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Abstract.

There has been great deal of innovative work in
recent years relating discrete algorithms to contin-
uous flows. Of particular interest are flows which
are gradient flows or Hamiltonian flows. Hamilton-
ian flows do not have asymptotically stable equilib-
ria, but a restriction of the system to a certain set of
variables may have such an equilibrium. In nonlin-
ear optimization and game theory one is interested in
systems with saddle point equilibria. We show here
that certain flows with such equilibria can be both
Hamiltonian and gradient and we discuss the rela-
tionship of such flows with the gradient method for
finding saddle points in nonlinear optimization prob-
lems. We compare these results with gradient flows
associated with the Toda lattice.

0. Introduction.

To those who embrace the Lagrange multiplier
point of view for treating constrained finite dimen-
sional optimization problems, it may be said that
Hamiltonian systems arise in the study of the calculus
of variations because the calculus of variations deals
with constraints in the form of differential equations
and when one introduces the, necessarily time de-
pendent, Lagrange multipliers associated with these
constraints, the simultaneous differential equations
consisting of the original system and the multipli-
ers, satisfy a set of equations of the Hamiltonian
form. This is all very familiar to students of the
maximum principle. The fact that the Hamilton-
ian point of view replaces the requirement that one
search over an (infinite dimensional) space of curves
with the requirement that one search over a (finite
dimensional) set of boundary values is mitigated by
the fact that the mixed boundary conditions are usu-
ally difficult to solve. Symes [1982] pointed out a
new, and surprisingly different, role for Hamilton-
ian systems. He pointed out that the QR algo-
rithm for diagonalizing symmetric matrices, can be
thought of as being generated by a Hamiltonian flow
in the following sense. The QR algorithm proceeds
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by successive application of a particular operation so
as to generate a sequence of symmetric matrices. If L
is the symmetric matrix to be diagonalized then there
is an operation T such that the difference equation
L(k + 1) = T(L(k)), initialized with L, converges
to a diagonal matrix having the same spectrum as
L. Symes’ observation was that T(L) can be gener-
ated from L by solving on the interval [0,1] a cer-
tain initial value problem for a Hamiltonian system
of differential equations. Because the QR algorithm
can be regarded as an algorithm for minimizing the
sum of the squares of the off-diagonal elements of
a symmetric matrix, subject to the constraint that
the eigenvalues are {11, As, ..., An}, we may say that
Symes discovered a role for Hamiltonian systems of
the initial value type in solving constrained finite di-
mensional (i.e. not calculus of variations) optimiza-
tion problems. In fact, we can be even more specific.
The Hamiltonian system of Symes is an integrable
system with eigenvalues of L playing the role of con-
served (momentum-like) quantities. This is not an
isolated story. Deift, Nanda, and Tomei [1983] also
developed results of this type and Bayer and Lagarias
[1989] showed that the so-called A-Trajectories asso-
ciated with one version of Karmarkar’s algorithm for
linear programming are also generated by Hamilton-
ian systems in a similar way. (For further work in
this regard see the references.)

The main goal of this paper is to provide some
ways of thinking about how these Hamiltonian meth-
ods fit in with the more familiar ways of using differ-
ential equations to solve finite dimensional optimiza-
tion problems. Of course the best known differential
equation method for optimization is the continuous
descent method for solving unconstrained maximiza-
tion problems whereby to maximize V one simply
integrates the equation dz/dt = VV until an equi-
librium is reached. From the point of view of dy-
namical systems, one of the important aspects of
the use of Hamiltonian systems in this context is
that (finite-dimensional) Hamiltonian systems do not
have asymptotically stable equilibria. To see this,
one need only consider the eigenvalue pattern associ-
ated with linearization at an equilibrium point. Thus
these algorithms succeed for reasons that are differ-
ent from those that explain the success of gradient
algorithms. However, it can (but need not) happen



that in the neighborhood of an equilibrium point of
a Hamiltonian system of dimension 2n there will be
an n-dimensional manifold that is both invariant and
asymptotically stable in the sense that any trajectory
that starts on this manifold remains on it and con-
verges to the equilibrium point. The Symes vector
field provides an example of this.

In 1958 Arrow, Hurwicz and Uzawa published
their famous paper on mathematical programming
(Arrow et. al [1958]) in which they gave a gradient-
like algorithm for solving constrained optimization
problems. We may distinguish between two aspects
of their work. The most basic (one might even say
trivial) part consists of the observation that if one
introduces the constraints using Lagrange multipli-
ers and then solves the mixed gradient flow

de/dt = VV + (p,Vf)

dp/dt = —f,

then it is easy to give natural conditions under which
this system converges to the constrained maximum.
The treatment of inequality constraints requires more
insight and deeper analysis. Because Arrow et al.
provide a basic algorithm for constrained optimiza-
tion and, because the Hamiltonian methods do as
well, they should be compared.

In this paper we observe in Section 1 that certain
flows with saddle point equilibria can be both Hamil-
tonian and gradient. To explain this it seems natural
to invoke some complex function theory. Saddle point
equilibria play a role in nonlinear optimization prob-
lems with constraints (as well as in game theory and
H* control for example) and we point out in Sec-
tion 2 the connection with the gradient method of
Arrow, Hurwicz and Uzawa [1958]. We then discuss
in Section 3 aspects of the Hamiltonian and gradient
structures associated with the Toda lattice flow. In
this system we start off by studying a Hamiltonian
system with no asymptotically stable equilibria, but
by restricting to a level set of the integrals of motion,
we find a gradient system with a desired stable equi-
librium. Details may be found in Bloch, Brockett
and Ratiu [1992].

1. Complex Analytic Hamiltonian and Gradi-
ent Flows.

Two basic types of flows in dynamical systems the-
ory are gradient and Hamiltonian flows. There are, in
general, fundamental differences between such flows,
but one can ask when flows are simultaneously Hamil-
tonian and gradient. An immediate restriction on
such flows is that the equilibria must be compatible
with both types of system. For example, a Hamil-
tonian system cannot have an asymptotically stable
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equilibrium. Thus, as we will see in the next section,

the Toda flow in the variables of Flaschka is gradient

only when restricted to a level set of its integrals.
However there are flows that are simultaneously

Hamiltonian and gradient flows.

Example 1. Consider the flow

z=-2y

(11)

This is a Hamiltonian flow on R? with Hamiltonian
H(z,y) = £?—y? with respect to the usual symplectic
structure (see e.g Abraham and Marsden [1978]), and
is gradient with gradient function —G(z,y) = —2zy
with respect to the usual metric. In other words the
flow may be written

y=—2z.

s 0H _ 090G
T 8y~ Oz
. 8H  8G
=3 = oy (12)

Note also that at the equilibrium the linearized flow
has eigenvalues £1.

In fact this is a special case of a general result:

Consider C* = R?" with coordinates z =
(21, z) =z +iy = (21, -, za) + (Y1, , ¥n)-
We suppose R?" is endowed with the usual sym-
plectic structure, the skew symmetric bilinear form
w = Z;(dz; A dy;), and the usual Riemannian struc-
ture ds? = L;((dz;)? + (dwi)?).

Theorem 1.1. Let C* = R?® have the usual sym-
plectic and Hamiltonian structures. Let H(z,y) and
G(z,y) be real functions with continuous first par-
tial derivatives. Then the Hamiltonian flow of H and
the gradient flow of —G are identical if and only if
f(2) = H(z,y) + iG(z, y) is analytic on C*.

Proof: Write the Hamiltonian and gradient flows in
standard form as (1.2). The result then follows from
the Cauchy Riemann equations.

We note that such a Hamiltonian or gradient flow
cannot have a source or sink.

Thus there are numerous examples of flows with
this dual Hamiltonian and gradient character. In the
above example f(z) = 2*
Example 2. Let f(z) = 2°.
flow

Then we obtain the

z = —6zy

y = —3z% 4+ 3% (1.3)

This has Hamiltonian #3 — 3zy? and gradient func-
tion —3z%y — 3.



Example 3. Let f(z) = e¢*. Then we obtain the

flow
z=—€"siny

y= —e" cosy.

(1.4)

This has Hamiltonian e” cosy and gradient func-
tion —e®siny. Note also that the vector field here
has no zeros. This is a feature of the Toda lattice
flow in its original physical variables (see section 3).

We note also that there is a natural way of obtain-
ing gradient flows from Hamiltonian flows on Kahler
manifolds.

Recall that a real vector space V' of even dimen-
sion is said to have a complex structure if there is
a real linear isomorphism J : V — V such that
J? = —1. If V has an inner product and w is a
symplectic structure on V' then there exists a com-
plex structure J on V and a (possibly different) real
inner product g on V such that g(¢,n) = —w(J€, n).
Setting h(&,n) = g(€,n) — w(€,n), h is a hermit-
ian inner product on V regarded as a complex vector
space (see Abraham and Marsden [1978], p173.). If
the relation above holds for a given real inner product
g, complex structure J and symplectic form w, the
triple (g, J,w) is said to be calibrated. If only J and
w are given, then they are part of a calibrated triple
if and only if w(€, Jn) defines a real inner product on
V.

To globalize these notions on manifolds, more
structure is needed. Given a Riemannian manifold
(M, g) on which an almost symplectic structure w is
defined (i.e. w is nondegenerate but not necessar-
ily closed), one can induce an almost complex struc-
ture J, i.e. a smooth complex structure on each tan-
gent space. This does not make M into a complex
manifold unless the complex structure is integrable,
or, equivalently, there exists an affine connection V
whose torsion vanishes and VJ = 0 (Nelson [1967]).
As in the vector space case the triplet (g,J,w) is
said to be calibrated if the calibration holds on each
tangent space. A calibrated triple (g, J,w) defines a
Kdhler structureon M if J is a complex structure and
w is a symplectic form. Given a calibrated triple on
M with V the Riemannian connection, if VJ = 0 or
Vw = 0 then M is a Kahler manifold. Conversely, if
(9, J,w) is a Kahler structure on M then both VJ =0
and Vw = 0.

Note that if (M, g, J,w) is a Kahler manifold and
F : M — R is a smooth function the relation between
the gradient vector field VF (relative to g) and the
Hamiltonian vector field X is given by Xp = —~JVF
or VF = JXp.

In the simple situation above with the usual com-
plex structure and symplectic form, the Kahler met-
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ric is the usual metric. Letting ¢ act on the Hamil-
tonian vector field with Hamiltonian H(z,y) gives
the gradient flow of H(z, y) with respect to the usual
metric. Thus in example 1 above action by i gives
the flow

=2z

y=—2y. (1.5)

which is indeed the gradient flow of z% — y°.

Similarly, letting i act on the Hamiltonian flow
of —G(z,y) = —2zy gives the flow (1.1). Thus we
see that another way to interpret Theorem 1.1 is to
consider the Hamiltonian flows of both H(z,y) and
—G(z,y). Then, letting i act on the Hamiltonian flow
of —G gives a gradient flow which equals the Hamil-
tonian flow of H. (The Toda lattice flow in Moser’s
variables (see section 3) may be obtained using this
construction (see Bloch, Flaschka and Ratiu [1990}).)

On compact manifolds, one cannot get the above
gradient/Hamiltonian duality.

Theorem 1.2. On a compact manifold which
is both Riemannian and symplectic (for example
Kahler) there are no vector fields with isolated equi-
libria which are simultaneously gradient and Hamil-
tonian.

Proof. Assume that X = —VF = X for some
smooth functions F,G :— R. Since all equilibria of
X are isolated, the minimum x4 of F is an isolated
critical point. Since d—’;('ﬂ = —||VF(z)||? the func-
tion F(z) — F(xo) is a strict Liapunov function. By
Liapunov’s theorem, z¢ is then asymptotically sta-
ble. But this is impossible since G is conserved on
the flow of X and the level sets of G are necessarily
compact. O

The above flows which are both Hamiltonian and
gradient are of course flows in an even number of vari-
ables. It is possible however, by using the theory of
Poisson structures (see e.g Weinstein [1983]) to have
flows in an odd number of variables which are both
Hamiltonian (in a generalized sense) and gradient.

Recall that for P a smooth manifold, a Poisson
structure on P is a skew-symmetric bilinear map on
the C'*° functions on P called the Poisson bracket and
written {F, G} for F,G € C*(P), and which satisfies
the Jacobi identity and Leibniz’s rule. A manifold P
equipped with such a structure is called a Poisson
manifold.

Associated with any smooth function H on
(P, {-,-}) is a smooth Hamiltonian vector field Xy
given by (dF, Xy) = {F, H} for any smooth function
F on P. In local coordinates ¢ = z,,---,z,, this
Hamiltonian flow may be written £ = J(z)gradH(z)



where grad is the standard gradient. J(z) is a skew-
symmetric matrix function with entries Jy(z) =
{z&, 1}

Example 4. To illustrate the above we consider
now the following example on R"( closely related to
a probem in network dynamics discussed in Maschke,
van der Schaft and Breedveld [1992]): Let G(z,y) =
(=z1 + z2)y;. Then the gradient flow of G with re-
spect to the usual metric is

T =
Ty =y
Yy = —Z1 + 3. (16)

Now let F(z,y) = 1/2(—2z} — 223 + y}) and let J
be the matrix

60 0 -1
J=10 0 1
1 -1 0

Then this flow is also a Hamiltonian flow given by
z = JgradF.

In fact, viewed in the right variables this is a sim-
ple extension of example 1. Letting, r = 2, + z2,9 =
2p1,p = z1 — = the flow becomes

§g=-2p
p=-2q
F=0. 1.n

Thus, the (g,p) flow here is again Hamiltonian
with Hamiltonian ¢? — p? and gradient with gradi-
ent function —2pq.

In fact (see e.g. Weinstein [1983], Maschke et.al.
[1992]) any Poisson system whose Poisson bracket is
of constant rank 2n may be written locally as a flow of
the form ¢; = %,f;i = —g—:{,r'j =0,i=1-n,5=
1,---m. Thusif H is the real part of an analytic func-
tion, this flow is again both Hamiltonian and gradi-
ent.

We remark here that there is an interesting rela-
tionship between the work here and network theory
(see e.g. Smale [1972] and Maschke et. al. [1992].) In
the theory of nondissipative networks, the flows are
gradient with respect to an indefinite metric and can
at the same time be Hamiltonian or Poisson. The
critical points are typically centers. Here, in contrast
we have saddles, and flows which are Hamiltonian
and gradient with respect to the standard metric.
An indefinite metric may be used however to turn
saddles into sinks as in the next section.
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2. Saddle Point Algorithms

We now consider the connection of the above anal-
ysis with the gradient method in nonlinear program-
ming.

A typical problem is formulated as: Minimize (z),
subject to z € U C R™ and ¢;(2z) <0,i=1,--- ,n.

One forms the Lagrangian function 3 associated
with the problem defined by

¥(z,u) = 0(z) + (p, 9(x)), 2.1

where p = (p1, - - - , pm ) is the vector of Lagrange mul-
tipliers.

A pair (z*,p*), £* € U, is called a saddle point if
for all z € U and p, ¥(z,p*) < ¥(z*,p*) < ¢¥(z*,p)
and p > 0. It follows that z* is an optimal solution
to the nonlinear programming problem.

To find a saddle point of such a programming
problem Arrow, Hurwicz and Uzawa [1958] formu-
lated a gradient method. Let (z,p) be strictly con-
cave and of class C? in z and strictly convex and C?
in p and possess a saddle point (z*, p*). (One usually
also wishes to keep = and p positive — we consider this
below.) To approach the saddle the Arrow-Hurwicz-
Uzawa (A-H-U) technique is to use the “gradient”
flow

Y

= 81‘;

o

p; = _apj (2.2)

Now how is this related to our gradient flows? Set
now n = m . First we note that the A-H-U flow is
the gradient of ¥ not with respect to the usual metric
on R?", but with respect to the metric with matrix

gijzéij; i)jzlw"':ny
=bij, L,j=n+1,---,2n

(2.3)
Now we can show:

Theorem 2.1. Suppose we have a function H(z,y)
with saddle point as in Theorem 1.1. Form a new an-
alytic function if(z,y), by multiplying f by i. Then
the A-H-U flow is given by the gradient flow of the
imaginary part of if with respect to the metric (2.3)
and is equal to the Hamiltonian flow of the real part
of if multiplied by the matrix g;; .

Referring to example 1, note that the A-H-U flow
is given by (1.5) with the opposite sign for .

The point about the A-H-U flow is that it turns
the saddle into a stable equilibrium. This can also be
understood rather nicely in the following fundamen-
tally complex sense.

Let ) be a real symmetric n x n matrix. Then we
have



Proposition 2.2. Consider the function f(z) =
Qz = H(z,y) + iG(z,y) = (z7Qz — y"Qy) +
i(yTQz — zTQy) on C* = R?". The flow z = 3L =
2Qz is the A-H-U flow and thus is stable if and only
if Q Is negative definite.

Again we refer to the simple example 1, where
f(z) = 22, and the flow z = 22 is the A-H-U flow
mentioned above.

This result is easy to see, but in fact a more general
result is true, which follows again from the Cauchy-
Riemann equations:

Theorem 2.3. Consider the gradient flow of
F(z,y), the real part of an analytic function f(z).
Then the smooth A-H-U flow of F is given by z =
f'(2).

Proof.. We have f(z) = F(z,y) + iG(z,y) where G
is the harmonic conjugate of F'. Hence

F'(z) = Fy +iGy = Fy — iG,. (2.4)

Hence z = f’(z) does indeed give the Arrow flow.

Now in general, as mentioned earlier, one wishes
to keep the variables in the A-H-U flow in the positive
quadrant. The full Arrow-Hurwicz-Uzawa algorithm
which accomplishes this is given by

;=0 if Fp; <0 and z;=0

z; = Fy, otherwise

yi=0 if F,,>0 and y =0

v =—F, otherwise. (2.5)

The full A-H-U algorithm may also be written
compactly in complex form. It is given by

z; = dm(f;,)
‘éi = R'e(fz.)

%= [,

if Re(f:;)<0 and Re(z;)=0
if Im(f.,,)<0 and Im(z)=0

otherwise. (2.6)

3. Gradient Flows and the Toda Lattice Equa-
tions

In this section we give a brief discussion of gradient
flows on adjoint orbits of compact Lie groups and the
(Hamiltonian) Toda lattice equations and contrast it
with the work above. Details may be found in Bloch
et.al [1992] and other references below.

Let G, be a compact Lie group with Lie algebra G,
and let ( , ) denote the Killing form on G,,. Consider

1486

the flow (discussed in Brockett [1988] in the unitary
case)
L(t) = [L(2), [L(), V] (3.1)

for L and N in G,,.
This flow is in fact a gradient flow:

Proposition 3.1. The flow (3.1) is the gradient vec-
tor field of H(L) = «(L,N), & the Killing form, on
the adjoint orbit O of G, containing the initial con-
dition L(0) = Lo, with respect to the normal metric
{(,)vonO.

The normal metric is defined for example in Atiyah
[1982]. For the proof of the proposition see Bloch et.
al. [1992].

A key property of the flow (3.1) is that it is isospec-
tral, i.e. the eigenvalues of L are preserved. Fur-
ther, we can show that the generalized (Hamilton-
ian) Toda lattice equations may be written in this
form and hence are a gradient flow on their isospec-
tral set (the level set to their integrals). (For si(n) L
is a tridiagonal symmetric matrix and N is diagonal.
We recall (see Moser [1974], Flaschka [1976]) that the
Toda lattice equations are the integrable equations of
motion for a lattice of particles on the line interact-
ing under an exponential potential. Flaschka found
an ingenious change of variables which converted the
equations to Lax pair form.

We note that the Toda lattice is gradient on its
restriction to the isospectral set, since it is the re-
striction of a gradient vector field on a G, orbit.
There appears to be no appropriate metric off the
isospectral set. Further there exits a stable equilib-
rium (when L is diagonal). Similarly, Moser’s form
of the gradient flow (see Moser [1974]) also occurs
on the isospectral set. For the precise relationship
between Moser’ flow and the double bracket flow see
Bloch, Flaschka and Ratiu [1990]. One can in fact
show that Moser’s flow is the gradient of a linear
functional on complex projective space with respect
to the Kahler metric, which in this instance coincides
with the normal metric. This is in fact of particular
interest in connection with the nonlinear program-
ming problems discussed earlier:

One may view complex projective space CP' as a
coadjoint orbit of the special unitary group U(! +1).
(Simply consider an orbit through an element of
u(l + 1) of the form idiag(1,0,- - ,0)). The elements
of the orbit are then rank one projection matrices
multiplied by i. In this case the Kahler and nor-
mal metrics on the orbit coincide and the gradient
flow of Tr(AP), A a real diagonal matrix with dis-
tinct entries A;, P a projection matrix, is given by



P = [P,[P,A]]. Now P being a rank one projection
matrix is of the form zz7, z € O, |z = 1.
Hence Tr(AP) = Y Ai|z:|%, and the flow minimizes
this quadratic form subject to the above constraint.
In fact the variables p;; = |2:|? may be viewed as ly-
ing in the standard polytope. In general the Toda
flows may be related to flows in a convex polytope
and thus to linear programming. This can be seen
through the theory of convexity of the image of the
momentum map (see Kostant [1973], Atiyah [1982]
and Guillemin and Sternberg [1983]). For details on
this work see Brockett [1988], [1992], Bloch, Brockett
and Ratiu, [1992], Bloch, Flaschka and Ratiu [1990].

The overall picture we have developed here is as
follows. The Toda flow is Hamiltonian and the level
sets of the integrals of motion are Lagrangian sub-
manifolds of the phase space. Also the level sets lie on
orbits of G,. These level sets are invariant subman-
ifolds for the gradient flow of the function (L, N)
with respect to the normal metric. On the level sets
the Hamiltonian and gradient flows are identical for
suitable N. Thus we have a picture of the connection
between the Hamiltonian and gradient flows which is
different from, but related to, that sketched in Sec-
tion 1. In both cases there is an interesting relation-
ship to algorithms.
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