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Quantized Feedback Stabilization of Linear Systems
Roger W. Brockett, Fellow, IEEE,and Daniel Liberzon, Member, IEEE

Abstract—This paper addresses feedback stabilization prob-
lems for linear time-invariant control systems with saturating
quantized measurements. We propose a new control design
methodology, which relies on the possibility of changing the
sensitivity of the quantizer while the system evolves. The equation
that describes the evolution of the sensitivity with time (discrete
rather than continuous in most cases) is interconnected with the
given system (either continuous or discrete), resulting in a hybrid
system. When applied to systems that are stabilizable by linear
time-invariant feedback, this approach yields global asymptotic
stability.

Index Terms—Feedback stabilization, hybrid system, linear con-
trol system, quantized measurement.

I. INTRODUCTION

T HIS PAPER deals with quantized feedback stabilization
problems for linear time-invariant control systems. A

quantizer, as defined here, acts as a functional that maps a
real-valued function into a piecewise constant function taking
on a finite set of values. Given a system that is stabilizable by
linear time-invariant feedback, the problem under consideration
is to find a quantized feedback control law that stabilizes the
system. Problems of this kind arise, for example, when the
output measurements to be used for feedback are transmitted
via a digital communication channel.

A standard assumption in the literature on quantized control
is that one is given afixed quantizer representing some finite
precision effects in the system to be controlled (see, among
many sources, [5]–[7] and [17]). In this paper we adopt a dif-
ferent point of view. Namely, we treat the number of values of
the quantizer as being fixeda priori, but we allow ourselves
to alter other quantization parameters while the system evolves.
This approach enables us to achieve asymptotic stability, a prop-
erty that cannot be obtained with the schemes previously inves-
tigated. Some examples of situations where the present assump-
tions are meaningful will be discussed below.

We now introduce some notation and give a definition that
makes the above concepts precise. We will denote bythe
standard Euclidean norm of a vector and by the
induced norm of a matrix . We will also use themax-
imum normon defined by
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, as well as the inducedinfinity norm on defined by
. The set of nonnega-

tive integers will be denoted by . We will let denote the
indicator of a set , i.e.,

if
if

We find it convenient to use the followingfloor function:
. Functions denoted by the capital letters

, and are assumed to be piecewise continuous in all their
arguments.

Given a positive integer and a nonnegative real number
, we define thequantizer with sensitivity and

saturation value by the formula

if
if

if

Thus on the interval of length ,
where and , the function takes on
the value . Suppose that we have quantizers
with sensitivities and the same saturation value (

). We define the quantizer with sensitivity
and saturation value as follows:

, where are the coordinates
of relative to a fixed orthonormal basis in . Geometrically,

is thereby divided into a finite number of rectilinearquanti-
zation blocks, each corresponding to a fixed value of. We will
sometimes refer to the boundaries between these quantization
blocks asswitching hyperplanes. If all ’s have the same sen-
sitivity , we will call auniformquantizer with sensitivity .

The above notation is similar to the one used by Delchamps
in [6], but an essential feature that makes our definition different
is that the set of values taken on by the quantizer here is finite
rather than countable. In fact, we are especially interested in sit-
uations where the saturation valueis small. For example, we
will consider the case when . The corresponding quan-
tizer can be thought of as describing a sensor which determines
whether the temperature of a certain object is “normal,” “too
high,” or “too low.”

The approach to be used here is based on the hypothesis that it
is possible to change the sensitivity (but not the saturation value)
of the quantizer on the basis of available quantized measure-
ments. Such a quantizer can be viewed as a device consisting of a
multiplier by an adjustable factor followed by an analog-to-dig-
ital converter. But this is not the only situation that can be al-
luded to as a motivation for the present work. For example, given
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a temperature sensor with limited capability of the kind men-
tioned above, it is reasonable to assume that one is allowed to
adjust the threshold settings. As another example, a camera with
zooming capability and a finite number of pixels can be mod-
eled as a quantizer with varying sensitivity and a fixed saturation
value. More generally, our approach fits into the framework of
control with limited information([12], [24]) in the sense that the
state of the system is not completely known, but it is only known
which one of a fixed number of quantization blocks contains the
current state at each instant of time. Changing the size of these
quantization blocks, one can extract more information about the
behavior of the system, which appears to be a very natural thing
to do when such manipulations are permitted.

The control policy will usually be divided into two stages.
First, since the initial state is unknown, we will have to “zoom
out,” i.e., increase until the state of the system can be ade-
quately measured. Second, we will “zoom in,” i.e., decrease
in such a way as to drive the state to 0. This can be formalized
by introducing a discrete “zoom” variabletaking on the values
1 and . In essence, our goal is to demonstrate that if a linear
system can be stabilized by linear time-invariant feedback, then
it can also be stabilized by quantized feedback with the help of
the approach described here.

For continuous-time systems, we will describe the evolution
of with time by an equation that might take the form

where is a fixed positive number. The above equation de-
fines a “strictly causal” function that is continuous from the
left everywhere and maintains a constant value on each interval

, . In the control policies considered below,
such an equation for will be coupled with the given linear
system. This results in a “hybrid system” of the form

(1)

This system falls into the general framework for hybrid
systems presented in [2]. Clearly, for every initial condition

there exists a unique solution trajectory. The
system (1), as well as all other systems of differential-difference
equations considered in this paper, is of “hereditary type,”
and as such is covered by the theory of hereditary systems
developed in [10]. The logic governing the construction of
closed-loop systems such as (1) will become clear later.

Two technical comments are in order. The first one concerns
our usage of the term “asymptotic stability.” The desired prop-
erties of the control policies to be considered below, which we
will refer to loosely as “asymptotic stability,” are that i) is
an equilibrium state of the first equation in (1), that ii) it is stable
in the sense of Lyapunov, and that iii) we have
as . However, this does not really mean that the system
(1) is asymptotically stable because, as we will see, the state

will typically not be an equilibrium state of the
overall system (1). Since the validity of i) and ii) will usually be
obvious, in the proofs to follow we will concentrate on verifying
the property iii).

Secondly, in the continuous-time case quantized feedback
control laws lead to differential equations with discontinuous
right-hand sides. When the existence and uniqueness of solu-
tions in the classical sense cannot be guaranteed, they are to
be interpreted in the sense of Filippov [8]. This issue will arise
in Section IV where we will use a sliding mode control law
based on quantized output measurements for the case when the
saturation value is small. Other control strategies described in
this paper do not rely on chattering, and the analysis of the re-
sulting closed-loop systems does not explicitly require a concept
of generalized solution.

The outline of the paper is as follows. In Section II we develop
techniques for stabilizing continuous-time linear systems with
quantized state feedback. In Section III we present analogous
results for discrete-time systems. Section IV deals with quan-
tized output feedback stabilization. In Section V we describe
control strategies that involve state observation. In Section VI
we briefly discuss quantized feedback stabilization of nonlinear
systems. We make some concluding remarks and sketch direc-
tions for future research in Section VII.

II. QUANTIZED STATE FEEDBACK STABILIZATION : CONTINUOUS

TIME

This section deals with state feedback stabilization problems
for the continuous-time linear system

(2)

where , , and and are matrices of suitable
dimensions. If (2) is controllable in the unstable modes, then
there exists a matrix such that all eigenvalues of
have negative real parts (see [22, Sec. 6.3]). In this case it seems
logical to try to implement a quantized state feedback control
law of the form , where is a uniform quantizer
with sensitivity . Our first result shows that this control law
yields global asymptotic stability when combined with a suit-
able adjustment policy for .

Theorem 1: Suppose that all eigenvalues of have
negative real parts. Then there exists a control policy of the form

where is a uniform quantizer with sensitivity and
is a positive integer, such that the solutions of the closed-loop
system

arbitrary

approachd 0 as .
Proof: Consider the system

which we can also write as

(3)
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thus displaying the “error” vector . When

(4)

the quantizer does not saturate (i.e.,belongs to the union of
the quantization blocks of finite size), so that we have

(5)

We will let and denote the smallest and the
largest eigenvalue of a symmetric matrix, respectively. Re-
call that by the standard Lyapunov stability theory there exist
positive definite symmetric matrices and such that

. Whenever (4) holds, the deriva-
tive of along the solutions of (3) is given by

(6)

The last expression is negative outside the ball
, where

In what follows we will use the simple facts that the radius of
the ball inscribed in an ellipsoid of the form
equals and the radius of the ball circumscribed
about the same ellipsoid equals . Fix an arbitrary

. Define thescaling factor by the formula

and take the saturation value of to be large enough so that
. Define

(7)

Since , it is easy to see that .
We now describe the “zooming-out” stage of the control

strategy ( ). Set the control to 0 and let . Increase
fast enough to dominate the rate of growth of , e.g.,

let . Then there exists a positive integer
such that

hence

by virtue of (5). We can thus define

which implies

Therefore,

(8)

Next, we come to the “zooming-in” stage ( ). Observe
that (4) holds with for any that belongs to the
ellipsoid

Since , we have in particular
. From this and (6) it follows that if we let

with for
, then will not leave , hence the quantizer will not

saturate. We claim that

(9)

Suppose that (9) is not true. Then we have

(10)
and therefore

for all
(11)

But (6) and (11) imply that for we have

Comparing the last inequality with (7), (8) and (10), we arrive
at a contradiction, which establishes the validity of (9).

The basic idea that allows us to achieve asymptotic stability
is to decrease by means of multiplying it by the scaling factor

. After we do that, by virtue of (9) the state of the system
will still belong to the union of the quantization blocks of finite
size, and so we can continue the analysis as before. Thus we let
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with for
, which yields

Similarly, we let for
. Repeating this procedure, we obtain the desired con-

trol policy. Indeed, Lyapunov stability follows directly from the
adjustment policy for (note that the amount by whichneeds
to be increased initially is proportional to ). Moreover,
we have as , and by the above analysis the
same is true for .

The above quantized feedback control strategy calls for
taking on a countable set of values rather than a continuum of
values. In fact, it is not hard to see from the proof that the pro-
posed approach, suitably modified, will still work if is re-
stricted to take values in some given set, provided that:

1) contains a sequence that increases to .
2) Each from this sequence belongs to a sequence

in that decreases to 0 and is such that we
have for each .

In some applications there may only be a finite set of possible
values for (for example, if the values of have to be passed
through a quantizer with fixed sensitivity). Adjusting our con-
trol policy to this case, we would only obtain practical stability
and not global asymptotic stability claimed in Theorem 1 (cf.
Section IV below).

The control policy described above uses a variant of the
so-calleddwell-time switching logic[16] in the sense that the
value of is held constant on time intervals of fixed length

. Another possibility is to change every time
becomes smaller than or equal to a certain prescribed value.
To demonstrate how this alternative method works, we will
use it in proving the discrete-time counterpart of Theorem 1
(Theorem 3 in the next section). The main advantage of the
dwell-time switching approach is that it can also be applied to
quantized output feedback stabilization problems (cf. Sections
IV and V below). In specific applications, one might want to
compare the effectiveness of these two methods with respect
to various performance characteristics, such as the speed of
convergence of solution trajectories to zero (time-optimality) or
the frequency of switching hyperplane crossings which cause
the control function to change its value (“minimum attention
control”—cf. [3], [4]).

We see from the proof of Theorem 1 that the state of the
closed-loop system belongs, at equally spaced instants of time,
to ellipsoids whose sizes decrease according to consecutive in-
teger powers of (where ). Therefore, con-
verges to zero exponentially as . To make this argument
precise, note that for we have

This observation suggests that, at least qualitatively, there is no
degradation in performance of the quantized feedback system
compared with that of the linear time-invariant system. As can
be seen from the simple example

(12)

the lower bound on the rate of convergence is smaller than in
the absence of quantization, although for some values ofthe
convergence in the quantized system is actually faster.

We will now address in passing the issue of time sampling in
the context of equation (12). Suppose that the values of
are not measured continuously, but instead they are sampled at
times , where is thesampling period. This re-
sults in the equation Do we still
have asymptotic stability? The answer is yes, provided that no
“overshooting” occurs. Namely, we have to make sure that if,
say, , then remains negative for all future times.
This can be done by means of a simple calculation. Suppose
that the sampling is performed at and
(the most “dangerous” case). Then we will have for
all if , i.e., if the sampling
is performed frequently enough (see [14, p. 23] for details). It
is important to notice that this upper bound fordoes not de-
pend on , so we can still change the sensitivity in the way
described above. In other words, we see that the sampling con-
siderations are decoupled from the issues regarding the imple-
mentation of the quantized feedback stabilizing control policy.
This basic idea was independently explored in [11] in the gen-
eral context of the system (2). That paper also contains a detailed
discussion of performance and robustness characteristics of the
resulting quantized feedback control system.

The stabilization strategy of Theorem 1 employs a quantizer
whose (fixed) saturation value is assumed to be sufficiently
large. As we are about to see, it is possible to stabilize the
system (2) with quantized state feedback even if the saturation
value of the quantizer is substantially smaller than that
required in the above proof. In fact, let us show that we can
achieve global asymptotic stability using a (nonuniform)
quantizer with . What we will do is basically design
a sampled-data feedback control law using generalized hold
functions. The procedure will be based on the following
idea: if the state of the system at a given instant of time is
known to belong to a certain rectilinear box, and if we pick
the sensitivities so that the switching hyperplanes divide this
box into smaller boxes, then on the basis of the corresponding
quantized measurement we can immediately determine which
one of these smaller boxes contains the state of the system,
thereby improving our state estimate.

Theorem 2: Suppose that all eigenvalues of have
negative real parts. Then there exists a control policy of the form

where is a quantizer with sensitivity and
saturation value 1, such that the solutions of the closed-loop



BROCKETT AND LIBERZON: QUANTIZED FEEDBACK STABILIZATION OF LINEAR SYSTEMS 1283

system

arbitrary

approach 0as .
Proof: Fix a number . Since , we can

find a number such that for all .
If we let and , then there exists a
well-defined integer . We
have , where . Thus 0 can
be viewed as an estimate of with the estimation error
whose maximum norm is at most . Our goal is to construct a
sequence of state estimates with estimation errors approaching
0 as .

For , let . This gives
, hence . The quantized

measurement with ,
singles out a rectilinear box with edges at most

which contains . Denoting the center of
this box by , we see that

For , let
. This gives

hence

The quantized measurement with

if

if

singles out a rectilinear box with edges at most
which contains . Denoting the center of this box by

, we see that

For , let
. Proceeding in this

fashion, we obtain a piecewise continuous control function

such that as . The same state-
ment is therefore true for the Euclidean norm .
This, combined with an argument of the type used in the proof
of Theorem 1, implies that as .

Remark: Again, if the set of possible values for is finite,
global asymptotic stability is replaced by practical stability (see
also Section IV below).

III. QUANTIZED STATE FEEDBACK STABILIZATION : DISCRETE

TIME

In this section we will establish counterparts of Theorems 1
and 2 for the discrete-time system

(13)

with and . For illustrative purposes, to prove the
next theorem we use a different approach than that described in
the proof of Theorem 1.

Theorem 3: Suppose that all eigenvalues of lie in-
side the unit circle. Then there exists a control policy of the form

where is a uniform quantizer with sensitivity and
is a positive integer, such that the solutions of the closed-loop
system

arbitrary

approach 0as .
Proof: Consider the system

which we can also write as

(14)

with as before. By the standard Lyapunov
stability theory for discrete-time linear systems, there exist
positive definite symmetric matrices and such that

. If the inequality (4)
holds, the bound (5) is valid. For the solutions of (14) this
implies
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The last expression is negative outside the ball
, where

(cf. [6, Proposition 2.3]). Define the scaling factorby the for-
mula

for some fixed , and take the saturation value of
to be large enough so that . If we let and

for , then there exists a well-defined
number

We have

Therefore, belongs to the ellipsoid

Observe that (4) holds with for all . Since
, it follows that if we let with

for , then will never leave . More-
over, will approach the ellipsoid

Thus we can define

which implies

When , change the sensitivity to .
Arguing as before, we can show that if we let

with for , then (4) will
still hold, and there exists a well-defined number

When , change the sensitivity to
. Repeating this procedure, we obtain a sequence

. We conclude that
as .

Our analog of Theorem 2 for the discrete-time case contains
one additional hypothesis which means, loosely speaking, that
the state of the uncontrolled system is “not
excessively unstable.”

Theorem 4: Suppose that all eigenvalues of lie in-
side the unit circle. Suppose also that . Then there
exists a control policy of the form

where is a quantizer with sensitivity and
saturation value 1, such that the solutions of the closed-loop
system

arbitrary

approach 0 as .
Proof: If we let and for

, then there exists .
We have , where . We will
construct a sequence of state estimates such that

as .
Let . Then

. The quantized measurement with
singles out a rectilinear box with

edges at most which contains . Denoting
the center of this box by , we obtain

Next, let . We have
hence

. The quantized measurement
with

if

if
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singles out a rectilinear box with edges at most
which contains . Denoting the center of this box by

, we obtain

Next, let . Repeating the above
procedure for each, we obtain a control function such that

as . The statement of the
theorem follows.

IV. QUANTIZED OUTPUT FEEDBACK STABILIZATION

We now turn to the problem of stabilizing the system

(15)

with quantized measurements of the output. Assume (without
loss of generality) that . Suppose that there exists a
matrix such that all eigenvalues of have negative
real parts. If with , then the initial “zooming-out”
stage of the stabilizing control policy of Theorem 1 cannot be
implemented. For this reason, in the next theorem the asymp-
totic stability is local.

Theorem 5: Suppose that all eigenvalues of have
negative real parts. For any number , there exists a con-
trol policy of the form

where is a uniform quantizer with sensitivity , such that
the solutions of the closed-loop system

approach 0 as .
Proof: As before, there exist positive definite symmetric

matrices and such that
. Fix an arbitrary . Define , and as in the proof

of Theorem 1, and take the saturation valueof to be large
enough so that . Let , where is a
uniform quantizer with sensitivity . The closed-loop system
can be written as

(16)

where . Whenever
, the upper bound given by (6) is valid for the derivative

of along the solutions of (16).
Suppose that . Let us choose the initial sensi-

tivity large enough to have

hence

This is completely analogous to (8) (with ), and the rest
of the proof carries over from Theorem 1 with obvious minor
modifications.

The discrete-time case can be treated similarly. We now turn
our attention to quantizers with saturation value 1. For sim-
plicity, let us consider the single-input, single-output system

(17)

[generalization to the case of (15) is straightforward]. Suppose
that there exists a feedback gainsuch that all eigenvalues
of have negative real parts. All such gainscan
be found by using the well-known Nyquist criterion (see, e.g.,
[18]). Without loss of generality we may assume that .
We will develop a sliding mode control policy that yields asymp-
totic stability. It will be described by a differential equation
which makes the sensitivity change fast enough so as to domi-
nate the dynamics of the underlying linear system.

Theorem 6: Suppose that all eigenvalues of have
negative real parts. For any number , there exists a con-
trol policy of the form

where is a quantizer with sensitivity and saturation value
1, such that the solutions of the closed-loop system

(interpreted in the Filippov’s sense) approach 0 as .
Proof: We know that there exist positive definite sym-

metric matrices and such that
. Consider the system

(18)

where

and

The right-hand side of (18) is discontinuous when ,
and we will interpret solutions of (18) in the Filippov’s sense [8].

We have , and it is not hard to
check that for as long
as and . But from the analysis
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of Section II it follows that the solution trajectory will never
leave the region . This means that there is a time

such that . It is not difficult to
show that the solution trajectory stays on the discontinuity locus

for all . To complete the proof,
it remains to use the fact that the system is
asymptotically stable.

The results of Theorems 5 and 6, although local, are of
“semiglobal” nature: given ana priori upper bound on
the norm of , we can find a control law that drives the
state to 0. A drawback of the above solution is thatis
changing continuously, which might be undesirable in some
applications. As the most restrictive case, consider a situ-
ation where is only allowed to take on values in the set

,
where is a fixed positive real number and is a fixed positive
integer. Then we can replace (18) by a hybrid system of the
form

(19)

where . Note that changes its
value by every units of time. Using our earlier developments,
we can easily establish the following stability property of (19).

Proposition 7: Let , , and be as in the foregoing.
Suppose that is large enough and is small enough so
that

Then the solutions of the system (19) eventually enter the region

and stay there for all future time. Moreover, we have
for all .

One could also consider a situation wherecan take on dif-
ferent values from a certain finite set. This would increase the
domain of stability for (19) and make the attracting invariant re-
gion smaller.

V. OBSERVABILITY AND QUANTIZED FEEDBACK STABILIZATION

We will now show that, by employing somewhat more so-
phisticated techniques than those presented in Section IV, it is
possible to design a quantized output feedback control policy
that makesall solutions of the system (15) approach 0. At the
beginning of Section IV we made the assumption that (15) is
stabilizable by linear static output feedback. This is well known
to imply that (15) isdetectable, i.e., observable in the unstable

modes (see [22, Sect. 6.4]). Since we are concerned with feed-
back stabilization, it makes sense to assume that is actu-
ally an observable pair. As it turns out, the hypothesis that (15) is
stabilizable by linear static output feedback can then be relaxed
considerably. Namely, we will only require that (15) be stabiliz-
able by linear staticstatefeedback. This means that there exists
a matrix such that all eigenvalues of have negative
real parts, but there might not exist anysuch that all eigen-
values of have negative real parts.

Since only quantized measurements of the output, and not of
the state, are available, we have to develop a method for con-
structing state estimates which we will denote by . We will
be using the history of quantized output measurements over a
time interval, in contrast with the simpler techniques of the pre-
vious sections. The evolution of can thus be described by a
Volterra integral equation (this construction is based on a stan-
dard technique and will become more transparent in the course
of the proof).

Theorem 8: Suppose that is an observable pair, and
that all eigenvalues of have negative real parts. Then
there exists a control policy of the form

where is a uniform quantizer with sensitivity , such that
the solutions of the closed-loop system

arbitrary

approach 0 as .
Proof: Let , and be as in the proof of Theorem 1.

Fix an arbitrary . Let be such that
and for all . Denote by theobserv-
ability Gramian, i.e., the full-rank matrix
(see, e.g., [1]). Define

where

Take the saturation value of to be large enough so that
. Define
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We will be updating the value of every units of time while
updating the value of every units of time. If we let
and , then such that

for all

We have

Define

We have

Denoting by , we obtain

Let . Pick a number
such that

This implies

For , let .
Now, take any , , and assume

that has already been defined for . We have

where is a known vector that depends on for
. Letting

we obtain

Denoting by the solution at time of the equa-
tion with , we have

We then let . Proceeding in this way,
we obtain a control function such that for all ,

we have

Using the same techniques as in the proof of Theorem 1, we can
show that

Thus we let for
, for
, etc., while updating in the same way as before.

This gives as needed.
Remark: Another possibility, suggested to us by Steve

Morse, is to implement a dynamic observer for .
The next theorem is a counterpart of Theorem 8 for the dis-

crete-time linear system

(20)

Its proof proceeds along the same lines and will not be given.
Theorem 9: Suppose that is an observable pair, and

that all eigenvalues of lie inside the unit circle. Then
there exists a control policy of the form

where is a uniform quantizer with sensitivity , such that
the solutions of the closed-loop system

arbitrary

approach 0 as .

VI. A REMARK ON NONLINEAR SYSTEMS

It can be shown via a linearization argument that by using
our approach one can obtain local asymptotic stability for a non-
linear system, provided that the corresponding linearized system
is stabilizable (see [11]). Here we briefly discuss the problem
of achieving global or semiglobal asymptotic stability for non-
linear systems with quantized measurements. Working with a
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given nonlinear system directly, one gains an advantage even if
only local asymptotic stability is sought, because the lineariza-
tion of a stabilizable nonlinear system may fail to be stabiliz-
able. As we will see, the intrinsic difficulty that lies in the way
of extending the ideas presented above to the nonlinear case is
the need to find a control law that is input-to-state stabilizing
with respect to measurement errors.

Consider the system

(21)

Suppose that there exists a feedback control law that
makes the system

input-to-state stable(ISS) with respect to a measurement dis-
turbance , in the sense of Sontag [19]. According to [21], a
necessary and sufficient condition for ISS in this case is the ex-
istence of a positive definite, radially unbounded, smooth func-
tion such that for some continuous, positive defi-
nite, strictly increasing functions ,
for all , and for all we have

and

(22)

The problem of finding feedback control laws that achieve ISS
with respect to measurement errors has received considerable
attention in the literature. In particular, it was shown in [9] that
the class of systems that admit such control laws includes single-
input plants in strict feedback form. It also includes systems that
admitglobally Lipschitzcontrol laws achieving ISS with respect
to actuatorerrors, although this condition is quite restrictive.

Let be a quantizer with sensitivity and saturation value
. The problem under consideration is to find a quantized

state feedback law that makes the system (21) asymptotically
stable. Assume for the moment that a bound on the initial state
is known: . The idea that we propose is to use the
above control law , which results in the closed-loop system

We can rewrite this as

thus displaying the “error” vector . When
the inequality (4) holds, the quantizer does not saturate, and the
bound (5) is valid. Fix a positive number, and define the func-
tions

and

Suppose first that the following condition is satisfied.
Condition 1: and .

In this case, for any given number there exists a
positive integer such that we have

(23)

Furthermore, we can take large enough to have

The quantized feedback control strategy can then be described
as follows. Set equal to . Using (22) in much the same way
as the inequality (6) has been used in the previous sections, we
can show that there exists a timewith the property that

hence

When , set equal to , and repeat the
procedure. This gives asymptotic stability.

Now suppose that Condition 1 is not satisfied. In this case for
any given numbers there exists a positive integer

such that we have

It is not hard to see that using the same procedure we only obtain
practical stability and not asymptotic stability.

One reason why the above is not satisfactory is the presence of
the technical Condition 1. Even when this condition holds, it is
not clear whether we can in general achieveglobal (as opposed
to just semiglobal) asymptotic stability, because the saturation
value of the quantizer must be chosen a priori and cannot be
changed. The “zooming-out” technique does allow us to obtain
a global result if for some the inequality (23) holds with
replaced by . The paper [13] contains an example of a system
for which this can be shown to be the case.

The class of systems for which control laws achieving ISS
with respect to measurement disturbances are known to exist is
relatively small. Thus the problem considered here to a large ex-
tent reduces to the problem of finding such control laws, which
is interesting and important in its own right and is a subject of
ongoing research. An alternative approach to semiglobal stabi-
lization can be based on using stabilizing control laws that are
robust with respect tosmallmeasurement errors [20]. These is-
sues will be treated in greater detail elsewhere.

VII. CONCLUSIONS

This paper addressed quantized feedback stabilization prob-
lems for linear time-invariant control systems. The approach
taken here was based on the hypothesis that it is possible to
change the sensitivity (but not the saturation value) of the quan-
tizer on the basis of available quantized measurements. We de-
veloped a number of techniques, for both continuous- and dis-
crete-time systems, which enable one to achieve global asymp-
totic stability.

Many other quantized feedback control strategies, in partic-
ular those related to the material of Section V, can be found in
the literature (see, e.g., [17]). One could try to improve them
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using our approach. It would also be interesting to extend the
ideas presented here to situations where the quantization regions
need not be rectilinear but instead can have arbitrary shapes (as
in [15]).

In the particular case when , the problem considered
in this paper can be interpreted as the problem of finding a sta-
bilizing feedback based on the output measurements obtained
using an orthographic projection camera with zooming capa-
bility. This observation suggests that the above results may have
applications to certain problems arising in vision-based control.

Several topics can be viewed as naturally extending the mate-
rial presented in this paper. They include control and estimation
in the presence of noise, finite communication rate constraints,
and/or time delays. Some recent developments in these areas are
reported in [14], [23] and [24].
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