense of Sontag [19]. According to [21], allz@)ll S aptoazop(A(Vr/2+¢€)) + Avn=n(A).
necessary and sufficient condition for ISS in this case is the &y an+ — £, setA equal tor; ! o v, (A), and repeat the
istence of a positive definite, radially unbounded, smooth funﬁfocedure. This gives asymptotic stability.

tion V: R — R such that for some continuous, positive defi- 4, sypnose that Condition 1 is not satisfied. In this case for

nite, strictly increasing functions,, az, p: [0, ) = [0, %), 4ny given numberay, > § > 0 there exists a positive integer
for all  # 0, and for alle we have M such that we have

i = fz, Kz + )

ar(|lzf]) £ V() < co(llzl)) Y(A) > 1 (A) YA€ (8 Ag).

and Itis not hard to see that using the same procedure we only obtain

) practical stability and not asymptotic stability.
[zl = p(llel)) = VV(@2)f(z, k(z +¢)) <0 (22) " gpereason why the above is not satisfactory is the presence of
The problem of flndlng feedback control laws that achieve |St§e technical Condition 1.-Even when thlS condition holds, it is
with respect to measurement errors has received considerdl§ikcléar whether we can in general achiglbal (as opposed
attention in the literature. In particular, it was shown in [9] thdf JuSt semiglobal) asymptotic stability, because the saturation
the class of systems that admit such control laws includes singf@lué of the quantizer must be chosen a priori and cannot be
input plants in strict feedback form. It also includes systems thgi2nged. The “zooming-out” technique does allow us to obtain
admitglobally Lipschitzontrol laws achieving ISS with respect? 9l0bal result if for somé/ the inequality (23) holds witih
to actuatorerrors, although this condition is quite restrictive. rePlaced byx. The paper [13] contains an example of a system

Let ¢ be a quantizer with sensitivith and saturation value fOr Which this can be shown to be the case. o
M. The problem under consideration is to find a quantized,The class of systems for which control laws achieving ISS

state feedback law that makes the system (21) asymptotical h .respect to measurement disturbaqces are known to exist is
stable. Assume for the moment that a bound on the initial stAf&atively small. Thus the problem considered here to a large ex-
is known: [|(0)|| < Eo. The idea that we propose is to use thient reduces to the problem of finding such control laws, which

above control lawk, which results in the closed-loop system 1S interesting and important in its own right and is a subject of
ongoing research. An alternative approach to semiglobal stabi-

i = f(z, k(Aq(x))). lization can be based on using stabilizing control laws that are
_ _ robust with respect temallmeasurement errors [20]. These is-
We can rewrite this as sues will be treated in greater detail elsewhere.
& = f(z, k(x — s(2))) VII. CONCLUSIONS

thus displaying the “error” vectot(z) := x — Aq(x). When This paper addressed quantized feedback stabilization prob-
the inequality (4) holds, the quantizer does not saturate, and s for linear time-invariant control systems. The approach
bound (5) is valid. Fix a positive numberand define the func- taken here was based on the hypothesis that it is possible to
tions change the sensitivity (but not the saturation value) of the quan-
o tizer on the basis of available quantized measurements. We de-
71(A) :=a; omop (A (\/77/2 + 6)) +AvVn veloped a number of techniques, for both continuous- and dis-
and crete-time systems, which enable one to achieve global asymp-
v2(A) i= a5t o o (M — 1/2)A). totic stability. _ o _
Many other quantized feedback control strategies, in partic-
Suppose first that the following condition is satisfied. ular those related to the material of Section V, can be found in
Condition 1: (a5 * 0 a1)’(0) > 0 andp’(0) < oc. the literature (see, e.g., [17]). One could try to improve them
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using our approach. It would also be interesting to extend thg4] D. Liberzon, “Asymptotic properties of nonlinear feedback control sys-

ideas presented here to situations where the quantization regions tems.” Ph.D. dissertation, Brandeis Univ.,, Waltham, MA, Feb 1998.
d b i but i d h bi h (%5] J. Lunze, B. Nixdorf, and J. Schréder, “Deterministic discrete-event rep-
need not be rectilinear but instead can have arbitrary shapes (as resentations of linear continuous-variable systematbmaticavol. 35,

in [15]). pp. 395-406, 1999.

In the particular case Whejle R2. the problem considered [16] A. S. Morse, “Supervisory control of families of linear set-point con-
. . . ; - trollers—Part 1: Exact matchinglEEE Trans. Automat. Control. 41,
in this paper can be interpreted as the problem of finding a sta- ), "1413-1431, 1996.

bilizing feedback based on the output measurements obtaingr¥] J. Raisch, “Control of continuous plants by symbolic output feedback,”

using an orthographic projection camera with zooming capa- I Hybrid Systems |P. Antsakliset al, Eds. - Berlin: Springer-Verlag,
bility. This observation suggests that the above results may haygy ¢ E_’F?ghrs J. L. Melsa, and D. G. Schultipear Contr. Syst. New

applications to certain problems arising in vision-based control. ~ York, NY: McGraw-Hill, 1993.
Several tOpiCS can be viewed as naturally extending the maté&L9 E. D. Sontag, “Smooth stabilization implies coprime factorization,”

. . . . . . IEEE Trans. Automat. Conjwol. 34, pp. 435-443, 1989.
rial presented in this paper. They include control and estimatiofyg) —— «Clocks and insensitivity to small measurement errors Piac.

in the presence of noise, finite communication rate constraints,  38th Conf. Decision Contrpll999, pp. 2661-2666.

and/or time delays. Some recent developments in these areas &# E: D. Sontag and Y. Wang, "On characterizations of the input-to-state
din 14 23] and [24] stability property,”Syst. Contr. Letfvol. 24, pp. 351-359, 1995.
reported in [ ]= [ : [22] W. A. Wolovich, Linear Multivariable Systems New York, NY:
Springer-Verlag, 1974.
[23] W. S. Wong and R. W. Brockett, “Systems with finite communication
ACKNOWLEDGMENT bandwidth constraints |: State estimation problenl&EE Trans. Au-
The authors would like to thank B. Hu, C. Scherer, E. Sontag,,,, tomat. Contr, vol. 42, pp. 12941299, 1997.

——, “Systems with finite communication bandwidth constraints II:
and the anonymous referees for useful comments. Stabilization with limited information feedbackEEE Trans. Automat.

Contr, vol. 44, pp. 1049-1053, 1999.
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